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ABSTRACT 

Given a linear system i = Ax + Bu, we compute a normal external description 

(N(s), D(s)), using the Hessenberg form of the pair (A, B) and embedding tech- 
niques. We show how to compute a state feedback K that assigns the closed-loop 

invariant polynomials using a Diophantine equation. The solution to such an equation 

corresponds to a back-substitution problem, due to the special structure of the 

computed normal external description. A procedure to compute an output matrix C 
that assigns the desired finite zeros of the system is also outlined in terms of a 

Diophantine equation. The proposed algorithms are easy to implement and computa- 
tionally efficient and therefore can form a useful toolbox in design problems. 
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1. INTRODUCTION 

The polynomial-equation approach to the analysis and synthesis in linear 
multivariable systems has a long history, spanning decades and involving 
many researchers [7, 91. A problem that was addressed early in control 
research is the computation of minimal polynomial bases for matrix pen- 
cils [6]. The need for such polynomial bases arises from the fact that they 
appear in the solution of polynomial equations, thereby unifying the design 
methodology for a variety of control strategies. 

In this paper we show how to compute minimal polynomial bases for the 
controllability pencil of a linear multivariable system. In particular, we 
compute a normal external description of the controllability pencil. A normal 
external description is a minimal polynomial basis for the controllability 
pencil that also enjoys two more useful properties (cf. Section 2). The 
computation of such normal descriptions involves the use of staircase forms 
and embedding techniques. The proposed approach is believed to be simple 
and computationally attractive. 

Due to the structure of the computed normal external description, we can 
easily solve a Diophantine equation for the problem of state feedback. The 
solution to such a Diophantine equation is formulated simply as a back- 
substitution problem for a set of linear equations. We also show how to 
parametrize the set of all possible state feedbacks that assign the desired 
closed-loop invariant polynomials. 

A second application that we study using the computed normal external 
description and the solution to a second Diophantine equation is the finite- 
zero assignment problem for state-accessible systems. Specifically, we reveal 
the limits of “squaring-down” design technique in assigning invariant factors 
that reflect the dynamics of the desired finite zeros. 

The algorithms proposed in this paper can form a useful toolbox in design 
problems using the polynomial-equation approach, since they are easy to 
implement and computationally attractive. 

2. PRELIMINARIES AND BACKGROUND 

Consider a linear time-invariant system ( A, B) governed by 

i=Ax+Bu (2.1) 

where A E lWnXn and B E RnXm. In addition, rank B = m, and control- 
lability of (A, B) is further assumed. 
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Given a polynomial matrix X(s) E R rX P[s], we define the column degree 
k, as the highest degree among all the entries of column i. X(s) will be said 
to be column-degree-ordered if k, > 1-e 2 k,. Let r = p; then X(s) will be 

said to be column-reduced if deg det X(s) = C,P_ i ki. 
Net N(s), D(s) be n X m and m X m polynomial matrices over [w[s]. 

Then N(s), D(s) are said to form a normal left external description of ( A, Z3) 
if [6, 111 

(I) 
[ 1 

z:zi is a minimal polynomial basis of ker[sZ - A -B], i.e., 

[sZ -A -B] ;;I; = 0; 
[ 1 

(2) D(s) is nonincreasingly column-degree-ordered and column-reduced; 
(3) N(s) is a minimal polynomial basis of ker H(sZ - A), where H is a 

matrix representation of the maximal right annihilator of B, i.e., HB = 0. 

The transfer function of the system is given by 

T(s) = (sZ - A)-'B = N(s)D(s)-‘, (2.2) 

where N(s), D(s) is a left normal external description of (A, Z?). 
Let P(s) be a (k, + k, + **a + k,) x m polynomial and column-reduced 

matrix with column degrees k, - 1, k, - 1,. . . , k, - 1 such that 

P( s) = K block diagonal , 

where K E Rkxk is nonsingular; k = Cy= 1 ki. Then P(s) is said to be a 
polynomial basis of a k-dimensional and R-linear vector space [16]. 

Our purpose in this paper is to show how we can compute a normal 
external description for [ sZ - A - B ] using the block Hessenberg form of 
the pair (A, B). For that reason we briefly review here the block Hessenberg 
form. According to [l, 14, 151 th ere exist orthogonal transformations Q such 
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@[sIPA -B] E 
[ 1 

; 
m 

= [sl - A,, -&I 

(2.3) 

where the blocks Aj, j + i, j E {l, 2,. . . , k}, have full row rank tj. Moreover, 

A k, k+ 1 has full row rank t,, but from our assumption that B is of full column 
rank (tk = tk+l = m) it follows that A,, k + i is a square nonsingular matrix of 
dimensions m x m. The column-minimal indices of the pencil [ sZ - A -B] 
are computed as follows [Id]: 

ti+1 - ti column-minimal indices k., of order k - i, 

where t, = 0. The column-minimal indices of [sZ - A -B] are also the 
controllability indices of the pair (A, B). To simplify the forthcoming nota- 
tion, we will assume further similarity transformations (T) that bring Ai, i+ i 
to the following form: 

Ai,i+l = [Zt, 01, i = 1,2 ,..., k. 

