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This article addresses questions of sensitivity of output values in engineering models with
respect to variations in the input parameters. Such an analysis is an important ingredient in
the assessment of the safety and reliability of structures. A major challenge in engineering
applications lies in the fact that high computational costs have to be faced. Methods have
to be developed that admit assertions about the sensitivity of the output with as few com-
putations as possible. This article serves to explore various techniques from precise and
imprecise probability theory that may contribute to achieving this goal. It is a case study
using an aerospace engineering example and compares sensitivity analysis methods based
on random sets, fuzzy sets, interval spreads simulated with the aid of the Cauchy distribu-
tion, and sensitivity indices calculated by direct Monte Carlo simulation. Computational
cost, accuracy, interpretability, ability to incorporate correlated input and applicability to
large scale problems will be discussed.

� 2008 Published by Elsevier Inc.
1. Introduction

The goal of this article is to demonstrate how various methods from probability theory and imprecise probability theory
can be employed in sensitivity analysis of engineering structures. We are motivated by a research project in aerospace engi-
neering2 which involved the determination of the buckling load of the frontskirt of the ARIANE 5 launcher under various loading
and flight scenarios. The frontskirt is a reinforced light weight shell structure. The computation of the decisive parameter
indicating failure, the load proportionality factor (LPF), is based on a finite element model.3 Part of the project was to determine
the most influential input parameters (loads, material constants, geometry) on the load proportionality factor in a sensitivity
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analysis. The goal was to evaluate the design and to assess the safety of the structure. The calculation of the output variable LPF
– under a given single set of input parameters – takes about 32 h on a high performance computer. In addition to the extremely
high computational cost, the LPF may depend in a non-differentiable manner on some of the input parameters, especially vari-
ations in the geometry. A classical sensitivity analysis of the complete structure is currently out of reach.

Engineering information on the variability of the input parameters usually consists of a central value and a coefficient or
range of variation. The basic strategy for arriving at a sensitivity assessment will be to successively pinch the input param-
eters (that is, freeze them at their central value) and study the effect on the variability of the output. Among the numerous
alternative views on sensitivity analysis (cf. e.g. [14]), we shall also pursue simulation methods that yield interval bounds on
the output as well as variance-based methods.

We wish to do our analysis without artificial parametric assumptions and with as few calls of the finite element program
as possible. We will explore the usability of the following four methods, modelling the input variability by means of

– random sets and Tchebycheff’s inequality;
– fuzzy sets and Hartley-like measures;
– intervals and sampling from a Cauchy distribution;
– standard Monte Carlo simulation and resampling.

Sensitivity analysis with the aid of Monte Carlo methods will include the computation of partial rank correlation coeffi-
cients and Sobol indices. The first three methods belong to imprecise probability in its proper sense; the last method is of a
standard probabilistic type and included for comparison. Imprecise probability versions of the latter variance-based methods
have been proposed by [10], but were not pursued in this study due to the expected additional computational costs.

A detailed description of the respective methods will follow in five sections, with a final section devoted to a comparison
of the methods. The question of modelling correlations between the input variables will be addressed in the appropriate
sections.

The ARIANE 5 frontskirt is the part of the launcher that connects the tanks section with the payload section and also has to
support the booster loads. It consists of a light weight shell structure reinforced by struts. The full finite element model is
composed of shell elements and solid elements, altogether with two million degrees of freedom. The load proportionality
factor is computed by means of a path following procedure that follows bifurcations as long as possible until failure of
the structure is reached, indicated by numerical breakdown of the program at a point at which the determinant of the local
stiffness matrix does not change sign.

In order to make a test of the sensitivity analysis methods feasible, we made two simplifications. First, a simplified finite
element model keeping the global structure (Fig. 1) with about ninety thousand degrees of freedom was used, and second, no
distinction of bifurcation or material failure was made, so that the terminal value of the LPF was taken as that value at which
the finite element program failed to converge. No further investigation of the reason for non-convergence was undertaken.
The computational cost for the simplified model was one hour per call of the program.

In the sensitivity analysis, up to 17 input parameters were taken into account. A terse description of the meaning of the
parameters as well as their nominal values can be read off from Table 1. This was all information we had available; in par-
ticular, no information on possible correlations of the input variables was given to us – actually on purpose; the project was
in part a blind-folded test to check whether the sensitivity study would reveal dependencies which were expected from an
engineering viewpoint (and it successfully did). The coefficients of variation of the input variables were estimated – after
discussions with various engineering experts and consulting the literature [32] – at 15%.

At this point, it appears important to note that we did not intend to develop an imprecise probability model of the laun-
cher. Rather, imprecise probability methods are introduced here for computing and visualizing sensitivities. So, while an
imprecise probability model might well end up having different coefficients of variation for the various input parameters,
it would be counter-productive to enter into a sensitivity study with different coefficients of variation, as this definitely
would introduce distorting information (see also [28]).

To aid the reader in assessing the sensitivity results, we mention what we computed as the total variability of the output
variable LPF: A direct Monte Carlo simulation of size n ¼ 100 with input variables uniformly distributed on an interval
around li of spread �0:15li produced an output range of [3.45, 3.65] for the LPF.

For background material on sensitivity analysis we refer to the Special Issue [13], in particular the survey article [14] as
well as [6,7,12]; for random sets, to [24,26]; for random and fuzzy sets, to [9,19]; for probability boxes, to [5]; for a review on
Fig. 1. Simplified finite element model of frontskirt.



