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Abstract

Let (X, u) be a measurable topological space. Let Sy, Sy, ... be a family of finite subsets of
X. Suppose each xeS; has a weight w; e R" assigned to it. We say {S;} is {w;}-distributed
with respect to the measure u if for any continuous function f on X, we have

. s Win S (x
llmiaoozzs = fX

Let S(NV,k) be the space of modular cusp forms over I'g(N) of weight k£ and let
&(N,k)=S(N, k) be a basis which consists of Hecke eigenforms. Let a,(h) be the rth Fourier
coefficient of /. Let x be the eigenvalue of / relative to the normalized Hecke operator 7. Let
|| - || be the Petersson norm on S(N k) In this paper we will show that for any even 1nteger
k=3, {xh:he &(N,k)},ptN is {ellle™

Sato—Tate measure when N — o0.
© 2003 Elsevier Inc. All rights reserved.

i hH‘ } distributed with respect to a polynomial times the

1. Introduction

Let S(V, k) be the space of modular cusp forms on I'g(N) of weight k& and for
Pt N, let T, be the Hecke operator on S(N, k) as defined in [Se2]. We shall consider

T, = p*=V/2T,. Denote the eigenvalue of a Hecke eigenform / relative to T}, by x.
The Ramanujan—Petersson conjecture (Deligne’s Theorem) asserts that |x;§| <2 for
(p,N) =1. Furthermore, it is conjectured that the set {x:(p,N)=1}
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equidistributed with respect to the Sato—Tate measure (refer to [Sel, Chapter 1])

di, (x) = {% 1 —%dx when xe[-2,2],

(=)

otherwise.

Let &(N,k) be a basis of S(N,k) consisting of Hecke eigenforms. Serre [Se2]
considered the distribution of {xg the&(N,k)} for fixed p. He used the Selberg trace
formula for the Hecke operators and showed that when N — oo, the set {xﬁ} is
equidistributed as

p+1

dp,(x) = DT

d:uoc(x)' (1)

In this paper, we established a weighted distribution for {xz :he&(N,k)} for fixed p.

Let (X, 1) be a measurable topological space. Let Si, .55, ..., S;, ... be a family of
finite subsets of X. Suppose each x€.S; has a weight w;, e R™ assigned to it. Let 6, be
the Dirac measure at x. Define

er Si Wf—"é-’(

du; = .
' ExeSiwix

We say {S;} is {w;}-distributed with respect to measure du if

ZreS WixOsx

lim dy, = lim S2257F
i— 0 i— o0 Z‘(ES“}D"

This means for any continuous function f on X, we have

lim | f() di(x) = Jim S5 Lresic/ () / %) du(x

— 0 el
i i— w0 xeSW“‘

When w; , = 1, the definition is the same as the definition of equidistribution given
in [Se2, Section 1].

In this paper, we will use Kuznietsov trace formula to obtain a certain weighted
distributions.

Suppose he S(N, k) is a Hecke eigenform with Fourier expansion

o0
= E a,e”™ Rez>0.
r=1

Write a.(h) = a,. Let || -|| be the Petersson norm on S(N,k) [Ge, p. 24 (2.6)].
We can assume k is even because S(N,k) is empty when k is odd. Define
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polynomials X, by

sin(n+ 1)¢
sing

Let r be a positive integer. Let p be a fixed prime. Let r, = ord, r. Then we have

X, (2cos @) =

Theorem 1.1. Let k be an even number >=3. Consider the family of sets Sy =

{(x ) he&(N,k)}, ptN with weight wj, = % assigned to xllj. Then the family

of sets {Sn : pt N} is {w} }-distributed with respect to

S Xa(x)du ()

0<i<r,
when N — c0.

The proof will be given at the end of this paper. A more general result is given in
Theorem 5.7.

Corollary 1.2. Let k, Sy, wj, be as above. If ptr, then the family of sets {Sy :ptN},
N — oo is {w} }-distributed with respect to the Sato—Tate measure.

Proof. If p}r, r, = ord, r = 0 and Xy(x) = 1. The corollary follows easily. [

The technique used here can be generalized to other groups (example
G = GSp(2k)), refer to [Li] for the generalizations.