In the next section we will show that it suffices to bring Ai, i + 1 to a lower 
triangular form and therefore use only orthogonal transformations. 

3. COMPUTING A NORMAL EXTERNAL DESCRIPTION 

In order to find a normal external description N(s), D(s) we will first 
embed the controllability pencil in a unimodular pencil as follows [3]. Assume 
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a matrix C, E R”‘” of the form 

Cl 0 

x CL? c,=xx. > 1 I (3.1) 

x x **** c, 

where C, is a square nonsingular matrix of dimensions t, X t, and Ci E 
[W(t*-t,Fl)Xtz for i = 2,. . .) k. Moreover, Ci for i = 2,. . . , k are such that 

i = 2,...,k: (3.2) 

are nonsingular matrices. In particular, we can select the C,‘s as follows: 

cj = [o z 
t,--t,-1 ]> ,...,k, i = 1,2 (3.3) 

where t, = 0. It is pointed out that the selection of the C,‘s is far from 
unique [3]. 

Due to the selection of the matrix C, the pencil 

(3.4) 

is unimodular. That is, 

detU(s) =const#O 

Therefore, the inverse of U(s) exists and is a polynomial matrix. By denoting 
the inverse of U(s) as V(s) and partitioning it as 

(3.5) 

it is clear that the pair N(s), D( > s is a basis for the kernel of [sZ - A -B]. 

Hence the problem of determining a normal external description has been 
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reduced to the inversion of the unimodular pencil sL - M, where 

L=[; ;I, M=[:: 4;]. 

In the sequel we summarize some properties that the pair N(s), 
enjoys. 

THEOREM 3.1. Let the pair N(s), D(s) described in (3.5). Then: 

(1) N(s), D(s) are right coprime. 

(2) D(s) and sl - A have the same nonunity invariant polynomials. 

D(s) 

Proof. Since the pair N(s), D(s) satisfies 

it follows that the polynomial matrices N(s), D(s) are right coprime. 
Furthermore, D(s) has the same nonunity invariant polynomials as SI - 

A. To see that, let 

sI-A, -B 

0 I 
H ‘(‘1 = 1 [ &, DFs, ) I 

which shows that the two matrices are equivalent (-1. Furthermore, 

"iAH -I”H] N [sz;AH ;] 

and 

G;s) D&] - [: D&l’ 

which shows that D(s) and sl - A, have the same nonunity invariant 
polynomials. W 

The next step in our discussion will be the computationally efficient 
inversion of the unimodular pencil sL - M. It is clear that such a method 
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will provide computationally efficient techniques for the computation of the 
pair N(s), D(s). For this purpose we will use the block Hessenberg form of 
the pair (A, B). By defining P to be a permutation matrix we can bring the 
unimodular pencil U(s) to the following form: 

PTU(s) = 

-cl 0 . . . 

~111 -AI, -42 
. . . 

X -c2 
. . . 

-4, ~122 - A22 
.., 

X X . . . 

-h-l,, 
X 

-Akl 

which can be written as 

. . . 
SIk-,,k-1 -Ak-l,k-l 

. . . X 

. . 
-Ak,k-1 

-F1 0 . . . 0 

Sll - Nl -F2 . . . 0 

X sl2 - N2 . . . 0 

0 

0 

0 

X . . . sJk-l - Nk-l -ik 0 
X . . . X slk - Nk -Fk+l 

0 0 

0 0 

0 0 

0 0 

0 0 

-Ak-,,k 0 

-ck 0 

slk,k - Akk -Ak,k+l 

where Fl = c, = Zt,, Fk+ 1 = A, k+ 1 = Zt,, 

Fi = 
Ai-1.i 

[ 1 Ci = Zh for i=2 >-- ,k> . 

lk = ‘t,~ i=l ,...,k - 1. 

= s] - F, 

(3.6) 

The infinite elementary divisors of the unimodular pencil U(s) are 
computed as follows [14]: 

ti+l - ti infinite elementary divisors dj of order k - i + 1. 



620 VASSILIS SYRMOS AND PETR ZAGALAK 

Let us denote by 1 + 1 the largest infinite elementary divisor. We have 

= 4-y z + SN + s2P + *** +s’N”)P, (3.7) 

where 

where 

0 

0 

Iv, 
X 

X 

. . . 

. . . 

*.. 

0 0 

0 0 

0 0 
. . 
. . 
. . 

- 
Nk ’ 

Z - t, 
Ni = o,,+l_,, * 

[ 1 
Since k is the maximal controllability index [14] and dj = cj - 1, it follows 
that 

V(s) = 4-y z + SF + s2v2 + 0-e +skGk)P 

= v, + sv, + s2v2 + *** +skv,. 