Table 1
Description of input parameters no. 1–17.

i Parameter Xi Mean li

1 Initial temperature 293 K
2 Step1 thermal loading cylinder1 450 K
3 Step1 thermal loading cylinder2 350 K
4 Step1 thermal loading cylinder3 150 K
5 Step1 thermal loading sphere1 150 K
6 Step1 thermal loading sphere2 110 K
7 Step2 hydrostatic pressure cylinder3 0.4 MPa
8 Step2 hydrostatic pressure sphere1 0.4 MPa
9 Step2 hydrostatic pressure sphere2 0.4 MPa
10 Step3 aerodynamic pressure �0.05 MPa
11 Step4 booster loads y-direction node1 40,000 N
12 Step4 booster loads y-direction node2 20,000 N
13 Step4 booster loads z-direction node1 3.e6 N
14 Step4 booster loads z-direction node2 1.e6 N
15 Step4 mechanical loads x-direction 100 N
16 Step4 mechanical loads y-direction 50 N
17 Step4 mechanical loads z-direction 300 N
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probabilistic treatment of uncertainty in structural engineering as well as information on variability of typical input param-
eters, to [32]. A survey of related ideas in risk analysis can be found in the tutorial [4] of the ISIPTA’07-conference and on
concepts of generalized information theory in the tutorial [18].

2. Random set methods

It has been argued in [27,28] that random intervals constructed by Tchebycheff’s inequality can serve as a non-parametric
model of the variability of a parameter, given its mean value and variance as sole information. We begin with the univariate
case of a real-valued random variable X. Let l ¼ EðXÞ be its expectation and r2 ¼ VðXÞ be its variance. Tchebycheff’s inequal-
ity asserts that
PðjX � lj > daÞ 6 a; da ¼ r=
ffiffiffi
a
p

: ð1Þ
Equipping the unit interval ð0;1� with the uniform probability distribution, the non-parametric confidence intervals
Ia ¼ ½l� da;lþ da�; a 2 ð0;1� ð2Þ
define a random set. By construction, the following formulas for the belief in the set Ia and the plausibility of its complement
Ic
a hold:
PðIaÞ ¼
Z
fb2ð0;1�:Ib�Iag

db ¼ 1� a 6 PðIaÞ;

PðIc
aÞ ¼

Z
fb2ð0;1�:Ib\Ic

a–;g
db ¼ a P PðIc

aÞ:
This shows that the random set description provides a conservative assessment of the variability of X. In applications, the
range of the parameter X may be confined to a compact interval ½xmin; xmax�. In this case, the random set will be truncated to
Ia ¼ ½ðl� daÞ _ xmin; ðlþ daÞ ^ xmax�:
In the multivariate case X ¼ ðX1; . . . ;XdÞ where each parameter Xi is modelled as a random set as in (2), we form the joint
random set (assuming random set independence)
a ¼ ða1; . . . ;adÞ ! Aa ¼ I1
a1
� � � � � Id

ad
again with the uniform distribution on the probability space ð0;1�d; see e.g. [1,2].
Let g : Rd ! R be a continuous function, which will play the role of the input–output map in the sequel. If the input vari-

ables X ¼ ðX1; . . . ;XdÞ are modelled as a random set Aa, a 2 ð0;1�d (equipped with the uniform probability distribution), the
output variable is given by the random set gðAaÞ, a 2 ð0;1�d. A coarse, but useful visualization of the output can be obtained
by means of the upper and lower distribution functions (or probability box, [5])
FðxÞ ¼ Pða : gðAaÞ \ ð�1; x�–;Þ
FðxÞ ¼ Pða : gðAaÞ � ð�1; x�Þ:

ð3Þ
Another visualization of the output random set is by means of the contour function or coverage function [24]
CðxÞ ¼ Pða : x 2 gðAaÞÞ:
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Note that FðxÞ and CðxÞ coincide as long as FðxÞ < 1. The contour function is the membership function of the fuzzy set asso-
ciated with the output random set [9].

In the numerical evaluation, the joint random set is approximated by a finite random set with focal elements
Fig.
I1
a1
� � � � � Id

ad
; aj 2

1
n
;
2
n
; . . . ;1

� �
for j ¼ 1; . . . ;d;
each with probability weight n�d. The input–output function is evaluated as follows: First, an interval Q � Rd is determined
that bounds the relevant range of the input variables X. Next, the values of the function g are computed at the md nodes of a
uniform grid on Q. The output gðQÞ is approximated by a response surface ĝðQÞ obtained by multilinear splines. More pre-
cisely, to compute the image of one of the sets Aa, ĝðQÞ is evaluated at all grid points inside Aa, at all points on its edges inter-
secting one of the grid lines, and at its vertices. The interval gðAaÞ is approximated by the minimum and maximum value thus
obtained. Finally, the probability box (3) is calculated by adding the weights when appropriate. The essential computational
effort thus amounts to md calls of the finite element program.

The thin outer curves in Fig. 2 show the result of the calculation of the load proportionality factor (LPF) where the three
input parameters X3;X13;X14 (temperature cylinder 2, booster load node 1 in z-direction, booster load node 2 in z-direction)
were taken up as variable in the analysis (probability box on the left, contour function on the right). The variance r2 for the
Tchebycheff model was adjusted such that the base intervals ½xmin; xmax� for each of the parameters was symmetric around
the corresponding mean l with spread �0:15l. In this case, d ¼ 3 and we chose m ¼ 5 so that 125 calls to the FE-program
were required.

We note that the one-dimensional random sets constructed from Tchebycheff’s inequality are nested, but the higher
dimensional ones generally are not. Thus special numerical methods that have been developed for consonant random sets
(see e.g. [29]) are not applicable. In particular, the output random set does not consist of nested focal elements. Thus some
information is lost when representing the output as a probability box or by its contour function. Nevertheless, this presen-
tation appears useful for the purpose of visualizing the sensitivity.

