
Biochimica et Biophysica Acta 1803 (2010) 191–200

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r.com/ locate /bbamcr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Review

The role of formins in filopodia formation

Harry Mellor ⁎
Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
⁎ Tel.: +44 117 33 12168; fax: +44 117 33 12174.
E-mail address: h.mellor@bristol.ac.uk.

0167-4889/$ – see front matter © 2008 Elsevier B.V. A
doi:10.1016/j.bbamcr.2008.12.018
a b s t r a c t
a r t i c l e i n f o
Article history:
 Filopodia are highly dynam

Received 7 May 2008
Received in revised form 17 December 2008
Accepted 17 December 2008
Available online 3 January 2009

Keywords:
Actin
Cytoskeleton
Formin
Filopodia
Cell migration
ic cell-surface protrusions used by cells to sense their external environment. At
the core of the filopodium is a bundle of actin filaments. These give form to the filopodia and also drive the
cycle of elongation and retraction. Recent studies have shown that two very different actin nucleating
proteins control the formation of filopodial actin filaments — Arp2/3 and Formins. Although the actin
filaments produced by these two nucleators have very different structures and properties, recent work has
begun to piece together evidence for co-operation between Arp2/3 and formins in filopodia formation,
leading to a deeper understanding of these sensory organelles.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Filopodia are needle-like, actin-rich protrusions from the cell
surface, first observed in early studies of the morphology of neural
growth cones [1], epithelial cells undergoing wound closure [2] and
chick embryo cells in culture [3]. Filopodia are highly dynamic
structures that extend and retract over a timeframe of 10s of seconds.
Their function is not precisely defined; however, the consensus view is
that they act as sensory organelles — exploring the external
environment and probing for directional cues, matrix composition
and the presence of other cells. Proving this is extremely difficult —
treatments that perturb filopodia formation cause a loss of direction
sensing in a number of conditions [4–9]; however, these perturbations
also have general effects on the actin cytoskeleton and/or cell polarity,
making it difficult to be sure that filopodial function is being examined
directly.

Despite these experimental complications, much can be inferred
from the cells types that produce filopodia and the contexts in which
this happens. In almost all cases, these are cells that are actively
exploring their environment andmaking tentative contacts with other
cells and/or the substratum. The best-studied filopodia are those of
nerve growth cones (Fig. 1). These extend towards the direction of
chemotactic signals prior to turning of the growth cone and are
therefore presumed to have a sensory, pathfinding function [4,10]. A
similar situation exists at the tip of endothelial sprouts in angiogen-
esis, where the leading cell extends filopodia in the direction of the
pro-angiogenic signal [7]. Growth cone filopodia can exert tension on
ll rights reserved.
the substratum and this has been proposed to contribute to growth
cone navigation [11,12]. Growth cone filopodia contain integrins,
allowing them to make adhesive contacts with the extracellular
matrix and hence apply a traction force [13,14]. Filopodia are also
produced during phagocytosis where they make initial contacts with
the pathogen [15]. Like growth cone filopodia, phagocytic filopodia are
able to exert contractile force and can use this to drag pathogens
towards the phagocytic cell [16,17]. Filopodia are also found at the
interface between neighbouring epithelial cells during the formation
of adherens junctions [18,19]. These filopodia cluster the adhesion
protein cadherin [18,19] and interdigitate with filopodia on the
opposing cell to form a zipper-like structure that then resolves into
a mature junction [19]. This zippering function is important during
embryonic development for the closure of epithelial sheets — for
example, during ventral enclosure in C. elegans [18] and dorsal closure
in Drosophila [20]. Filopodia also mediate the joining of single
epithelial cells in the end-to-end connection of branches that occurs
during tracheal development [21,22]. In dorsal closure in Drosophila,
the filopodia act to initiate junction formation [20] but also to facilitate
thematching of segments across the embryo [23]— i.e. these filopodia
display both mechanical and sensory roles.

The properties of filopodia allow them to act as highly adaptable
sensory organelles. Their dynamic nature suits them to the role of
exploration of the cell periphery. Their mechanical properties allow
them to both probe the physical environment and also to apply
traction force to surrounding objects. Critically, they are highly
sensitive — the clustering of specific cellular receptors allows them
to respond to a variety of signals; however, their morphology is itself
adapted to perception. The high surface area to volume ratio of a
filopodium means that relatively few activated signalling molecules
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Fig. 1. Filopodia in context. (A) Filopodia projecting from a neuronal growth cone (Kate Nobes). (B) Filopodia projecting from the two epithelial sheets during dorsal closure in
Drosophia (Sarah Woolner and Paul Martin). (C) Filopodia projecting from the tip cell at the front of an endothelial sprout during angiogenesis (Harry Mellor).
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are required to achieve high local concentrations of signal. Kater et al.
have proposed that this direct consequence of filopodial shape makes
them inherently hypersensitive detectors of external signals [24].