By writing N(s) and D(S) as 

N(s) = No + sN, + s2N2 + -** +SkNk, 

D(s) = D, + SD, + s2D2 + ... +SkDk, 

(3.8) 

(3.9) 

(3.10) 
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we can compute 

Nj = -[I, O]Vi I’ 
[ 1 m 

i = 1,2 ,..., k. 

(3.11) 

(3.12) 

In the sequel, we will show that the pair N(s), D(S) is column-ordered 
and column-reduced. For this purpose we will use the special form of the 
matrices fl and F in order to compute the leading column coefficients of 
N(s) and D(s). It can be shown that the powers of N have the following 
form: 

i = 1,2 ,..., k, (3.13) 

n 

where Ni are lower-block-triangular matrices and have dimensions ni X nj, .+ 
where n, = n + m - Cj= 1 ti. The block-diagonal elements of Ni are com- 
puted as follows: 

j + i = 2,3, . . . , k + 1. (3.14) 

Using the special form of the powers of N, we see that 

F-‘(8 - q-’ 

i+o,, 0 . . . 0 0 

& ,s + O(sO) $0.2 . . . 0 0 

rj,, 1s2 + O(s) ti,,+ + O(sO) . 0 0 
= 

1 

Nk- 1.1s k-‘+0(sk-2) ijk_z,zsk-2+0(sk-3) ..’ rj,,k 0 

Nk,lsk + O(sk-') ik_l,zSk-1+O(sk-2) ... rjl,ks+o(so) rj,.k+l 

(3.15) 
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where O(s’) denotes polynomial terms of power less or equal to i. Since PT 
is just a column permutation matrix, it follows from (3.15) that V(s) is a 
column-degree-ordered polynomial matrix. Since PT is a known permutation 
matrix [see (3.611, we can easily compute the pair N(s), D(s) by carefully 
applying the appropriate column permutations in (3.15). In particular, the 
pair N(s), D(s) has the following form: 

F’(sN- I)-‘P p 
[ 1 m 

= N(s) 

[ 1 D(s) 

H . . . 0.1 0 0 0 

HI,,~ + O(s”) H 0.2 . . . 0 0 

Hz, 1s’ + O(s) H,,2~ + O(s") . . 0 0 
= . 1 

Hk_,,l~k-l + O(sk-') Hk_,,,sk-' + O(S~-~) ... Ho,k 0 

Hk,,sk + O(sk-‘) Hk_l,zsk-l + O(sk-‘) ... Hl,kS + o(S’) Ho,k+l 
L 

where 

and 

0 tr- L 

Hosi = zt,_t,_L ’ 
[ 1 i = 1,2, 

H,,j = @i,jHo,i, i,j E Zf, 

. . . ,k + I, to = 0, (3.17) 

(3.16) 

i +j = 2,..., k + 1. (3.18) 

Equation (3.16) h s ows that D(s) is column-degree-ordered. 
The next step is to find the high column coefficient of D(s), D,,. From 

Equation (3.16) we know that 

and therefore, if we determine the structure of Hk, i for i = 1,2, . . . , k + 1, 
we actually have computed D,,. We notice here that Ho, k + 1 does not occur 
in our case, since we assumed that B has full column rank. 
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Using (3.14, we can compute each Hi, j for i + j = k + 1 as follows: 

i +j = k + 1, 

which results in 

Dhc = 

1 t1 0 ‘** 0 0 

0 zt2_t1 ... 0 0 

0 0 **- 4_l-tk_Z 0 
0 0 *** 0 zt+-, 

(3.19) 

The normal external description for the original matrices (A, B) is given as 
follows: 

QT 0 
0 L I[ 1 

NW = 
D(s) 

QW s> 1 D(s) ’ 

which clearly is a column-reduced and column-degree-ordered external 
description. 

The above discussion yields in the following result. 

THEOREM 3.2. The pair N(s), D(s) computed in (3.7) is a normal 

external description of the system (A, B). 

We summarize this procedure by presenting an algorithm. 

ALGORITHM 3.1. 

Step 1. Compute similarity transformations Q and T such that (A, B) is 
in block Hessenberg form (A,, BH). 

Step 2. Select C, as in (3.1), (3.21, (3.3), and set 
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Step 3. Compute N(s), D(S) as follows: 

REMARK 3.1. In Section 2 we required that A,, i+ r = [ It2 01. This is 
because we want to compute the entries of D(s) as manic polynomials. If we 
drop this requirement and instead assume that Ai, i+ r are in lower triangular 
form, then D,, will be a nonsingular block-diagonal matrix. Moreover, 
det D,, will be the proportionality factor between det(sZ - A) and det D(s). 