2. Construction of test functions

Let G = GL,. The unipotent group is N = ( : T) cG. Write e = ( : 1 ) Let

Z be the center of G, let M be the diagonal subgroup of G. Denote U = U/Z for any
subset U of GL,. Define K., = { (%% "0} When p< o0, define K, = GLy(Z,).

sin 0 cos 0

Define Ky(N), = {(¢ }) €K, :c=0(mod N)}, Ko(N) =[], ., Ko(N),.

Let A be the adeles of Q. Let A, be the finite component of A.

Let L? be the Hilbert space of continuous functions ¢ on Z(A)G(Q)\G(A) such
that fz (A)G(Q)\G(A |(p( )|* dg< oo. The subset of cuspidal functions in L? is denoted
by L3. Let R be the right regular representation of G(A) on L?.

There is an embedding S(N, k) — L3 [Ge, p. 42]. The map is denoted by S
Denote the image of the map by A(N, k).

Suppose (w, V) is a representation of a measurable topological group G and f is a
continuous function on G. Define n(f)v = fG f(g)n(g)vdyg.
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We are going to construct a function /' = f,, fri, on G(A) = G(R) x G(Agy,). The
main property of this function is given in Proposition 2.1. The results quoted below
are well known.

The function f,, = fi is a function defined on GL,(R). It is the conjugate of a

normalized matrix coefficient. Explicitly it is defined by fi(g9) = dr, {7n(g)vo,vo)
where 7, is the discrete series representation of lowest weight k, vy is the lowest
weight unit vector and dy, is the formal degree. Explicitly we can take

fi(g) = { A (atd)+i(b—o)*
0 if det g<0.

% ifg_<a Z) and detg>0,
C

Refer to [Va, p. 192] or [KL] for the details.

Define Y(N) = [I’ 0(1) o(N )] We take meas(K,) = 1. One can easily show that
meas(Ko(N)) = g = ﬁ

If R be a ring, let M>(R) be all the 2 x 2 matrix over R. Now we define

M(n,N) = M Z, : det (g V% dc= dN) ;.
(n,N) { <c eEM, H , e enH and ¢ =0 (mo )}
Define

meas (Ko(N))

(9) %:w(N) if g=:zm,zeZ(Agn),meM(n,N),
g pry
0 otherwise.

Proposition 2.1. Suppose f = fi /", R(f) vanishes on A(N,k)*. On A(N,k) it acts by

R(f)pp= o ),

Proof. The idea of the proof can be found in [Ge, Lemma 3.7] and also [Ro, Lemma
2.12]. A complete proof can be found in [KL]. O

Corollary 2.2. Let he (N, k), f = fi f" then

R @h = n (H A/np /1 )
pln

Proof. Recall that n =[] p". We have T, =[], T, . By Serre [Se2, Sections 2 and
3, Lemma 1], T p’n,, :an(T[’)). The corollary follows easily from the previous
proposition. [
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3. Kuznietsov trace formula

Let f be a continuous function on G(A). The kernel of R(f) is defined as
= > Sl (3)
7€G(Q)

Another way to express the kernel is

K(x,p) =Y R(f)$(x)
¢

»)-

—

Here ¢ runs through an orthonormal basis of 2. When f = fif", R(f) annihilates
A(N, k)™ . We can sum over an orthonormal basis of 4(N, k). An orthonormal basis
can be taken as {fL5 () he&(N,k)}. It is easy to show that

o R(/)o4(x) 2, 00)
Kl MZN,,C) Toall Noall )

Use 6 to denote a character on Q\A. We can decompose 6 into 6, 0g,. Here 6
(resp. Og,) is the infinite (resp. finite) component of 6. There exists reQ, such that
0., (x) = e*™>* We assume reZ' throughout the whole paper. Under this
assumption g, is trivial on Hp Z,. The character 0 can also be regarded as a
character on N(Q)\N(A).

We factorize r into ] p'».

Normalize measure on Q, by taking meas(Z,) = 1. Define measure on A by using
the product measure. We can show that meas(Q\A) = 1. Measure on N(A) is defined
by identifying A with N(A).

From (3), the kernel K(x,y) is invariant under left multiplication of elements in
N(Q) x N(Q).

Kuznietsov trace formula is the equality obtained by expanding the following
integral using the two formulas (3) and (4)

KTF(f) = / / K(nl,nz)ﬂ(nflnz) dn, dns. (5)
N(Q)\N(A) JN(Q)\N(A)

The integral is convergent because Q\A is compact. The expression obtained
using formula (3) is called the geometric side. Using formula (4) we obtain the
spectral side.