2. The structure of filopodia

Filopodia are cylindrical protrusions approximately 100–200 nm in
diameter and up to 10 μm or more in length. The shortest of these
structures may barely protrude from the cell surface and these are
sometimes referred to as ‘microspikes’ to discriminate them from
longer filopodia. All filopodia contain a central core of around 10–30
actin filaments packed tightly together in a parallel array [25–27],
forming the shaft of the filopodium (Fig. 2). Detailed electron
Fig. 2. Filopodial structure. (A) Schematic diagram of the structure of a filopodium. The cent
barbed ends towards the tip. The tip region contains a cluster of proteins including mDia2, M
actin cross-linking protein fascin, and by links to the plasma membrane mediated by ERM
membrane and help stabilise membrane curvature. At the base of the filopodium, the actin fila
membrane. (B) An electron micrograph showing the organisation of actin filaments in a fil
allow them to be traced against the background array of actin beneath the plasma membran
electronmicrograph showing the arrangement of actin filaments in a filopodium from a cell w
Vignjevic; [38]).
tomography studies of Dictyostelium filopodia have shown that the
average length of these shaft filaments is approximately 200 nm,
meaning that overlapping filaments must be used to span the length
of longer structures [26]. Filaments in the shaft have a uniform
polarity, with the growing or ‘barbed’ end orientated towards the
filopodial tip [25,28] These barbed ends terminate in a region called
the tip complex — a collection of actin-binding proteins and
filaments that can be seen as an electron-dense structure by EM
[26,29]. At the base of the filopodium, the actin filaments are often
routed deep into the web of actin that lies beneath the plasma
membrane [25,29,30] (Fig. 2). The filopodia tip is the site of actin
monomer addition to the actin filaments [31]. Filaments in the
filopodium constantly cycle backwards toward the base through
ral core is composed of a parallel bundle of actin filaments orientated with their plus or
yo10, Ena/VASP proteins and IRSp53. The filaments in the stem are held together by the
proteins. IMD proteins line the interface between the actin bundle and the plasma

ments splay out and are integrated into the dendritic network of actin below the plasma
opodium (Tanya Svitkina). The filaments in the filopodium are pseudocoloured blue to
e. The tip complex can be clearly seen as a density at the end of the filopodium. (C) An
ith reduced fascin expression. In the absence of fascin, the filopodium buckles (Danijela
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myosin-dependent retrograde flow [31,32]. The rate of growth or
retraction of a filopodium is governed by the balance between this
rate of retrograde flow and the rate of polymerisation at the tip [33].
Typical filopodia will grow at a rate of approximately 0.2 μm/s until
reaching critical length [33]. At this point, filopodia will frequently
enter a rapid cycle of retraction; however, recent studies have shown
that they can also give rise to other actin structures. Work from Small
et al. has shown that filopodia can merge with the lamellipodium,
either by folding and fusing or by being subsumed by the protrusive
front [34]. Filopodia can fold sideways and fuse with the plasma
membrane to give rise to contractile actin bundles along the cell
edge. Filopodia can also fold backwards and fuse, seeding the
formation of actin stress fibers [34].

2.1. Cross-linking proteins

The bundle of actin filaments in a filopodium is given mechanical
cohesion by cross-links between neighbouring filaments, as well as
cross-links between filaments and the plasma membrane. These
bridges can be observed in high-resolution electron tomography
images [26]. The best-characterised actin cross-linking protein in
filopodia is fascin, which was first shown to be highly enriched in the
filopodia of echinoderm coelomocytes [35,36], and which has
subsequently been shown to be a component of filopodia from a
wide range of sources [37]. Silencing of fascin expression by RNA
interference leads to a reduction in filopodia number, suggesting that
the protein also plays an important role in the formation of filopodia
in addition to conferring mechanical stability [38]. Fascin binds at a
relatively high density on filopodial filaments — once every 25–60
actin monomers; however, this binding is highly dynamic, with an
off-rate of 0.12 s−1 [39]. This high off-rate is thought to allow fascin
to diffuse towards the filopodia tip, fighting the tide of retrograde
flow of filaments that has the effect of transporting filament-bound
proteins in the opposite direction. Other filament cross-linking
proteins that have been shown to localise to filopodia include α-
actinin [40], fimbrin [41], and filamin [42,43]. In experiments that
directly compared the localisation of exogenously expressed fascin,
α-actinin, fimbrin, espin and filamin, only fascin and espin showed
clear localisation to filopodia [38]. Despite this, it seems probably
that, while fascin may be the main actin cross-linking protein in
filopodia, other cross-linkers are used in specialised cell types and/or
conditions — for example, filamin is recruited to the filopodia
induced by Wnt5a signalling during development [42]. In all cases,
filament cross-linking is critical to filopodia function as it imparts
stiffness and cohesion to the structure, allowing an emerging
filopodium to resist buckling forces as it deforms the plasma
membrane [44]. This role is clearly illustrated in studies where
fascin is depleted from cells and filopodia become severely deformed
([38]; Fig. 2).