Example 1. To assess the sensitivity of the load proportionality factor LPF with respect to the parameters X3;X13;X14 we use
the Tchebycheff model for each of the parameters with spread 0.15 times their mean values. Then we successively set one of
the resulting standard deviations r3;r13;r14 equal to zero (while keeping the others at their given value), go through the
calculation indicated above and plot the resulting probability boxes and contour functions (solid lines – the thin lines
indicate the unperturbed result). This is displayed in Fig. 2 and shows that setting r13 ¼ 0 produces the biggest reduction of
the width of the probability box, while setting r14 ¼ 0 has little effect. We infer that the parameter X14 has the least
influence on the variability of the response, while X13 exerts the biggest influence. For a way of quantifying this effect, see
Section 3 and Table 2. The pinching strategy in the case of probability boxes is further explicated in [6] and applied in [28].

The question of dependence or interactivity of the input variables is a further issue. We note that no prior information on
possible dependencies of the input variables was available in the project under study. We experimented with artificially
introduced dependencies in order to evaluate their effect on the sensitivity of the output. Dependence could be modelled
by copulas on the underlying probability space ð0;1�d or by restrictions on the set of probability measures on Rd defined
by the random set. Actually, we ran a number of tests with non-uniform joint distributions on ð0;1�d, given by copulas-
including the smallest and largest copulas yielding the Fréchet–Hoeffding-bounds [25]. However, introducing dependence
in this way turned out to have negligible effect on the output random set. Notions of (in)dependence based on restrictions
on the set of probability measures include epistemic independence, strong independence and unknown interaction, cf. [8].
3.45 3.5 3.55 3.6 3.65
0

0.5

1

3.45 3.5 3.55 3.6 3.65
0

0.5

1

3.45 3.5 3.55 3.6 3.65
0

0.5

1

3.45 3.5 3.55 3.6 3.65
0

0.5

1

3.45 3.5 3.55 3.6 3.65
0

0.5

1

3.45 3.5 3.55 3.6 3.65
0

0.5

1

2. LPF, total variability (thin lines) and LPF, successively pinched variables (solid lines); probability boxes (left) and contour functions (right).



Table 2
Hartley-like measures of fuzzy outputs, non-interactive vs. interactive input (left); Hartley-like measures of random set output (right).

Fuzzy set HL-measure non-interactive HL-measure interactive

No fixing 0.1481 0.1359
X13 fixed 0.0398 0.0315
X14 fixed 0.1430 0.0666
X3 fixed 0.1268 0.1020

Random set HL-measure of p-box

No fixing 0.0603
X13 fixed 0.0233
X14 fixed 0.0534
X3 fixed 0.0504
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The latter case is known to be computationally highly expensive. Thus we decided to remain with random set independence
for our experiments and deferred a more detailed study of interactivity to the realm of fuzzy sets. A practicable approach for
modelling interactivity will be presented in the following section on fuzzy sets.

3. Fuzzy sets

In this section, one-dimensional input variables will be modelled as normalized fuzzy numbers, that is as fuzzy subsets B of
the real line with upper semi-continuous membership function pBðxÞ that attains the value 1. The a-level set of B is the set
4 Tria
appear
level by
Ba ¼ fx 2 R : pBðxÞP ag; a 2 ð0;1�:
In the multivariate case, the non-interactive joint fuzzy set is defined as follows. Given d univariate fuzzy sets B1; . . . ;Bd, the
joint fuzzy set has the a-level sets
Ba ¼ B1
a � � � � � Bd

a; a 2 ð0;1�:
Interactivity will be modelled by certain parametric restrictions on the a-level sets. To avoid combinatorial complications,
we shall treat interactivity of at most two out of the d variables. Since an a-level set of the form Bi

a � Bj
a is a homothetic image

of the unit square, it suffices to give the definitions for B1
a ¼ B2

a ¼ ½0;1�. Following [36], interactivity will be modelled by
replacing the unit square by a diamond-shaped region, symmetric around one of the diagonals. Let 0 6 q 6 1 and define
the points P1; . . . ; P4 by
P1 ¼ ðq=2;q=2Þ; P2 ¼ ð1� q=2;q=2Þ;
P3 ¼ ð1� q=2;1� q=2Þ; P4 ¼ ðq=2;1� q=2Þ:
Interactivity of positive degree q is modelled by taking the rhombus with vertices ð0; 0Þ, P2, ð1;1Þ, P4 as joint level set, while
interactivity of negative degree �q is modelled by the rhombus with vertices ð0;1Þ, P1, ð1;0Þ, P3 as joint level set (Fig. 3). Let
g : Rd ! R be a continuous function. If the input variables X ¼ ðX1; . . . ;XdÞ are modelled as a non-interactive or interactive
fuzzy set with a-level sets Ba as above, Zadeh’s extension principle yields the output variable as the fuzzy number with level
sets gðBaÞ, a 2 ð0;1�.

While a fuzzy set can be interpreted as a random set (cf. e.g. [9]) and the procedure appears similar to the one of Section 2,
there is a fundamental difference in the multivariate case: in fuzzy set theory, only a-level sets of the same level are com-
bined to produce the joint fuzzy set, while for random sets, the focal elements are obtained as products with respect to any
combination and thus are indexed by the product space ð0;1�d.

Example 2. In the assessment of the sensitivity of the load proportionality factor LPF with respect to the input parameters
X3;X13;X14, these parameters were modelled as symmetric triangular fuzzy numbers,4 with central values li from Table 1 and
spread �0:15li as before. The numerical calculation is based on the response surface method explained in Example 1. The
images of the a-level sets are again computed by piecewise multilinear combination. To handle possible lack of monotonicity of
the function g, we start with level a ¼ 1 and go the way down to a ¼ 0, insuring at each step that the approximations satisfy
gðAbÞ � gðAaÞ for a < b.