Proposition 3.1. When f = fif", then KTF(f) is equal to

n'/? Z Han(xI}j) Wi,
he&(Nk) \ pln
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2 Ay
r_lar() e

h— 2
1 17|

Proof. Using (4) and Corollary 2.2

x,y) =n'/? X" M
K(x,y) he;(}:v’k) (H X, ( p)) i

pln

Thus the spectral side of (5) is

2

/ (ph(n)O(n’l)dn )
N(Q)\N(A)

he&(N k) \ pln

1
LD (H Xnﬂ(xg)) TP
From [Ge, Chapter 3, Lemma 3.6],

/ P(m)0(n") dn =
N(Q)\N(A)

The proposition follows easily. [J

{ ae ™ if reZ™,
0 otherwise.

Let 6 G. We define

Ns = {(m,m)eN x N:n(15n2~5};

here g;~g¢g, if gy =zg, for some z in the center. Denote the image of J in

N(Q)\G(Q)/N(Q) by [d].

Proposition 3.2.

KTE(f) =
[6]eN(

f(nf15n2)0(nf1n2) dny dns.

Q)\ZG:(—Q)/N /Né(Q)\N(A)XN(A)

Q)

Proof. The geometric side of KTF(f)

:/ / > [y yny)0(ny my) dny dny
N(Q)\N(A) JNQ)\N(A) =

7€G(Q)
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- 2 / / S Sy ym)0(ny ny) dny dny.
5 N(Q)\N(A) JN(Q)\N(A)

7€N(Q)SN(Q)

- Z/ / Z £ (ny'my 0many)0(ny " ny) dny dns.

(m1,m2) € N5 (Q)\W(Q)xN(Q)

Replace n; by m(lnl, ny by my'ny. Since 0 is trivial on m;,mye N(Q), KTF(f) is

equal to
NG(Q)

[6]e N(Q)\G(Q)/N(Q) /]Va(Q)\N(A) xN(A)

f(ny'6m2)0(ny " ny) dny dn. 0

Denote

Ii(f) = / f(nflénz)ﬁ(nflm) dny dns.
N5(Q)\N(A)xN(A)

An element 6 € G(Q) is said to be admissible if the map
N;(A)—-C :(nl,n2)|—>0(nfln2)
is trivial.
Lemma 3.3. If 0 is not admissible, then I5(f) = 0.

Proof. Assume that § is not admissible. Let (vi,vy)e Ns(A) such that O(vi'vy)#1.
Replace ny,ny by ving, vany, respectively.

Ii(f) = / f(nflvfl5vzn2)0(n1’1v]’1vzn2) dny dns.
(Q)\N(A)xN(A)

Thusl(;(f) 0( 2 Vz) Is = 1I; =0. O

Theorem 3.4.
- -1
KTF(f) - [V(A)f(n dl’l + ZueQ / N(A) / n] 1 0 n2)0(n1 n2) dl’ll dnz.

Proof. By the Bruhat decomposition G = NM uUNM (0 1)N Thus a representative

set of N(Q\G(Q)/N(Q)is {(; ) :7eQ }u{(Y #): neQ*}. From Theorem 3.2, the
geometric side = ;) I;. By Lemma 3.3, I;(f) = 0 unless é is admissible.

When 6 = (j 1), simple calculation shows that Ns = {((1 71)[>7 <1 i)) }

If 6 is admissible, we have 0((y — 1)7) = 1 for any 1€ A. Because 0 is non-trivial, this
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cannot happen unless y = 1. Thus

1 0
Ie(f) = / f(”ll_l ( )712)0(”1_1112) dn; dny
Ns(Q)\N(A)xN(A) 0 1

— / f(nl’lnz)ﬁ(nl’lng) dn, dn; .
diagonal\N(A)xN(A)

Letting m; = ny,m; = nl‘lnz, the diagonal becomes (m1;,¢). The integral becomes

/ 1 (m2)0ms) dimy dimy = / £ (m2)0ma)dimy.
N(Q)xe\N(A)xN(A) N(A)

When &= () ), simple calculation shows that Ny(Q) = {(e,e)}. Thus § is
admissible. We have

i 0
I;(f) = /N<A)XN(A)/( 1—1(1 g>”2>0(”1_1”2)dn1 dns.