As well as the cross-links that hold filaments in the filopodium
together, the filament bundle must be tethered to the plasma
membrane. The ezrin/radixin/moesin (ERM) family of proteins
plays an important role in this. These proteins can bind both to actin
filaments and to the plasma membrane [45]. Ezrin is a major
component of brush border microvilli [46] — structures that bear
some similarity to filopodia. Intestinal microvilli from ezrin−/− mice
are shorter and thicker than normal [47]. Ezrin is less obviously
localised to filopodia, although it is concentrated in the long filopodia
induced by the Rif GTPase (HM, unpublished observations). Instead,
the related protein moesin can be observed in filopodia from several
sources, including growth cone filopodia [48,49].

2.2. The tip complex

At the filopodial tip is a complex containing many actin regulatory
proteins. Amongst the first components of the tip complex to be
identified were the Ena/VASP proteins. Mammals have three
members of this family — Mena, VASP and Evl [50], and all three are
concentrated at the tips of filopodia [50–53]. Loss of Ena/VASP
function leads to a profound inhibition of filopodia formation in Dic-
tyostelium [54] and in mammalian cells [55]. The roles of Ena/VASP
proteins in filopodia formation are multiple and controversial. Work
from several studies supports a role for Ena/VASP proteins in
protecting filopodial actin filaments from capping [56–58]. In order
for a filopodium to grow, the filament barbed ends at the tip must
remain uncapped to allow the addition of actin monomers. In keeping
with this, silencing of capping protein (CP) leads to a dramatic
increase in filopodia formation [59]. Biochemical studies support a
model where Ena/VASP proteins would physically block interaction
with capping proteins, while being flexible enough to allow addition
of actin monomers [56–58]. Other studies have presented evidence
arguing against an anti-capping function [60,61], however, and the
discussion remains open. In addition to their potential anti-capping
activity, work in cells depleted of capping protein supports additional
roles for Ena/VASP proteins in filopodia formation [62]. Ena/VASP
proteins can bundle actin filaments [63–65] and this bundling activity
has been shown to be important to filopodia formation [61]. Ena/VASP
proteins concentrate at filopodia tip as it emerges [29]; however,
unlike fascin, they localise only at the tip [61] where they are stably
bound [62]. In this respect, it seems likely that fascin is required for the
integrity of the filopodia shaft, whereas, Ena/VASP proteins hold
together filaments at the tip [29]. Finally, Ena/VASP proteins also
serve as a scaffold for many other actin-regulatory proteins [50]. The
best-studied interaction is with profilin [66,67], an actin regulator
that can lower the critical concentration of actin required for
polymerisation [68] — a function that may help maintain rapid
polymerisation at the tip.

2.3. IMD proteins

The plasma membrane at the filopodial tip is dramatically curved,
as is the radius of the filopodial shaft. Recent studies have suggested a
role for IMD-domain (IRSp53/missing-in-metastasis domain) con-
taining proteins in supporting this curvature. Overexpression of the
best-characterised IMD protein, IRSp53, causes filopodia formation
[69,70] and IRSp53 is localised along the filopodium, with some
concentration in the tip region [71]. The IMD domain of IRSp53 is
structurally related to the BAR/F-BAR domains, which bind to
membranes and induce curvature [72]. These domains are formed of
a bundle of 6 α-helices that assemble into curved dimers with an
asymmetrical distribution of positively-charged residues on the
surface. The BAR/F-BAR domains are ‘banana-shaped’ with a concen-
tration of positive charge on their concave surface. When they bind
membranes along this surface they induce positive membrane
curvature and the formation of membrane invaginations [72]. The
IMD domains from IRSp53 and the related protein missing-in-
metastasis (MIM) are ‘zeppelin-shaped’ [73,74] and the distribution
of surface charge means that they induced negative curvature and the
formation of membrane protrusions. Expression of the isolated IMD
domain will induce filopodia in cells [75,76] and causes the formation
of tube-like membrane protrusions in vitro [77,78]. The diameter of
these protrusions (80 nm; [78]) is very similar to the diameter of a
filopodium, suggesting that the curvature of the inside of a filopodial
projection is a goodmatch to that of the convex face of the IMD dimer.
Previous studies have also identified an actin-bundling activity for the
IMD domain, which as been suggested to underpin the stimulation of
filopodia formation [74,75,79]. High-resolution imaging of the locali-
sation of the isolated IMD domain of MIM shows that it surrounds the
central F-actin core of the filament, but does not stain the filaments
themselves [78].Whether or not this is also true for the full-length IMD
proteins is unclear. Taken together, one can imagine a model where
bands of IMD proteins running beneath the plasma membrane,
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perpendicular to the long axis, would support and/or induce the
membrane curvature required for filopodia formation— rather like the
circular ribs that support a tunnel (Fig. 2). These proteins may also
further strengthen the filament by interacting with the actin filaments
at the interface.