In the non-interactive case, the procedure for determining the sensitivity of the output with respect to the input variables
is the same as in Example 1. The initial calculation is performed with proportional spreads �0:15li. Then we successively
replace one of the triangular fuzzy numbers by its crisp central value li, and compute the output as a fuzzy number. The
result gives a good visual representation of the change of variability. This can be quantified using e.g. the Hartley-like
measure
ngular fuzzy numbers were employed for two reasons: first, they do not encode information other than a central value and a spread; second, they
to be ideally suited for sensitivity analysis. In fact, they are built up linearly from nested intervals – this allows to read off the sensitivity of the output

level and gives information on how the sensitivity changes when the input intervals increase.
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HLðBÞ ¼
Z 1

0
log2ð1þ kðBaÞÞda
of fuzzy sets B as proposed by [19], where k denotes Lebesgue measure (see also [2] for further implementation of this idea
with random sets and [10] for interval-valued indices). The result is depicted in Fig. 4 (left), where the outer contour is the
membership function of the fuzzy LPF with all input parameters fuzzy, while the shaded region is bounded by the member-
ship function of the fuzzy LPF with successively pinched input parameters. It confirms the observations obtained by the
random set method: X13 is the most influential parameter, followed by X3 and then X14. This can be explained by the model
set-up: X13 refers to a large booster load on one side of the frontskirt, while X14 signifies a much smaller booster load on the
opposite side. The Hartley-like measures displayed in Table 2 (left hand side, central column), though, show that some, albeit
small, influence of parameter X14 is detectable. For reasons of comparison we also display the Hartley-like measure of the
random set output in Table 2 (right hand side). The latter Hartley-like measures were computed from the level sets of
the probability box as in Fig. 2.

Example 3. This example serves to show how the effect of possible correlations between two of the input parameters on the
sensitivity can be assessed. Correlation will be interpreted here as degree of interactivity as described above. In this example,
we assume a degree of interactivity q ¼ 0:8 between parameters X13 and X14. The remaining parameters are treated as non-
interactive. The a-level sets are of cylindrical shape with a rhombic base Ra, say. Their images are again computed by piece-
wise multilinear combination. Otherwise, the procedure of successively pinching variables is similar: for example, when X13

is frozen at its central value l13, the interactivity restricts X14 to vary along the intersection of Ra with the line through l13

parallel to the x14-axis, while X3 varies in its original a-level interval.
The result is shown in Fig. 4 (right). The outcome confirms the prominence of parameter X13; as a consequence of the

correlation, parameter X14 is seen to exert a comparable influence. The result also demonstrates that the correlation changes
the sensitivity of the output with respect to parameter X3. Table 2 (left hand side, right column) again shows the Hartley-like
measures of the fuzzy output under successive pinching of input variables. One may note that the study of the influence of
correlations can be implemented in the fuzzy approach with ease.

As in Example 1, the computational effort using the response surface consisted in 125 calls of the finite element program.
The vertical jumps of the membership function in Fig. 4 (right) indicate that the output does not depend monotonically on
the input variables. Closer inspection (done by producing an array of two-dimensional plots of the partial maps Xi ! LPF)
showed that this is indeed the case. Therefore, the accuracy of the method using just 125 grid values is in question. A number
of additional explicit evaluations showed that the accuracy of the boundaries of the a-level sets for the LPF is in the range of
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Fig. 4. Fuzzy sets: LPF, pinched variables, non-interactive case (left) and interactive case (right).



Fig. 5. Plots of partial maps X13 (abscissa), respectively X14 (abscissa), vs. LPF (ordinate) in the relevant range.

686 M. Oberguggenberger et al. / International Journal of Approximate Reasoning 50 (2009) 680–693
�0:02 in absolute value. Fig. 5 shows that the partial map X14 ! LPF is not monotonic, while the partial map X13 ! LPF is
monotonic within the considered range.
4. Interval bounds

This section is devoted to the most elementary imprecise probability model: interval estimates of input and output
parameters, supposing that the variability of each input parameter Xi is described by an interval ½li � Di;li þ Di� of spread
Di around a central value li. Following the suggestion of [21], we use Monte Carlo simulation with the Cauchy distribution to
compute an estimate of the output interval.

The underlying theory from [21] is as follows. Suppose we wish to estimate the difference
Dy ¼ gðx1; . . . ; xdÞ � gðl1; . . . ;ldÞ;
where jDxij ¼ jxi � lij 6 Di. Linearization around the mean value gives
jDyj 6 D ¼
Xd

i¼1

jcijDi; ci ¼
@g
@xi
ðl1; . . . ;ldÞ:
If the Xi are independent random variables following a Cauchy distribution with scale parameter Di, then
Y ¼ c1X1 þ � � � þ cdXd obeys a Cauchy distribution with scale parameter D ¼ jc1jD1 þ � � � þ jcdjDd. This offers the possibility
of computing the bound D on the output spread by Monte Carlo simulation.

The algorithm runs along the following lines. To produce a single realization, a d-dimensional sample ðz1; . . . ; zdÞ of Cau-
chy distributed variables with scale parameters 1 is taken. Setting K ¼max16i6djzij, one has that di ¼ Dizi=K has a Cauchy dis-
tribution with scale parameter Di=K . Putting xi ¼ li þ di it follows that:
Z ¼ Kðgðx1; . . . ; xdÞ � gðl1; . . . ;ldÞÞ
is a realization of a Cauchy distributed variable with desired scale parameter D (this is true exactly when g is linear and
otherwise approximately). An n-fold repetition yields the Monte Carlo sample of size n of the variable Z. Fitting a Cauchy
distribution – e.g. by the maximum likelihood method – produces an estimate of the spread D of the output interval
½gðl1; . . . ;ldÞ � D; gðl1; . . . ;ldÞ þ D�. The computational effort for this estimate is n calls of the finite element program
and thus independent of the dimension d. This offers the possibility to include a larger number of input variables in the
analysis.