REMARK 3.2. The selection of the sizes of Ci is not arbitrary. The 
lengths of the J or d an chains of the infinite elementary divisors have to be 
kept minimal, namely equal to the number of stairs in the Hessenberg form. 
This guarantees the desired relationship between the column-minimal indices 
of the pencil [SZ -A -B] and the infinite elementary divisors of @. This 
fact is crucial in order to obtain a normal external description. A different 
relationship will not produce a normal external description. Therefore, though 
the selection of Ci is not unique, the size of the blocks has to comply with the 
rule used in (3.3). 

REMARK 3.3. The computation of F-’ is rather simple, since it is 
triangular, and so is the construction of 3. In the case that we want D,, = I, 

it is reasonable to require from the very beginning of the algorithm (that is, 
the block Hessenberg form) that Ai, i+ r = [I,, 01. This assumption does not 
make the algorithm more numerically stable, since the inversion of the matrix 
F is inevitable. 

REMARK 3.4. As we have already mentioned, the index of nilpotency of 
G is minimal. Although this is true, the algorithm can produce misleading 
results when f is ill conditioned. However, the algorithm provides a direct 
and reliable solution to the problem in the case of a well-conditioned N. 

An advantage of Algorithm 3.1 is its ability to provide helpful information 
on the structure of the pair (N(s), D(s)) [ see (3.16)]. As a matter of fact, the 
information about the structure of the diagonal elements .in (3.16) is essential, 
since it provides information about the minimal reachability chains of the pair 
(A, B). Alternative algorithms for the computation of a normal external 
description can be found in [2, 41. 
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We conclude this section with a straightforward application of the pro- 
posed algorithm to the transmission-zero assignment for state-accessible 
systems. 

THEOREM 3.3. Assume a state-accessible system (A, B). Then an output 

matrix C that assigns all the zeros of (A, B) to infinity with minimal chains is 

described in (3.1), (3.2), and (3.3). 

It is important to mention that the selection of an output matrix C that 
assigns all the zeros to infinity is far from unique. 

4. AN APPLICATION TO STATE FEEDBACK 

In this section, we will use the ideas developed in Section 3 for the 
parametrization of feedback controllers. First, we examine the state-feedback 
problem. Second, we study the parametrization problem. The main vehicle in 
the proposed approach is the inversion of a unimodular pencil. To our 
knowledge, this is the first result that brings together the use of staircase 
forms in designing controllers with the polynomial approach. Finally, the 
proposed method provides the parametrization of all possible controllers. 

Let a state feedback have the form 

u(t) = z&(t) + v(t). (4.1) 

Then we can show that the poles of the closed-loop system are given as the 
roots of the following polynomial: 

det[D(s) -m(s)]. (4.2) 

Assume that the pair (A, B) is already in its block Hessenberg form, 
(A,, BH). Then select a C, as in (3.1), (3.2), (3.3). The selection of C,, 
which clearly is not unique, provides a unimodular pencil U(s) as in (3.4). 
The controllability indices of the system k r, k, , . . . , k, are decreasingly 
ordered by magnitude. That is, 

k, = . . . = k,, > k,,,, = ... = kt2 > ... >, ktk_,+, = *** = ktk 

Moreover, let cl(s), +(s), . . . , c,(s) be the desired closed-loop invariant 
polynomials [7] decreasingly ordered by degree. 
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Our contention for the rest of this section is the development of a 
computationally efficient algorithm for the assignment of the desired closed- 
loop polynomials cl(s), cJs), . . . , c,(s). Our procedure is organized as 
follows: 

(1) Construct a controllable pair [sZ - R -H ] where R is a matrix that 
contains the desired closed-loop invariant polynomials c&s), es(s), . . . , c,(s) 
and [sZ - R -B] has controllability indices k,, k,, . . . , k,. 

(2) Compute the normal external description of the pencil [ SZ - R -H ] 

using Algorithm 3.1 or 3.2, say P(s), Q(S). Then since N(s), D(s) is the 
normal external description of the original system, we know that Q(S), D(s) 
are column-reduced with the same column degrees. 

(3) Finally, the feedback K can be computed from the Diophantine 
equation [9] 

XD(s) + YA’(s) = Q(S), (4.3) 

which always has a pair of constant solutions (X, Y ), where X is nonsingular 
[lo]. Furthermore, 

K = -x-‘Y. (4.4) 

We briefly review here Rosenbrock’s theorem [13], in order to draw a 
connection later with the Diophantine equation (4.3). 

THEOREM 4.1. Given a controllable pair (A, B) with controllability 

indices k,, k,, . . . , k,, there exists a matrix K E Iw “” n that assigns 

CJS), CJS), . . . , c,(s) as closed-loop invariant polynomials if and only if 

idetci(s) > iki, j= 1,2 ,...,m, 
i=l i=l 

are satisfied and equality holds when j = m. 

The vehicle to our approach will be the Diophantine equation (4.3). A 
major result concerning the solution of (4.3) was given by Kucera and Zagalak 
in [9], which we briefly review here. 