2.4. Motors and cargoes

The filopodium is such a confined space that it is hard to imagine
free movement of proteins within it. Surprisingly, there is clear
evidence for significant motor-based trafficking of receptors and
integrins within the filopodium, with actin filaments being used as
tracks. The best-characterised filopodial motor protein is myosin-X
(Myo10), which is highly-concentrated at the filopodial tip [80].
Myo10 is a plus-end directed motor and exhibits bidirectional
movement along filopodia. The fast (100 nm s−1) forward movement
of Myo10 towards the tip is presumed to be a function of its motor
activity, whereas its slower (10–20 nm s−1) backward movement is
consistent with the motor being carried by retrograde flow [81].
Myo10 has a C-terminal FERM (Band 4.1/ezrin/radixin/moesin)
domain that allows it to interact with cargo [82]. This domain binds
to β-integrins and Myo10 transports β-integrins to the tips of
filopodia [83]. In neurons this domain binds to the netrin-1 receptor;
deleted-in-colorectal-cancer (DCC), and transports it into neurite
filopodia [84]. In endothelial cells undergoing sprouting angiogenesis,
the Myo10 cargo is the BMP6 (bone morphogenic protein 6) receptor,
ALK6 [85]. In all of these cases, one can imagine that motor-based
transport allows for the concentration of receptors in filopodia,
increasing their sensitivity to external signals. In keeping with this,
endothelial cells lacking Myo10 are no longer able to sense a gradient
of BMP6 [85]. Myo10 also plays a direct role in the formation of
filopodia. Overexpression of Myo10 will stimulate filopodia formation
[81] and silencing of Myo10 using RNA interference leads to a
dramatic reduction of filopodia emanating from the dorsal cell surface
[86]. The Myo10 FERM domain is not required for the stimulation of
filopodia formation by Myo10, suggesting that this is not a function of
cargo transport [86,87].
Fig. 3. The convergent elongation model of filopodia initiation. (A) Schematic model of conv
bind tip complex components that displace capping protein and bundle barbed ends toget
structure through lateral movement of microspike bundles through the lamellipodium. The r
absence of capping protein, the privileged barbed ends are able to elongate into a filopodiu
proteins like fascin give the required rigidity to deform the plasma membrane. Below the d
with GFP-actin were imaged over a time period of 105 s. The formation of a Λ-precursor is in
retracts over 45 s. Bar=2 μm. Images taken by Tanya Svitkina [29]. (B) An electron microgra
deeply rooted into the lamellipodial actin network, giving rise to the characteristic Λ-precu
3. Arp2/3 and the convergence model of filopodia formation

Filopodia formation requires de novo actin polymerisation [88]. An
early assumption was that this would involve actin nucleation and
interested settled first on the Cdc42-WASP-Arp2/3 axis. The small
GTPase Cdc42 is an important regulator of filopodia and its activation
leads to filopodia formation [89,90]. Cdc42 binds to many actin
regulatory proteins, including the Wiskott–Aldrich syndrome protein
(WASP) and the related protein N-WASP [91–93]. Early studies
showed that overexpression of N-WASP enhanced the ability of Cdc42
to stimulate filopodia formation [94]. At the same time WASP was
shown to be an activator of the Arp2/3 complex [95]. Arp2/3 is a
highly-conserved complex of seven proteins that is able to nucleate
the polymerisation of new actin filaments from the minus or ‘pointed’
end [96]. Arp2/3 binds to the side of pre-existing actin filaments,
with new filaments growing from this junction at a characteristic
angle of 70° [97]. The resulting branches can then also bind Arp2/3,
allowing Arp2/3 to generate highly branched, ‘dendritic’ arrays of
filaments [96]. Arp2/3 was shown to be required for Cdc42-induced
actin polymerisation in vitro [98] and the final piece of the puzzle
was put in place with the finding that Cdc42 activates Arp2/3
through N-WASP [99].