The reason for using the Cauchy distribution is twofold. First, its parameter D is a direct estimate of the sought after
spread of the output. Second, as has been argued in [21,22], it is necessary to use an unbounded distribution if one wants
to get numerically accurate simulation results for the spreads of interval data. In fact, it is shown in [22] that the Cauchy
distribution is the only distribution whose parameters transform according to the formula D ¼ jc1jD1 þ � � � þ jcdjDd under lin-
ear combinations.

Example 4. In this calculation, 17 input parameters were included with nominal values displayed in Table 1. The spreads Di

were taken as 0.15-times the nominal values li. We used a direct Monte Carlo method to produce a sample of size n ¼ 100.
The value of the load proportionality factor LPF was obtained as l ¼ gðl1; . . . ;ldÞ ¼ 3:5443. The simulation resulted in an
estimate for its spread of bD ¼ 0:2924.
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In the next step, the distribution of the resulting spread D was estimated by resampling. We employed 10,000 random
subsamples of size 100 (with repetition), following the suggestions in [31]. This resulted in a 95%-confidence interval for D of
CI0:95ðbDÞ ¼ ½0:2281;0:3685�. The essential computational effort consisted in n ¼ 100 calls of the finite element program.

Remark 5. A sensitivity analysis could be based on this method, again by pinching variables successively. It is possible to
reduce computational cost by using the same Monte Carlo sample and approximating the pinched variables by a truncated
Cauchy distribution. More precisely, instead of setting D1 ¼ 0, say, we select the random numbers ðx2; . . . ; xdÞ computed
above from the part of the population ðx1; x2; . . . ; xdÞ which satisfies jd1j < e for a suitably chosen small e. This is justified,
because the resulting truncated ðd� 1Þ-dimensional random variables converge in distribution to the ones with D1 frozen
at the value 0 as e! 0. However, successive simultaneous pinching of two or more variables requires repeated Monte Carlo
simulation because the sample size would be too small for repeated truncation.

A more troublesome observation concerns the accuracy of the Cauchy method in our situation where the output function
g is a nonlinear finite element computation resulting in the LPF. It turned out that the simulations of the auxiliary variable Z
actually failed the Kolmogorov–Smirnov-test for being Cauchy distributed. This means that our output function g was too far
away from linearity and thus puts the accuracy of the Cauchy method into question in this context.
5. Monte Carlo simulation

To complete the analysis, we shall discuss the merits of direct Monte Carlo simulation in sensitivity analysis. For the sake
of comparison, we place ourselves in the standard probabilistic setting. As noted earlier, the purpose of this paper is not to
implement an imprecise probability model of the system under consideration, but rather study the sensitivity of the output
with respect to variations of the input parameters. Thus the variability of the input is introduced here for computational pur-
poses. For this, standard, probabilistic Monte Carlo simulation is a viable option, and contrasts the imprecise probability tech-
niques discussed in the previous sections.

To be sure, it is possible to construct imprecise versions of the sensitivity indices we use, and even employ Monte Carlo
techniques to compute them. This is needed when starting from an imprecise probability model of the structure and has
been proposed in [10]. In view of the expected increase in computational cost and the general purpose of the paper we
did not work out this branch of analysis.

In the Monte Carlo simulation to follow, we will use uniformly distributed input variables. This choice is motivated by the
purpose of our study: modelling the variability of the input with the smallest amount of information necessary so as not to
introduce information that might distort the simulated sensitivities. Symmetric triangular distributions offer another option;
for the sake of exposition, we remain with uniformly distributed input here.

An explorative analysis usually starts with checking the scatterplots of individual input variables vs. the output, obtained
by Monte Carlo simulation. Another common method is to compute the weighted contribution of each input variable to the
variance of the output. These methods suffer from the problem that hidden interactions may have a significant effect on the
decomposition of the variance (see, however, [3]). We therefore turn to a method which intends to remove the influence of
co-variates on the correlation between a given input variable Xi and the output variable Y. This method is based on the par-
tial correlation coefficient (PCC) or the partial rank correlation coefficient (PRCC). For reasons of comparison, we shall also
compute various other indicators for interactivity or correlation.

We recall that partial correlation between two random variables Xi and Y given a set of co-variates Xni ¼ fX1; . . . ;

Xi�1;Xiþ1; . . . ;Xdg is defined as the correlation between the two residuals eXi �Xni and eY �Xni obtained by regressing Xi on Xni
and Y on Xni, respectively. More precisely, one first constructs the two regression models
bXi ¼ a0 þ
X
j–i

ajXj; bY ¼ b0 þ
X
j–i

bjXj;
obtaining the residuals
eXi �Xni ¼ Xi � bXi; eY �Xni ¼ Y � bY :

Since eXi �Xni and eY �Xni are those parts of Xi and Y that remain after subtraction of the best linear estimates in terms of Xni, the
partial correlation coefficient
qXi ;Y �Xni ¼ qðeXi �Xni ; eY �Xni Þ
quantifies the linear relationship between Xi and Y after removal of any part of the variation due to the linear influence of Xni.
Applying a rank transformation to the variables Xi and Y leads to the partial rank correlation coefficient (PRCC). For further
background on PCCs and PRCCs, see [11,15,30].

Example 6. To estimate the influence of each of the 17 input parameters from Table 1 on the output LPF, we performed a
Monte Carlo simulation of size n ¼ 100 with uniformly distributed input variables (on the intervals as in Example 4), using
Latin hypercube sampling, an efficient stratified sampling strategy.