PROPOSITION 4.2. The Diophantine equation (4.3) has a constant solu- 

tion (X, Y >, where X is nonsingular if and only if Q(s) is column-reduced 

with the same column indices as D(s). 
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It has been shown in [lo] that Proposition 4.2 is an equivalent statement 
to that of Rosenbrock’s theorem. The main advantage of Proposition 4.2 
over Rosenbrock’s theorem is that it provides us with a powerful design 
Diophantine equation. 

Having presented the relation of Rosenbrock’s theorem to the existence 
of solution to (4.31, we are now interested in constructing a pencil [sZ - R 
- H ] that satisfies the conditions of the closed-loop invariant polynomials and 
the controllability indices. 

Given the desired closed-loop polynomials cl(s), C+(S), . . . , c,(s), of 
degrees ci, cp, . . . , c, respectively, that satisfy Rosenbrock’s theorem, we will 
use Dickinson’s algorithm [5] f or selecting a pair (R, H) that is controllable 
and such that SZ - R has invariant polynomials cl(s), es(s), . . . , c,(s) and 
the controllability indices of ( R, H > are k 1, k, , . . . , k,. This construction is 
based on the following lemma [5]. 

LEMMA 4.3. Let [sZ - R -G] have cl(s), c2(s), . . . , en,(s) as its invari- 
ant factors, and let cl, c2, . . . , c, (decreasingly ordered) be the controllability 
indices. Let cp < cq for some p > q. Then there exists a matrix H such 

that the controllability indices of [ sZ - R - H ] are k 1, k, , . . . , k,, where 

ki = ci, 

k, = cp + 1, 

k, = cq - 1. 

Given the desired closed-loop polynomials cl(s), c2(s), . . . , c,(s), we can 
select R as 

R= 

R 1.1 0 . . . 0 0 

0 R, .a. 2 0 0 
. . 

iI 6 me R,_; m_l ;, 

0 0 **a 0’ R m,m 

(4.5) 

where R,, i are lower companion matrices of dimensions ci X ci, that is, 

Ri.i = 

0 1 **. 0 0 
0 0 ... 0 0 

. . 

;, ;, ..: ;, i 
f-ii,l ri,2 *'* ri c.-l ri c. , I 11 I- (J-6) 
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The selection of R guarantees that sZ - R has the desired closed-loop 
polynomials cl(s), . . . , c,(s). Selecting G as 

G = block diag{ ei} , i = l,...,m, (4.7) 

where ei E [w’s, the controllability of the pair (R, G) is guaranteed, Further- 
more, the controllability indices of (R, G) are ci, ce, . . . , c,. The construction 
of H such that (R, H) has controllability indices k,, k,, . . . , k, is summa- 
rized in the following algorithm [5]. 

ALGORITHM 4.4. 

Step 1. Initialize (R, G) as in (4.5) (4.6) and (4.7). 
Step2. LetG=[gi,...,g,].Thencompute 

h, = g,, 

REMARK 4.1. Notice that there are in fact no computations, since the 
product Rgq is nothing else than the shift up in g, by one position. This due 
to the special form of R; namely, it is a block-diagonal matrix having the 
companion matrices of the ci(s)‘s on the main diagonal. 

Without loss of generality we assume that the pairs (A, B) and (R, H) are 
in block Hessenberg form, say (AH, B,) and (R,, H,) respectively. Per- 
forming Algorithm 3.1 on (A,, B,) and (R, , B,) respectively, we obtain a 
pair of normal external descriptions N(s), D(s) and P(s), Q(s). It is impor- 
tant to mention the special structure that these two representations enjoy; 
namely, they are in the form described in (3.16) (3.17) (3.18). Moreover, 

% = Qhc = zrna 

and Q(s) contains the desired closed-loop invariant polynomials cl(s), . . . , 

c,(s). 
Since D(s) and Q( ) s are column-reduced with the same column degrees 

by Proposition 4.2, Equation (4.3) has always a solution. Let S(s) be a 
(k, + k, + 1.. +k,) X m polynomial and column-reduced matrix with col- 
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umn degrees k, - 1, k, - 1,. . . , k, - 1 such that 

S(s) = blockdiag 

Then Equation (4.3) can be written as 

629 

XD,, diag[ .skl, . . . , .skm] + YN,,S( s) 

= Qhcdiag[skl,...,skrn] + (Qlc - Dl,)S(s), (4.8) 

where D,, and Qhc are the leading coefficient matrices of D(s) and Q(s) 
respectively, and NIC, D,,, and QIC are constant matrices. In fact, we are to 
solve the following two systems of equations: 

On the other hand, since D(s), Q( > s are in the special form described in 

(3.16), we know that D,, = Qhc = I, which results in X = I. Therefore 

KH = -(Qlc - Q&C’. (4.9) 

The computation of K, follows without the inversion of N,,. Due to the 
special form of the matrix N(s) and the structure of S(s), N,, has the 
following form: 

4, = 
1 

[ *. x *1 I* (4.10) 

Therefore the solution of (4.9) reduces to a simple back-substitution problem. 
We can now summarize our proposed technique in the following algorithm. 
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ALGORITHM 4.5. 