These studies explained how Cdc42 activation could lead to actin
polymerisation; however, the highly-branched arrays of actin fila-
ments produced by Arp2/3 are very different from the parallel
bundles of actin seen in filopodia. The convergent elongation model of
filopodia formation, originally proposed by Borisy and Svitkina, seeks
to explain how these dendritic arrays could contribute to filopodia
formation. Filopodia often arise from areas of flattened membrane
protrusion called lamellipodia. These lamellipodia are supported by a
highly-branched actin meshwork that is generated by Arp2/3 [100].
Short, nascent filopodia (microspikes) can be observed to formwithin
the body of the lamellipodium, often as fishtail-shaped actin densities
termed Λ-precursors ([29]; Fig. 3). Microspikes can move laterally
within the lamellipodium and fuse together [101,102] — an event that
often precedes elongation of the structure to a filopodium [29]. VASP
and fascin appear at the tip of the Λ-precursor prior to elongation,
ergent elongation. Stage 1 — filaments in the dendritic array of the lamellipodium may
her. Stage 2 — additional filaments are bundled together and may join the convergent
esultant deeply-rooted, fishtail-shaped structure is called a Λ-precursor. Stage 3— in the
m. The assembly of a critical number of filaments and the association of cross-linking
iagram are frames from a time-lapse movie of the filopodial life-cycle. Cells transfected
dicated at 15 s (arrow). The structure elongates to form a filopodium (60 s), which then
ph showing the arrangement of actin filaments in a nascent filopodium. The structure is
rsor (Tanya Svitkina; [29]).
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with some suggestion that VASP association precedes fascin [29].
High-resolution EM of the Λ-precursor structure shows how the
nascent filopodium is routed deep within the lamellipodial actin
network ([25,29]; Fig. 3). Early electronmicroscopy studies of the base
of filopodia prompted Small to suggest that actin filaments in the
lamellae might become bundled together to form filopodia [30]. The
convergent elongation model of filopodia formation extends this idea
provide amodel for filopodial initiation [29]. The bundling activities of
Ena/VASP proteins would cluster barbed filaments ends together and
allow them to elongate preferentially by inhibiting capping. Fascin
recruitment would then give rigidity to these elongating filaments,
allowing them to push against the plasmamembrane and emerge as a
protrusive filopodium ([29]; Fig. 3). This model explains the structure
of the Λ-precursor, which would correspond to Stage 2 in Fig. 3A. It
would also explain why lateral fusion of microspikes in the
lamellipodium often precedes filopodial extension — this would be a
mechanism whereby pre-filopodial bundles could gain the requisite
number of filaments to push effectively against the plasmamembrane.

4. Formins and the tip nucleation model of filopodia formation

The ability to stimulate the nucleation of long, parallel actin
filaments is a fundamental property of the formin family of actin
regulatory proteins [96,103]. While the convergence model explains
how a highly-branched network of filaments nucleated by Arp2/3
could be transformed into a linear filopodial bundle, formins seem to
offer a simpler alternative— the direct formation of linear filaments at
the extending filopodial tip. The breakthrough observation was made
by Alberts et al., who showed that the formin mDia2 is localised at the
tips of Cdc42-induced filopodia ([104]; Fig. 4). mDia2 (Drf3) is a
member of the family of diaphanous-related formins (Drfs). These
proteins all have a conserved N-terminal GBD (G-protein binding)
domain through which they can bind Rho family GTPases [105,106].
Binding of the Rho GTPase to the GBD domain is thought to activate
diaphanous-related formins by relieving an autoinhibitory interaction
with the C-terminal DAD (diaphanous autoregulatory domain) [107–
109]. mDia2 also contains a CRIB motif within the GBD domain,
allowing it to interact specifically with the activated form of the Rho
family member Cdc42 [104,106]. The localisation of mDia2 to
filopodial tips does not depend on Cdc42 binding, however, as a
truncation mutant of the protein lacking the GBD domain also
localises there [104]. Instead, the hypothesis is that Cdc42 activates
mDia2 in filopodia formation, allowing it to nucleate actin polymer-
isation from the filopodial tip. In keeping with this, inhibition of
mDia2 function by interfering antibodies significantly inhibits
filopodia formation by Cdc42 [104]. Subsequent work has broadened
Fig. 4. Filopodia formation and mDia2. The figure shows the localisation of mDia2 in filopod
GFP-mDia2 (green; Art Alberts). (B) NIH3T3 fibroblasts expressing activated Rif GTPase (g
emanate mainly from the dorsal surface (Harry Mellor; [110]). (C) Dictyostelium expressing
cases, mDia2 can be seen concentrated to the filopodia tip. (D) An electronmicrograph showi
mDia2. The resultant structure is long, unusually club-shaped and contains free actin filamen
of the mDia2-induced filopodia, as a result of the process being driven by an activated mDi
the role for mDia2 in the formation of filopodia. Pellegrin and Mellor
have shown that mDia2 is also required for the formation of the long
filopodia stimulated by the novel Rho family member, Rif [110]. Faix
et al. have shown that the Dictyostelium orthologue of mDia2 is
required for the formation of filopodia in this organism, where it
signals downstream of the Rac1 GTPase [111]. In both cases, and in
other studies [112,113], mDia2 is highly-concentrated at the filopodial
tip (Fig. 4). Other Drfs may also play important roles in filopodia
formation and we return to this later.

In a tip nucleation model of filopodia formation, mDia2 would
drive the process from the top down, rather than from the base of the
filopodium, as with the convergencemodel [114,115]. One can imagine
how nucleation of linear actin filaments at the plasma membrane by
mDia2 could lead to the formation of a filopodial protrusion. Formins
like mDia2 nucleate actin filament formation by association with the
barbed end [116,117]. They remain continuously associated with the
barbed end as the filament elongates by moving processively along
the filament [118–120]. This allows the continued stimulation of actin
monomer addition and also physically protects the barbed end from
capping [121–124] — an important property in filopodia formation.
The processive movement of formins along the filament generates a
force in the range of around 1.3 pN per actin filament [119]. The force
required for an emerging filopodium to deform the membrane is
estimated at approximately 10–20 pN for a bundle of 10–20 filaments
[125]. Faix has proposed that the sum of the forces generated by
mDia2 at the filopodial tip could make a significant contribution to
membrane deformation [61].