Fig. 6. Scatterplots of 17 input variables vs. output.
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To obtain a sample of size n, the Latin hypercube sampling plan divides the range of each variable Xi into n disjoint sub-
intervals of equal probability. First, n values of each variable Xi, i ¼ 1; . . . ; d, belonging to the respective subintervals are ran-
domly selected. Then the n values for X1 are randomly paired without replacement with the n values for X2. The resulting
pairs are then randomly combined with the n values of X3 and so on, until a set of n d-tuples is obtained. This set forms
the Latin hypercube sample. The advantage of Latin hypercube sampling is that sampled points are evenly distributed
through design space, thereby covering regions possibly important for the input–output map which might be missed by
direct Monte Carlo simulation. It can be shown that the variance of an estimator based on Latin hypercube sampling is
asymptotically smaller than the variance of the direct Monte Carlo estimator, and possibly markedly smaller when the in-
put–output map is partially monotonic [12,23,35].

For additional accuracy in view of the rather small sample size we subjected the simulated variables to correlation control
(see [16,17]). This procedure consists in a rearrangement of the originally simulated values such that the resulting empirical
rank correlation matrix is close to diagonal.

The scatterplot of Fig. 6 gives a first impression of the influence of the input variables on the output. However, as noted
above, the scatterplot alone delivers questionable information. Accordingly, we computed various correlation coefficients
that discount certain possible interactions between the input variables.

The results are displayed in Table 3; the meaning of the various coefficients is as follows:
Table 3
Various measures of correlation input–output; superscripts indicate the respective ranks.

Parameter number Raw data Rank data

CC PCC SRC RCC PRCC SRRC

1 �0.0553 �0.26313 �0.06623 �0.0566 �0.27884 �0.06594

2 �0.0781 �0.0888 �0.0217 �0.0913 �0.1420 �0.0326
3 0.0954 0.46802 0.12852 0.0629 0.39572 0.09782

4 0.0553 0.1038 0.0254 0.0574 0.1173 0.0268
5 0.0525 0.0612 0.0149 0.0653 0.1315 0.0301
6 0.0418 0.0210 0.0051 0.0521 0.0720 0.0164
7 �0.0043 �0.0223 �0.0054 0.0062 0.0237 0.0054
8 �0.0397 �0.1230 �0.0301 �0.0233 �0.0629 �0.0143
9 0.0479 0.1787 0.0442 0.0684 0.27535 0.06525

10 0.0216 0.1803 0.0446 0.0237 0.1942 0.0450
11 �0.0181 0.0893 0.0219 �0.0332 0.0340 0.0077
12 0.0019 0.0203 0.0049 0.0152 0.0644 0.0147
13 �0.95341 �0.96901 �0.95741 �0.95931 �0.97281 �0.96021

14 0.0407 0.25964 0.06534 0.0380 0.28103 0.06653

15 0.0403 0.0352 0.0086 0.0498 0.0667 0.0152
16 �0.0844 �0.0880 �0.0216 �0.0777 �0.0805 �0.0184
17 �0.0056 0.0744 0.0181 �0.0050 0.0791 0.0180
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– CC: Pearson correlation coefficient, quantifying the strength of a linear relationship between Xi and LPF;
– PCC: partial correlation coefficient, quantifying the strength of a linear relationship between Xi and LPF after removal of

linear interactions with Xni;
– SRC: standardized regression coefficient between Xi and LPF, quantifying the effect of deviations from li;
– RCC: Spearman rank correlation coefficient, quantifying the strength of a monotonic relationship between Xi and LPF;
– PRCC: partial rank correlation coefficient, quantifying the strength of a monotonic relationship between Xi and LPF

after removal of monotonic interactions with Xni;
– SRRC: standardized rank regression coefficient between Xi and LPF, quantifying the effect of deviations from li within a

rank regression model.

The linear regression model constructed in order to obtain standardized regression coefficients (including all variables)
has a corresponding R2 of 0:9414, thus indicating a fairly good fit. Changing to rank transformed data only slightly improved
the quality of approximation (yielding R2 ¼ 0:9488). The resulting sensitivity indices induce a ranking of the input param-
eters according to their influence on the output (denoted by superscripts in Table 3). It is seen that the evaluations based on
RCCs, PRCCs and SRRCs do not differ drastically from those obtained from raw data (CCs, PCCs and SRCs).

The rankings of the input parameters were based on the absolute value of the index under study. Small index values may
or may not be considered as significant. For this reason, we constructed bootstrap percentile confidence intervals with nom-
inal level 0.95. In an overall assessment of the ranking, only those sensitivity estimates with a resultant confidence interval
not including 0 (indicated by bold values) should be regarded as assertive.

As an example, we visualize the computed PRCCs in Fig. 7 (left). For further statistical confirmation, we performed a
resampling procedure as in Example 4, producing bootstrap confidence intervals for the partial rank correlation coefficients
as displayed in Fig. 7 (right). Accordingly, only the PRCCs of the parameters X1, X3, X9, X13 and X14 test to be nonzero.

The outcome confirms the results of the sensitivity analysis in the previous sections: among the parameters X3, X13 and
X14, the one with the biggest influence is X13, followed by X3 and X14. In addition, it shows the influence of parameters that
would not have been visible in the scatterplots of Fig. 6.