Step 1. For the given invariant polynomials cl(s), . . . , c,(s), construct 
(R, H) such that the controllability indices of (R, H) are k,, . . . . k,, by 
executing Algorithm 4.5. 

Step 2. Compute (N(s), D(s)), (P(s), Q(S)> by executing Algorithm 3.1. 
Step 3. Compute K, from (4.9) using back substitution. Then 

K= K,T-lQT. 

REMARK 4.2. The computation of Q(s) using Algorithm 3.1 avoids any 
inversion that is incorporated for general matrices. This is due to the special 
structure of the matrices R and H. 

We conclude this section by presenting a parametrization technique for 
all state feedbacks that assign the desired closed-loop invariant polynomials 

cl(s), . . . , c,(s) for a given normal external description (N(s), D(s)). 
Without loss of generality we assume that (R, H) is in block Hessenberg 

form. Then any matrix C that is constructed according to (3.1), (3.21, and 
(3.3) will produce a desired Q(s). Clearly, the selection of C is not unique, 
and as a result the desired Q(S) is not unique. In particular, different 
selections of C will produce different Q(s). By denoting as %? the collection 
of all C’s that satisfy (3.1), (3.21, and (3.3) we can define as & the set of 
all column-reduced, column-ordered polynomial matrices with degrees 
k 1,. . . , k, and invariant factors cl(s), . . . , c,(s). 

On the other hand, because of the structure of Q(s) and D(s), the 
solution to (4.3) is unique and is given by (4.9). Therefore, we can define the 
set of all possible feedbacks that assign the desired closed-loop invariant 
polynomials as follows: 

x= {K = -X-‘Y\XD(s) + YiV(s) = Q(s) VQ(s) E a}. 

The main motivation for such a parametrization is the issue of robustness 
in the following sense. Given a normal external description, we wish to find a 
Q(s) which 1 ea s d t o a K for which the invariant polynomials of D(s) - KN(s) 
are as insensitive to perturbations as possible. 

5. AN APPLICATION TO ZERO ASSIGNMENT 

In this section we present a further application that arises from 
the computation of a normal external description and the solution of a 
Diophantine equation. In particular we will show that in the case of state- 
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accessible systems the problem of assigning the zeros is equivalent to a 
state-feedback problem. This approach relates the column-minimal indices of 
the original system to the problem of zero assignment by squaring. That is, 
we want to find an output matrix C E RmX n such that 

y = cx 

and such that the invariant factors of CN(s) reflect the dynamics of the 
desired zeros. 

Given a normal external description (N(s), D(s)) for the pair (A,, BH) 
described in (3.161, we can define a new normal external description 
(&I, D(s)) by . 1 1’ slmp y e rminating the last m rows in (3.16). That is, 

m 
[ 1 W) 

z.z 

where 

H 

H,,,s +” ;(s’) 
0 

H 

Hz, IS2 + O(s) H,,,s +” i(s’) 

Hk_l,l~k-l + O(sk-') Hk-2,2~k-2 + O(sk-3) 

. . . 0 

. . . 0 

0 

. . 
. . . H 0, k 

(5-l) 

, i = 1,2 k ?..., > to = 0, 

and 

H,,j = rj, jHo,i, i, j E Z+, i +j = 2,...,k 

The new normal external description also enjoys all the properties discussed 
in Section 3. Furthermore, <w(s), D(s)) is a normal external description for 
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the pair (&, &), where 

A, = [I,_, O]A, 
Z 

[ 1 “6” , B, = [I,_, O]A, I” . [ 1 m 

LEMMA 5.1. The pair (A,, B,) is also in Hessenberg form with control- 

lability indices k, - 1, k, - 1, . . . . ktkm, - 1. 

Having in mind the special structure of B,, in order to assign n - m 

finite zeros, we ought to find an output matrix C, such that 

(1) C, B, is nonsingular [S]; 
(2) we have 

c = F(S) 
H 

[ 1 D(s) 
= Q(S), 

where Q(s) contains the desired invariant polynomials. 
-- 

The first condition implies that if we partition C, as [Y XI, X must be 
nonsingular. The second condition involves the solution of 

E(s) + YN(s) = Q(s) (5.2) 
-- 

for some X, Y such that x is nonsingular. This result shows that the 
finite-zero assignment is a disguised version of a state-feedback problem on a 
reduced-order system. 

Due to the structure of the problem, we can apply Rosenbrock’s theorem 
for state feedback in order to understand the structure of the invariant 
polynomials that reflect the dynamics of the finite zeros. This is summarized 
in the following result, the proof of which follows from our discussion. 