4.1. Drfs are a nexus for Rho GTPase signalling

The Drf proteins contain an N-terminal GBD domain, which allows
them to interact with Rho family GTPases. This domain was originally
mapped as the minimal binding site for RhoA on mDia1 [126] and is a
198-residue footprint at the N-terminus of the protein (Fig. 5A). The
GBD overlaps with the DID (diaphanous inhibitory domain) [108,127].
The DID domain forms an autoinhibitory interaction with the C-
terminal DAD region that holds the protein in a closed inactive state
where it cannot nucleate actin polymerisation [105,108]. The crystal
structure of the complex between the mDia1 N-terminus and RhoC
has been solved to a resolution of 3 Å [109]. In this complex, the Rho
GTPase makes two sets of contacts: contacts with the G region N-
terminal to the DID domain and contacts with the DID domain itself.
Although the binding sites for Rho and DAD are not overlapping
[109,127], the binding of RhoA and DAD to the DID domain is mutually
exclusive [108,109]. This is thought to be due to electrostatic repulsion
and steric clashes induced by Rho binding [128], allowing RhoA to
ia generated under different conditions. (A) Cells expressing activated Cdc42 (red) and
reen) and mDia2 (red). Activated Rif stimulates the formation of long filopodia that
GFP-tagged dDia2 (green) and co-stained (red) for F-actin (Jan Faix; [114]). In all three
ng the arrangement of actin filaments in a filopodium driven by transfection of activated
t ends. It should be noted that this structure is likely to represent an exaggerated version
a2 mutant (Tanya Svitkina; [112]).
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activate mDia1 by disrupting the autoinhibitory DID–DAD interaction
[105].

The mammalian Drf protein family includes mDia1-3, DAAM1
(dishevelled-associated activator of morphogenesis-1), DAAM2 and
the formin-related (FRL/FMNL) proteins FMLN1-3. The mDia1 protein
binds RhoA and the two highly-related proteins RhoB and RhoC
([105,126]; Fig. 5C). Both mDia2 and mDia3 also bind RhoA [106,129],
and mDia2 has been shown to bind RhoB [130]. It is highly-likely that
all three mDia proteins bind RhoA, B and C. Similarly, DAAM1 binds to
all three of these closely-related Rho GTPases [131,132]. Effector-
binding domains for Rho GTPases tend to show specificity — for
example, binding domains for RhoA usually will not bind to Cdc42.
Early studies showed that mDia2 was unusually in this respect, in that
it could bind to both RhoA and Cdc42 [106]. This property was made
clearer by the identification of a CRIB motif within the DID domain of
mDia2 [104] — a conserved binding motif for Cdc42 [133]. The CRIB
domain also present in mDia3, which binds Cdc42 [129]; however, it is
absent frommDia1, which does not [105]. Clearly, binding of Cdc42 to
Fig. 5.Drf protein structure and the GBD domain. (A) Cartoon of mDia protein structure.
Each protein contains an N-terminal GBD (GTPase binding domain). The overlaps the G-
protein domain and the DID domain. The DID domain forms an autoinhibitory
interaction with the C-terminal DAD domain that is broken by Rho GTPase binding to
the GBD. When the autoinhibition is released, the FH2 domain is free to nucleate the
polymerisation of actin filaments. The FH1 domain binds profilin and can deliver actin
monomers to the FH2 domain. mDia proteins dimerise through the DD domain. (B)
Alternative splicing of the GBD domain. The block diagrams show the exon structure of
the GBD for mDia1-3. Each GBD is coded by 7 exons (a–h) with highly-conserved splice
boundaries. The colouring shows the boundaries of the G-protein and DID domains
(same as panel A). The splice form commonly used experimentally is indicated for each
mDia protein. Examination of the public sequence databases shows that mDia1 is
present as at least 2 splice forms, mDia2 as 3 and mDia3 as 2. A common event is
inclusion/exclusion of exon b, which codes for 9–11 residues immediately preceding
the GBD. mDia3C (⁎confusingly, also called hDia2C) has an additional exon between
exons d and e (asterisk). This isoform shows specific binding to RhoD. (C) Members of
the mammalian Drf protein family and their known Rho GTPase binding partners [151–
154]. Gene names and chromosome numbers are for reference and correspond to the
human sequences.
the DID domain has the potential to activate mDia proteins in the
sameway that RhoA binding does, although nowork has been done on
the structural basis of this interaction as yet. Wittinghofer et al. have
proposed a two-step mechanism for mDia activation by RhoA,
whereby RhoA first makes a low-affinity interaction with the GBD
and then a second interactionwith the DID domain that would lead to
displacement of the DAD region [128]. It is possible that RhoA and
Cdc42 could act co-operatively to activate mDia2 by making separate,
concerted interactions with the GBD.