We also ran various tests with correlated input as in Example 3 which confirmed the observed sensitivities. However,
each test required a new Monte Carlo simulation with sample size n ¼ 100.
6. Sobol indices

A more sophisticated method for estimating the contribution of Xi to the total output variation are Sobol indices, based on
the expansion of the input–output map g into summands of increasing dimensionality [33]. More precisely, assume the
parameters Xi are independent and identically distributed according to a uniform distribution on the unit interval. Then
the global output variance can be decomposed into
VfgðX1; . . . ;XdÞg ¼
Xd

i¼1

VfgiðXiÞg þ
X
i<j

Vfgi;jðXi;XjÞg þ � � � þ Vfg1;2;...;dðX1; . . . ;XdÞg:
Consequently, the so-called Sobol index
Si1 ;...;is ¼ VfgðX1; . . . ;XdÞg�1Vfgi1 ;...;is ðXi1 ; . . . ;Xis Þg
quantifies the proportion of total variability due to the interplay between ðXi1 ; . . . ;Xis Þ, s 6 d.
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From a computational point of view, the terms of the sum above are defined via high dimensional integrals, e.g.
VfgiðXiÞg ¼
Z
½0;1�

Z
½0;1�d�1

gðx1; . . . ; xdÞdx1 � � �dxi�1dxiþ1 � � �dxd �
Z
½0;1�d

gðx1; . . . ; xdÞdx1 � � �dxd

( )2

dxi
and can be approximated by Monte Carlo integration schemes involving only function values of g, i.e. without having to
explicitly construct gi1 ;...;is (see also [34]).

As a mild generalization, the preceding partition is valid for subgroups of variables as well. Specifically, let ðX1; . . . ;XdÞ be
divided into two disjoint clusters of variables ðZ1; Z2Þ. Consequently,
VfgðX1; . . . ;XdÞg ¼ VfgðZ1; Z2Þg ¼ Vfg1ðZ1Þg þ Vfg2ðZ2Þg þ Vfg1;2ðZ2; Z2Þg:
The corresponding Monte Carlo integration in this case reads
VfgðX1; . . . ;XdÞg �
1
n

Xn

j¼1

gðZðjÞ1 ; Z
ðjÞ
2 Þ

2 � 1
n

Xn

j¼1

gðZðjÞ1 ; Z
ðjÞ
2 Þ

 !2
and
Vfg1ðZ1Þg �
1
n

Xn

j¼1

gðZðjÞ1 ; Z
ðjÞ
2 ÞgðZ

ðjÞ
1 ;
eZ ðjÞ2 Þ �

1
n

Xn

j¼1

gðZðjÞ1 ; Z
ðjÞ
2 Þ

 !2

;

where ZðjÞ2 and eZ ðjÞ2 are independent. An analogous formula holds for Vfg2ðZ2Þg. Thus the estimation of Vfg1ðZ1Þg and hence of
the associated Sobol index requires 2n Monte Carlo trials: n in order to obtain
gðZðjÞ1 ; Z
ðjÞ
2 Þ; j ¼ 1; . . . ;n
and another n to compute
gðZðjÞ1 ;
eZ ðjÞ2 Þ; j ¼ 1; . . . ;n:
Consequently, the simulated values of Z1 are reused, while a new sampling matrix has to be generated for the variables in Z2.

Example 7. Grouping the 17 input variables according to their rankings in Table 3, two sets were defined, namely
Z1 :¼ ðX1;X3;X13Þ
representing the supposedly important parameters and
Z2 :¼ ðX2;X4; . . . ;X12;X14; . . . ;X17Þ
containing less decisive input quantities. The primary aim was to support our previous sensitivity analysis results, i.e. to
reconfirm the dominance of Z1 on the LPF value.

Estimating the individual contributions to the variability of the LPF due to Z1 and Z2 required two auxiliary Monte Carlo
simulation of size n ¼ 100, conducted with the same underlying sampling matrix as in the computation of Table 3 but newly
generated columns for the variables in Z1 and Z2, respectively. Care was exercised to maintain the integrity of the original
Latin hypercube and rank correlation structure.

As remarked in [30] – and confirmed by our experiments – it is numerically more robust to compute the Sobol indices
above on the ranks of the terms gðZðjÞ1 ; Z

ðjÞ
2 Þ; . . . rather than the terms themselves. This calculation yielded the indices
bSf1;3;13g ¼ 0:966; CI0:95ðbSf1;3;13gÞ ¼ ½0:944;0:977�
and
 bSf2;4;...;12;14;...;17g ¼ 0:116; CI0:95ðbSf2;4;...;12;14;...;17gÞ ¼ ½�0:084;0:307�:

Again the confidence intervals were determined by resampling, using 5000 subsamples. Due to small sample size, the numer-
ical accuracy of the Monte Carlo estimators for the Sobol indices is unsatisfactory. Nevertheless, the conclusions drawn in the
foregoing are consolidated: the larger part of the total LPF variability is being explained by the parameters in Z1.

It should be emphasized that despite their universality Sobol indices have to carry the burden of computational
inefficiency: determining all indices requires 2d � 1, calculating the main effects of all variables 2dþ 1 Monte Carlo studies of
size n each. In the context of very time-consuming models the applicability of this approach hence is limited to the validation
of inexpensive sensitivity analysis results as sketched above.
7. Summary and conclusions

Starting from a research project in aerospace engineering one of whose goals was to determine the sensitivity of the buck-
ling load of the frontskirt of the ARIANE 5 launcher with respect to certain input parameters, we explored various methods
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from probability and imprecise probability theory. In view of the excessive computational costs of a single run of the finite
element program, the major challenge was to develop methods with as few calls of the program as possible. We used a sim-
plified model of the launcher for the numerical tests of the methods.

The methods under scrutiny were random sets and Tchebycheff’s inequality, fuzzy sets and Hartley-like measures, inter-
vals and sampling from a Cauchy distribution, standard Monte Carlo simulation and resampling. Criteria for the evaluation
are

– computational effort;
– applicability to large scale problems;
– accuracy;
– avoidance of tacit assumptions;
– reliability and clarity of interpretation;
– possibility of analyzing correlated input.