THEOREM 5.2. Given a state-accessible system (A, B), we can find an 

output matrix c E [WmXn that assigns at most t,_ 1 invariant polynomials 

cl(s), . . . , ctk_ l<s> that rejlect the dy namics of n - m finite zeros if and only if 

the set of inequalities 

bdegcj(s) > h (ki - I>, j = 1,2 ,...,tk-l, (5.3) 
i=l i=l 

are satisfied and equality holds when j = t,_ 1. 
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Another advantage of formulating the problem of finite-zero assignment 
arises from the fact that the solution of (5.2) can be computed easily using the 
proposed algorithms in Section 4. 

6. A NUMERICAL EXAMPLE 

Let (A, B) be given as follows: 

B= 

Then the Hessenberg form of (A, B) is 

A, = 

B, = 

0 0 
1 0 11 0 0. 
0 1 
0 0 

0.5000 1 .oooo 0.0000 0.0000 0 .oooo 
0.2500 0.5000 1.0000 0.0000 0.0000 

- 1.0000 0.0000 1.0000 1 .oooo 0.0000 
0.0000 0.0000 0.0000 0.5000 0.5000 
0.0000 0.0000 0.0000 0.5000 - 1.5000 

0.0000 

0.0000 
0.0000 0.0000 
0.0000 0.0000 

i 

. 

1 .oooo 0.0000 
0 .oooo 1 .oooo 

Therefore t, = t, = t, = 1 and t, = t, = 2. Notice that it is not required 
that Ai i+l = [I,$ 01; consequently only orthogonal transformations are 
involved. The structure of C, is of the form 

c=1 0 0 0 0 
H 

[ I 00001’ 
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Then using (3.16) we obtain 

1 .oooo 0.0000 
- 0.5000 0 .oooo 

0.0000 0.0000 
1 .oooo 0 .oooo 
0 .oooo 1 .oooo 

- 0.5000 - 0.5000 
- 0.5000 1.5000 

+ 

0.0000 0.0000 
0.0000 0.0000 
1 .oooo 0 .oooo 

-2.0000 0.0000 
0 .oooo 0 .oooo 
2 .oooo 0 .oooo 
1.0000 0.0000 _ 

0 .oooo 0 .oooo 
0.0000 0.0000 
0 .oooo 0 .oooo 
1 .oooo 0 .oooo 
0 .oooo 0 .oooo 

- 2.5000 0 .OOOO 
- 0.5000 0.0000 _ 

from which we can extract 

0.0000 0.0000 

1 .oooo 0 .oooo 
- 1 .oooo 0.0000 

1 .oooo 0 .oooo 
0 .oooo 0 .oooo 
0.5000 0.0000 

- 0.5000 1 .oooo 

;2 

3+ 

S 

0.0000 0.0000 
0 .oooo 0 .oooo 
0.0000 0.0000 
0.0000 0.0000 
0 .oooo 0 .oooo 
1 .oooo 0 .oooo 
0 .oooo 0 .oooo 

H 1, 1,l = H,, = 1 

and 

H = 1.0000 
31 

1 I 0.0000 ’ 

H 

13 
= 0.0000 

[ 1 1.0000 * 

4 
s > 

Notice that only these Hi,j's appear in (3.16), due to the values of t,‘s. 
Moreover, observe that D,, = Z,. 
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The normal external description for the original pair ( A, B) is 

N(s) 
[ 1 D(s) = 

1.4142 0.0000 

- 0.7071 0.7071 

0.0000 0.0000 

- 0.7071 - 0.7071 

0.0000 0.0000 

0 .oooo 1.4142 
0.7071 - 0.7071 

0.0000 0.0000 
1.4142 0.0000 

0.0000 0.0000 

1.4142 0.0000 

- 1.4142 0.0000 

- 0.7071 0.0000 
-2.1213 0.0000 

0.0000 0.0000 

0.0000 0.0000 
0.0000 0.0000 

+ 0.0000 0.0000 
0.0000 0.0000 

- 0.7071 0.0000 
- 0.7071 0.0000 

+ 

s2 + 

S4. 

- 1.4142 0 .oooo 

- 0.7071 0 .oooo 

- 1.4142 0.0000 

- 0.7071 0.0000 

1.4142 0.0000 

- 0.7071 0.7071 
0.0000 - 0.7071 

0 .oooo 0 .oooo 
- 0.7071 0.0000 

0 .oooo 0 .oooo 

- 0.7071 0.0000 

0.0000 0.0000 

1.4142 0.0000 
2.1213 0.0000 

In the original coordinates the output matrix C is 

[ 0.0000 

- 

C 0.7071 0.7071 = 0.0000 0.0000 0.0000 0.7071 0.0000 -0.7071 0.0000 1 ’ 
and 

CN(s) = 
[ 

1 .oooo 0 .oooo 
0.0000 1 1.0000 * 
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s3 

The system (A, B) has two controllability indices; namely k, = 4 and 

k, = 1. Therefore, we can assign either two closed-loop invariant polynomials 
of degrees deg ci = 

degree deg ci 
4, deg c2 = 1 or one closed-loop invariant polynomial of 

= 5. To motivate and also to exhibit the proposed technique 
we will examine both cases. 
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Case 1 
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In this case we will assign the following two invariant polynomials: 

q(s) = s4 + 4s3 + 1os2 + 10s + 5, es(s) = s + 2. 