We can prove the theorem by summing up all the terms. O

4. Evaluation of Integrals

Lemma 4.1. For ueQ, Og,(u) = 0., (—u) = e~ 2™
Proof. We have 1 = 0(u) = 0 (u)0gn(u). The lemma follows easily. [

The following lemmas show us how to evaluate f”. Suppose R is a ring, we denote
R? = {x’:xeR"}.

Lemma 4.2. Suppose g = (“ Z) € G(Ann) and det (g)en [] Z;. Then ge supp f" if and
only if ge M>(I]Z,) and ¢ = 0mod N.

Proof. Write g =zm, z = (C C) €Z(Afin), me M(n,N). Taking the determinant

on both sides, we see that { is in [[Z,. Thus z can be absorbed into m, so

geM(n,N). It is easy to see that ge M (n, N) if and only if g satisfies the conditions in
the lemma. [

Lemma 4.3. Suppose g= (“ ’)eG(An), then g is in suppf" only if detge

nAR2 11 A
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Under this assumption, say det g = n{*u for (e A}, ue [] Z, Letz= <é C) . Let

m=zlg= (;Z;: Z;j) Then ge suppf” if and only if me M>(][Z,) and my =
Omod N.

Proof. If g is in supp /", then g = zm with z = (é €> €Z(Agn) and me M(n, N).
Thus detg = CzdetmenA;‘-l%1 I1 Z,. This proves the first part.
Suppose detg = nl’u as stated in the lemma. Let z = (C €>. Obviously

ge supp /" if and only if z~'ge suppf™. One can easily show that detz"'g=
nuen[]Z,. The lemma follows easily from the above lemma. [

From now on we call the z = (C ) appearing in the previous lemma a

¢
z-part of g.
Define

1 if statement is true,
True(statement) = 0 otherwi
otherwise.

Proposition 4.4.

fn (nﬁn ) Gfm (nﬁn) dnﬁn
N(Agin)

= Y(N)n'? True(n'/>eZ and n'/?|r). (6)

Proof. Write ng, = ((1) {) Its determinant is 1. From Lemma 4.3, ng, € supp f” only
if lenQ;2Z; for all primes p. Thus 7, is even for all p. As a result ne + Q*2. We can
assume 7 is positive. Write n = n’>, n' e Z™".

/ -1 YA
Now a z-part of ng, can be z = (’(’) 3,) .Letm = z""ng, = (’6 ’;,’). The lower left

entry of m is 0, which is divisible by N. By Lemma 4.3, ng, is in supp /™ if and only if
(}g 71/[) e M»([[Z,). Or equivalently

! =nte]] 2z,

Thus (6) is equal to
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Because Oy, is trivial on [[Z,, integral (6) is equal to

/
v S [ (5 ar
seZ/n'Z S*"’HZN n

= y(N)n' Z e(—%)meas(s-knlnzp):'//(]v) Z e(%).

seZ/n'L seZ/n'Z
The result follows easily. [

Next, we evaluate

(0 nu _
/ fn (I’ll ! ( )n2> Qﬁn (I’ll I)inn(nz) dl’ll dnz. (7)
Aﬁ|1><Aﬁn 1 0

Define

Klu(n,0,) = 3 0., (s_l)ew (S—z)

S1,82 € ZJuZ,s15:=n (mod u) u u
Proposition 4.5. Integral (7) #0 only if u= + for some integer u =0 (mod N).
Under this assumption, integral (7) is equal to y(N) KL, (Fn,0).

Proof. Let n; — (1 ”'), i=1,2.

(0 u -t u—1tiH
”‘1(1 0)"2:<1 fz ) ®)

Notice det (n!(} #)ny) = —p. From Lemma 4.3, (8) € supp /" only if,uenQ;zZ; for

all p. Thus we have ord,(u) = n, (mod 2) for all p. As a result ue +nQ”. Let u =
+n{® for some (€Q*. We can take z = <§ C) as the z-part. Write m =

i (O Bny = (gi‘l i) By Lemma 4.3, (8) is in suppf” only if ("' € Z, for all p.

Hence { = 1/u for some ueZ". Let u = +, uel.