Generally speaking, the Monte Carlo simulation methods are computationally least expensive. For our sensitivity study, a
sample size of n ¼ 100 appeared sufficient. In addition – as is well known – the sample size can be chosen independently of
the number of input variables, so that we could include all 17 variables in our study. These methods are clearly applicable to
large scale problems. A disadvantage is that pinching of variables requires repetition of the n ¼ 100 simulations. Thus com-
puting PRCCs plus resampling is possible irrespective of the problem scale, but variance decomposition by pinching variables
is not. The same applies to analyzing sensitivity with respect to input correlations, which requires repetition of the simula-
tion as well. Sobol indices constitute a well-founded method of estimating the contribution of each input variable to the total
output variation. However, the computational effort increases dramatically with the number of indices one wishes to calcu-
late. Thus in the context of time-consuming computational models the applicability of this approach is limited to studying
the influence of a small number of grouped variables.

The numerical accuracy of the Monte Carlo simulation is well known to be of order 1=
ffiffiffi
n
p

times the standard deviation of
the simulated variable. In view of the coefficients of variation which were in the range of 10% this appeared sufficient for the
sensitivity study.

We emphasize that the results of a Monte Carlo simulation are amenable to resampling, which introduces little additional
computational effort (no further evaluations of the costly input–output map are needed). In this way, bootstrap confidence
intervals can be obtained that may serve as statistical estimates of the accuracy of the results. For example, we estimated the
bias of each partial rank correlation coefficient, that is, the absolute value of the difference of the mean of the resampled data
and the initial estimate. The estimated bias resulted to be less than 2% of the initial estimate. Further, the significance of the
resulting ranking of the influence of the respective input parameters can be assessed by comparing the bootstrap confidence
intervals.

The Cauchy method is a simulation method for estimating the spread of the output interval. The resulting estimate is non-
parametric in as much as only the spreads of the input variables enter. As a subcase of Monte Carlo simulation, everything
that has been said above applies here as well. A possibly problematic point is that the method is derived under the assump-
tion that the output function is approximately linear. In our case, the output function is substantially nonlinear. The accuracy
can be improved by the suggestion of [21] of repeated bisection of the input interval or by the quadratic approach proposed
in [22], though at an increase in computational cost.

Both in the fuzzy set and random set methods, the output a-level sets and focal sets, respectively, are computed by
searching for the maximum and minimum of the corresponding output range. Sufficient accuracy can only be obtained
by a larger number of calls of the output function, evaluated on a grid of input data. In addition, the grid size increases expo-
nentially with the number of input variables. These methods appear feasible only in the case of medium size problems and a
small number of input variables. Monotonicity or partial monotonicity of the output function increases accuracy and helps
reducing the number of computations required. We note that simulation methods for computing upper and lower probabil-
ities have also been put forth in the literature, e.g. in [1,10]; but were not pursued in this study.

Test runs with additional point evaluations showed that the numerical error of the interpolation (i.e. replacing the true
output function by a piecewise bilinear response surface) was less than 1%, thus definitely satisfactory. However, the opti-
mization error introduced when calculating the boundaries of the output level sets turned out to be about �0:02 in absolute
value, which is around 10–20% of the spread of the base level (see end of Section 3).

The numerical error in the boundaries of the output level sets appears less influential in the random set method. This is
due to a certain averaging effect. Indeed, in the fuzzy model the computation of ‘ output level sets corresponds to ‘ input
level sets, whereas in the random set model – at least when using random set independence – a combination of ‘d input focal
sets enters (d the number of variables).

Both methods are essentially non-parametric. The random set model we used is generated by Tchebycheff’s inequality
and hence non-parametric by definition. In the fuzzy set model, we used triangular fuzzy numbers as input. These can be
seen as a collection of intervals of linearly changing length. The a-level sets resulting from the computation determine
the output range when the input varies over d-dimensional intervals of length proportional to 1� a.

The fuzzy model in combination with the response surface technique has an additional advantage: it allows the a poste-
riori introduction of interactivity between the input variables without the need for new calls of the output function. The
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effect of interactive input can simply be evaluated by interpolation in the response surface. Interactivity has been modelled
by distorting the joint a-level sets – this led to a visible change in the sensitivities. In contrast – in the random set model –
keeping the joint focal sets and introducing dependence of the input variables by means of copulas on the underlying prob-
ability space showed little effect on the sensitivity of the output.

We finally comment on the practicality of upscaling to the full problem. This remains a major challenge. The computa-
tional structure of the given problem consists in a nonlinear, incremental procedure. The LPF is obtained as the ultimate
load value beyond which the computed solution cannot be prolonged. This may be either due to a bifurcation point or
to a breakdown of the structure. As noted in the introduction, this was not distinguished in the simplified model; in the
full model, a path following procedure is put in effect at bifurcation points so that the ultimate load value would correspond
to material breakdown. In order to arrive at a sensitivity analysis of the full model, we plan to pursue two strategies. One
strategy is a perturbation method that replaces the full model by a quadratic approximation when a bifurcation point is
reached. This is based on Koiter’s asymptotic analysis of post-buckling of shells, see e.g. [20]. The sensitivity analysis would
be done with the asymptotic model in place of the full model. The second strategy is to start the sensitivity analysis at a
later stage of the iterative procedure. Both methods require to access the finite element code at a deeper level. A certain
difficulty which we expect to encounter stems from the fact that the incremental procedure is path dependent. Thus vary-
ing the input parameters late in the process could be misleading, as initial variations might result in a quite different path to
breakdown.
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