The roots of c,(s)c,(s) are { - 1, - 2, -2, - 1 f j}. 

By executing Algorithm 4.4 we obtain 

0 1 0 

0 0 

: 0 0 

0 0 0 0 

1 0 0 0 0 

R= 0 H= 0 0 

-4 -10 -10 -5 0 1 0 

0 0 0 

1 0, I 

o-2 

I 

0 1 1. 
Using Algorithm 4.5, we obtain Q(s), K,, and K as follows: 

K 9.5000 25.0000 23.0000 7.5000 0.5000 = _ H [ 0.0000 0.0000 0.0000 0.5000 0.5000 1 ’ 
K 1 1.5000 3.5000 11.0000 3.5000 11.5000 = _ 1.5000 3.5000 11.0000 4.5000 11.5000 1 . 

Case 2 

In this case we assign the following invariant polynomial: 

q(s) = s5 + 7s4 + 20s3 + 30s’ + 24s + 8. 

The roots of cl(s) are { - 1, - 2, - 2, - 1 + j}. 

As before, by executing Algorithm 4.4 we obtain 

0 1 0 0 0 

0 0 1 0 0 
R= 0 0 0 1 H= 

0 0 0 0 

0, I 

1 

-24 -20 -30 -7 -8 0 

0 0 

0 0. 
1 

0 I 

0 
0 1 
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Using Algorithm 4.5, we obtain Q(S), K,, and K as follows: 
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Q(s) = [ -; ;] + [ _2; :‘]s 

K, = -2.0000 0.0000 3.0000 2.5000 - -25.0000 -74.0000 -70.0000 -19.5000 1.5000 1 5.5000 ' 

K= 1 7.0000 13.0000 30.0000 9.0000 36.5000 - -5.0000 -12.0000 -32.0000 -5.0000 -33.5000 1 . 
We will compute an output matrix that assigns the desired invariant 

polynomials that reflect the dynamics of the finite zeros of the system. Since 
the original system has two controllability indices k, = 4 and k, = 1, the 
reduced-order system has one controllability index, k, = 3. This implies that 
we can only assign one invariant polynomial cr, with deg cr = 3. The pair - - 
(N(s), D(s)) is I -0.5000 0.0000 0.0000 1 1.0000 .oooo 0.0000 0 

I + 
+ I 

0.0000 0.0000 
0.0000 0.0000 
1 .oooo 0.0000 

-2.0000 0.0000 
0.0000 0.0000 

0 .oooo 0 .oooo 
1.0000 0.0000 

-1.0000 0.0000 
1.0000 0.0000 
0.0000 0.0000 I S 

I 
0.0000 0.0000 
0 .oooo 0 .oooo 

i2 + 

0.0000 0.0000 s3, 
1 .oooo 0 .oooo 
0 .oooo 0 .oooo I 

which has Dhc = I. By selecting 

Cl = s3 + 3s2 + 4s + 2, 



638 VASSILIS SYRMOS AND PETR ZAGALAK 

the roots of which are { - 1, - 1 + j}, and executing Algorithm 4.5, we obtain 

C = 5.0000 8.0000 5.0000 1 .OOOO 0.0000 
H 

[ 0.0000 1 0.0000 0.0000 0.0000 1.0000 ’ 
C= 

[ 

-0.5000 1.0000 4.5000 0.0000 2.5000 1 -0.5000 0.0000 4.5000 1.0000 2.5000 . 
All the algorithms described in this paper have been implemented in 

MATLAB [ 121. 

7. CONCLUSIONS 

We have presented an algorithm for the computation of normal external 
descriptions for linear state-variable systems using staircase forms and 
embedding techniques. We associated the computed normal external descrip- 
tion to the state-feedback problem in linear systems through a Diophantine 
equation. Solutions to such a Diophantine equation were obtained in a 
computationally efficient way, Furthermore we showed how to solve the 
parametrization problem effectively. Finally, we applied the results of state 
feedback to finite-zero assignment, through the solution of a second 
Diophantine equation. Then we studied the limits of squaring down in 
state-accessible systems in assigning the finite structure of the zeros. 

The authors would like to thank one of the anonymous reviewers for 
his / her helpful comments, suggestions and criticisms that contributed to the 
overall presentation of this paper. 
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