B —ut inf(uutl)(utz)
m = .
u uty

Write #; = ut), ¢, = ut;. By Lemma 4.3 again, (8) is in supp /" if and only if

f,the H Z,,u=0(modN),# 1, = £n(mod u).
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Integral (7) becomes

—t -t
/ fn(( 11 ' 112)>0ﬁn(_t1)6ﬁn(t2)dl1 dt>
1, p)
fn(_t/l *)0 < )0 ( )d /d
tte ]zt thetntu]] Z, u fin fin -
! £

= l,b(N) 5 / Bﬁn( >9ﬁn( 2)d 42 )

/0N PRSI s % p

51,5 € LJuZ,s)52

= Y(N) Z 9%(“2)0 ( )meas(HZ)

51,5 € LJul. s\ 50==+n

= Y(N) 3 Qw(%)9w<%)::w(N)Kh($n,&D) 0

s1,92€Z/uZ,s155=Fn

Proposition 4.6. When k=3,

ST i r>0
/ filn dn—{ ) ’ (9)

0 otherwise.

Proof. Write n = (1 ! ) By (2), the integral in (9) is equal to

1
k—1 [ 2k .
/ ke2mrt dt.
4n -0 (2 + il)

When r> 0, use the x-axis and the upper semi-circle as the contour. We can get the
result easily by evaluating the residue of the integrand at ¢ = 2i.

When r<0, use the x-axis and the lower semi-circle as the contour. The result
follows easily. [

Proposition 4.7. When k=3,

0
/ Jr (nll( #>n2>93¢(n11n2)dn1 dn; (10)
N(R)XN(R) 1 0

is non-zero only if r,—u are all positive. Under this condition, the integral is equal to

—4mr TE'k -1 1
D (i

here Jy. is the Bessel J function.
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Proof. When p>0, det <n11 <1 'u)nz) = —p<0. The value of f; at it is 0. So we
can assume u<0. Write n; = <1 tf), i=1,2. By (2), (10)=

)k/zeZHir(tzftl )

% dtdt,.
t1+t2+ i(—14+upu—nt))
First assume r> 0, evaluate the residue of the integrand at t, = { +15 17 (10) becomes
n
k—1 /oc i 2k(—,u)k/2(2mr)k 1 27111(1 i tl)dl
1-
4 J_ (l—ill)k (k—=1)!
Use x-axis and lower semi-circle as the contour, the integral can be calculated by
evaluating the residue of the integrand at ¢ = —i. Notice that the path is

counterclockwise.
Refer to [Wa, Chapter 2.1], we have

1., 1 o
260 — Z T (8).

— o0

Let ¢ = 4nr,/—pn, 1 = —it; + i/\/—p be the residue theorem, (10) becomes
GO

g
(—w) 2

_ - k(_,\k/2 n'rk_l

We can get the result easily.
When r<0, use the axis and upper semi-circle as the contour. It is easy to show
that (10)is 0. [

Theorem 4.8. Let k be an even number =3. Let n,N,r be any positive integers.
Factorize n into [ ], p". Assume GCD(N,n) = 1. Define 0, (x) = &> then we have

|l e
2 (L) )

he&(N,k) \ pln
e 4nr)k‘1
— True(n'?eZ ' (4nr)” 11
rue(n' 2, 3lr) U N) (1)
7471;(47.”)/» fe— 1 4mnl /2y
S — Kl (1,0,). 12
+ 20k = z::N ( U) n(n ) (12)

Proof. The spectral side is obtained by Proposition 3.1.
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The geometric side is obtained by Theorem 3.4. The integral I(f) is the
product of (6) and (9). Using the results in Proposition 4.6 and Corollary 4.4, we
can get L(f).

Let § = (Y #). Then I;(f) is product of (7) and (10). By Proposition 4.5 (7)#0
only if 4 = £ and N|u. Write u = Nv. By Proposition 4.7, (10) #0 only if u<0. Thus

0 =4
S5 Is(f) is a sum over {5 = (1 E)N”) ) :veZ+}.

Multiply the results we obtained in Propositions 4.5 and 4.7. Summing up all the
terms in the geometric side. We can obtain the formula by equating the spectral side
and geometric side and then dividing both sides by n'/2. O

5. Weighted distribution

Lemma 5.1.
K1, (n,0,)|<un

Proof. Obviously |Kl,(n, 0. )|<[{s1s2 =n (modu)}|. It suffices to prove |[{s;s, =
n(mod u)}|<un for u = p"* and n = p™.

If n,>uy,, |{s152 = n (mod u)}|<u’ <un.

Assume n, <u,.