The interactions between Rho GTPases and Drfs appear to be
further regulated by alternative splicing. The GBD and upstream N-
terminal region of mDia proteins is coded by 8–9 exons with highly
conserved splice boundaries (Fig. 5B). All three proteins show
alternate splicing within this N-terminal region. Examination of the
public sequence databases shows that alternate splicing of the second
exon is a frequent event. The exon encodes a short peptide sequence of
9–11 residues immediately before the GBD. All three mDias can be
expressed as proteins with or without this insert. mDia2 can also be
expressed as a splice form lacking the forth exon. This results in loss of
most of the low-affinity Rho binding region; however, the Cdc42-
binding CRIBmotif is retained (Fig. 5B). Thesemultiple splicing events
are intriguing as they suggest ways of adapting the specificity of the
mDia GBD. So far, the only information we have on the role of
alternative splicing of the GBD comes from work done with splice
forms of mDia3. Zerial et al. showed that mDia3 is a binding partner
for the RhoD GTPase — but this is dependent on alternative splicing.
They identified two isoforms ofmDia3; confusingly, they termed these
hDia2B and hDia2C. hDia2C lacks exon b, but instead has an additional
short exon immediately after exon d (Fig. 5B). Only the hDia2C
isoform binds to RhoD [134], suggesting that specificity comes from
gain of the additional exon in the G domain and/or loss of exon b. The
most commonly studied isoform of mDia1 lacks exon b; whereas the
most commonly studied isoform of mDia2 contains this insertion. As
both proteins bind RhoA, it would seem that exon b is not required for
RhoA binding per se. The conservation of this exon and the splicing
event between all three mDia proteins strongly suggests that it plays a
role in protein–protein interaction in some way — either in
modulating Rho binding or interacting with another binding partner.

4.2. Why don't all Drfs make filopodia?

Cdc42 binds to mDia2 to induce filopodia [104]. RhoA binds to
mDia1 to stimulate the nucleation of actin filaments used to construct
actin stress fibers [126,135,136]. In both cases, a membrane-anchored
Rho GTPase is binding to the GBD of Drf protein to relieve
autoinhibition and allow nucleation of linear actin filaments — so
why doesn't RhoA/mDia1 produce filopodia? The answer is that it
does – or at least it can, depending on context. In epithelial cells, RhoA
signalling through mDia1 stabilises cell–cell junctions [137]. In cells
treatedwith blebbistatin to inhibit myosin II, actin stress fibers are lost
andmDia1 is seen in filopodia localised at the cell–cell interface [138].
Filopodia formation precedes adherens junction formation between
epithelial sheets and these filopodia zipper together to initiate
junction formation [18–20]. The filopodia seen on blebbistatin
treatment are enriched in the adherens junction component E-
cadherin and localise mDia1 to their tips [138]. This suggests that they
might correspond to the filopodia involved in junction formation. In
MTLn3 carcinoma cells, siRNA silencing of a combination of WAVE2
and N-WASP causes the cells to form numerous filopodia. Formation
of these filopodia is dependent on mDia1 (but not mDia2) and also
requires the activity of RhoA [139]. In both studies, cells are highly
perturbed by the experimental conditions and it is possible that
mDia1 does not play an active role in filopodia formation normally —

but both studies clearly demonstrate that RhoA/mDia1 can stimulate
filopodia formation. Both RhoA and Cdc42 recruit mDia proteins to the
plasma membrane; however, the signalling environment will be
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different in each case. Local concentrations of activated RhoA would
be expected to recruit other RhoA effectors involved in stress fiber
formation like ROCK [140,141], whereas patches of active Cdc42would
recruit other filopodia regulators like IRSp53 [142]. The loss of stress
fibers caused by blebbistatin treatment may free mDia from this
pathway, allowing it to participate in filopodia formation. So, the
outcome of mDia activation may depend on the community of
signalling proteins around the formin — a factor determined by the
activating signal.

5. Towards an integrated model of filopodia formation

Currently we have twomodels describing the initiation of filopodia
formation— is this onemodel toomany, or can both be integrated into
a more complete description of the process? For each model, there is
experimental work that suggests the need for some modification to
the initial hypothesis:

Cells where the Arp2/3 regulator N-WASP has been genetically
deleted can still make filopodia, although the number of filopodia
induced in response to activated Cdc42 is reduced by at least 50%
[143,144]. Targeting of Arp2/3 using RNA interference appears to have
different effects on filopodia formation in different cell types. In
mouse embryonic fibroblasts [145] and in the B16-F1 mouse
melanoma cell line [146] siRNA silencing of the Arp2/3 complex has
little or no effect on the formation of filopodia— either in unperturbed
cells [145] or in cells expressing activated Cdc42 [146]. In nerve
growth cones, however, siRNA silencing of Arp2/3 significantly (but
not completely) suppresses filopodia formation [147]. The overall
message seems to be that Arp2/3 is not absolutely required for
filopodia formation, but that it has a significant role — possibly
dependent on the cell type and conditions. Borisy et al. have recently
refined their convergence model of filopodia into the ‘cascade
pathway model’. In this model, the dendritic network of filaments in
the lamellipodium acts as a seedbed for filopodia formation — i.e. the
role of Arp2/3 is to provide filaments that may then be used to make
filopodia, rather than to drive filopodia formation directly. This is
supported by work in insect cells that shows that inhibiting
lamellipodia formation by targeting the Arp2/3 activator WAVE/
SCAR also leads to an inhibition of filopodia formation [148]. Two
recent studies using electron microscopy to study the arrangement of
actin filaments in filopodia shed further light on the role of
lamellipodial actin filaments. Actin filaments emerging from the
base of filopodia can be seen to originate from branch points that are
decorated with antibodies to the Arp2/3 complex, proving that the
dendritic array can provide filaments used to make filopodia [147]. In
contrast, examination of the base of filopodia generated in the absence
of Arp2/3 shows that these structures are not rooted in the
subplasmalemal actin array — i.e. convergent elongation is not ne-
cessary for filopodia formation [146].

In a tip nucleation model of filopodia formation, mDia2 sitting in
the tip complex would stimulate the nucleation and elongation of
filaments as the filopodium grew. Electron micrographs of filopodia
formed in cells expressing activated mutants of mDia2 show long,
club-like structures. The stems of these filopodia frequently contain
free filament ends that do not reach to the base ([112]; Fig. 4D). Both
observations are consistent with continued nucleation of actin
filaments from the tip as the filopodium elongates, with the activated
mDia2 leading to filopodia with additional filaments at the distal end
(club-shaped) that do not extend all of theway to the base (free ends).
Filopodia induced by the Rif GTPase are very long and frequently
emerge from the dorsal surface— i.e. not from the lamellipodium [110].
Similarly, RhoD, which is a binding partner for mDia3, produces long
filopodiawhen expressed in cells [149]. These two Rho GTPases would
seem toproducefilopodiawith ‘pure’mDia2 characteristics. In the long
filopodia produced bymDia2 inDictyostelium, the stem is composed of
filaments of approximately 200 nm in length [26]. In these longer
filopodia, continued filament production from the tip would give rise
to the overlapping filaments needed to span these structures.

An interesting recent twist is thefinding thatmDia2 is also required
for efficient formation of lamellipodia [112]. Live-cell imaging shows
thatmDia2 is present along the edge of the lamellipodiumand that this
staining condenses into localised spots prior to the emergence of
filopodia [112]— similar to the behaviour of Ena/VASP proteins during
convergent elongation [29]. Interestingly, loss of mDia2 also leads to a
loss of Ena/VASP recruitment to the lamellipodium [29]. VASP is a
known binding partner of mDia2 and Faix et al. have shown that the
bundling activity of VASP is critical to filopodia formation bymDia2 in
Dictyostelium [61]. It would seem that mDia2 might also be wired into
the convergent elongation model, with a role in bundling and
protecting barbed ends at the initiation of filopodial protrusion.

How might we combine these observations into a unified model?
The simplest explanation is that both Arp2/3 and mDia2 play
important roles in filopodia formation. It is possible that the
contribution of Arp2/3 is more strongly felt in the formation of
short filopodia or microspikes, whereas the actions of mDia2 might
predominate in the extension of longer structures, where continued
nucleation of filaments is required. The balance of the two activities
may alter in different cell types and different conditions; however, it
seems unlikely that the two activities are truly separable. This ability
to change the properties of filopodia is likely to have important
biological consequences — filopodia vary in length and form, allowing
them to fulfil their specialised roles [150]. Clearly, control over
filopodial structure and dynamics must underpin this.

6. Conclusions and perspectives

When trying to understand how filopodia formation is regulated, one
important conceptual point is that overexpression of any of the individual
components (WASP, mDia2, fascin, IMD proteins, Myo10) drives the
process. It appears that the cell is poised to make filopodia and that
changing the balance of any of the mechanistic components is enough to
cause these structures to form. In this respect, it is probably unproductive
to look for primary initiators of the process, or to attempt to rank
components asbeingmoreor less important. Co-operativemodels like the
convergence/cascademodel offilopodia formationwould seem tofitwith
the stochastic nature of filopodia formation, and to have a sense of
similarity to other complex cytoskeletal behaviours — like the turning of
lamellipodia or the breaking of symmetry in migrating cells. Suchmodels
also allow us to imagine how cells could blend together components to
alter the properties offilopodia— for example, addingmore activeDrfs for
extra length, or more cross-linking proteins for extra strength. Experi-
ments designed to look at the contributions of individual filopodial
components within the context of the ensemble would seem to be
important at this stage. Comparing differences between filopodia that are
involved in physiological processes (growth cones, dorsal closure, etc)
would also seem important, and to be the route to adeeper understanding
of these fascinating structures.
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