[{s152 = n (mod u)}| = Z|{z st =n (mod u)}|

u np
= Z ged (s, u) Z p7 - |{s: ord,(s) = s,, 1 <s<u}|
s=1,gcd(s,u)|n Sp=
ny
Z pr—<(n, + 1)p" <nu O

Spf

From [Iw, equation (5.16)],

Jie(x) <min{x*, x71/2}.

Proposition 5.2. Let k be an even integer =3, then

AN | R

( )heoﬁ(N,k) pln



190 C.C. Li | Journal of Number Theory 104 (2004) 177-192

—4nr k—1 (k+1)/2
_ 1/2 12,3 € (4mr) n
= True(n'?eZ,n'?|r) T2 —|—0( T )

Here the constant in the O-notation depends on 0 only.

Proof. Form the inequalities given above, (12) is

—dar (4 pk—1 © 172, k-1
e () v

v=1

Mn(kﬂ)/z 3 1 Y(N) QUHD/2

< — <
" Nk—-1 k-1 " Nk-1

v
The proposition follows easily from Theorem 4.8. [

Corollary 5.3. The average of weight

Proof. Put n =1 in the above proposition. [

Let pi,p2, ...ps be distinct primes. For any prime p, let I, be an interval in R
containing all the possible values of xﬁ for any Hecke eigenform /4. By Deligne’s
result, we can take [, = [-2,2], but we do not need this strong result. We only
need the fact that /, is a finite interval. Refer to [Ro, Proposition 2.9] for the proof of

this fact.

Denote the set of real valued continuous functions on / = I, x I,, X ---
C(Iy, x I, x --- x I,). Define a topological structure on it by using the L* norm
Il /1], =max{|f(x)|}. Let k be an even integer >3, define a functional &, on

C(Ly, x Iy, x -+ x I,,) by

8’ f . Zheg(N,k)f(xﬁlv ---vxl,j,)WZ
N D he SNV
Proposition 5.4.
/
lim | ‘Zs-NXnm X oo X Xy, = H True(2|ny,, ny, /2 <1p,)
i=1

N— o0, (Npi,....pr)=



C.C. Li | Journal of Number Theory 104 (2004) 177-192 191

Proof. Let n=p|" ---p/”. From Corollaries 5.2 and 5.3,

—4r (4r)*! (+1)/2
Hl 1 True(2|ny,, np, /2<rp,/ (k( 2)>! + O(nNH )

4 Q)
(L‘FO(NA 1)

Snf =

Letting N — o0, the proposition follows easily. [

Proposition 5.5.

/R X (X) Xon (x) dpt o (X) = Om-
Proof. A proof can be found in [Se2, Section 2.2].

s, = / 51.n no sinzesu,l mo d0.
0

Q

2 sin 0 sin 0

Recall X, (x) =020 x — 2 cos . Make a substitution x = 2 cos 0, we have

sin 0
smé)
nm—/ X 3 —dx.

The proposition follows easily. [

Theorem 5.6. Define measure

dpy() = Y Xow(x) dus, (). (13)

o<’ <ry,

Also define

f)z‘/l f(xh...X{)d,ul(xl)"'d,u/(x/)'

Pl 117/

Then for any f € C(I,, x I,--- x I,,),
Jim Fy(f) = F():

Proof. By the previous proposition

[ 60,30 i) = Tre(in /251y,
1/1
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Take the product over i = 1, .../ and by Proposition 5.4, we have

C5‘(Xnm X oee X an/) :Naoo,(}fi,zr}ll....,pz)zl CLVS‘N(anl X eee X X”m)'
One can easily show that |&,(f)|<||f]|,,- Thus &, is a continuous linear
functional. Because deg X, = n, the linear span of {X,} consists of all the one
variable polynomials. Thus the linear span of {X,, x --- x X, } consists of all the

possible polynomials. The theorem follows by the fact that polynomials are dense in
Clly, x Iy, x - x1,). O

Theorem 5.7. Let k be an even integer =3. Consider the family of sets Sy =
{(xz], ...,le) the&(N,k)}, (N,pi--—-ps)=1 with weight {w}} assigned to
(x;jl, ...,xﬁ/). Then the family of sets {Sy,pt N} is {w}}-distributed with respect to
the measure du, ---du, when N — co. Here y; is given by Eq. (13).

The measure u; has the following properties: (a) it is supported on [—2,2], (b) it is a
polynomial times the Sato—Tate measure on [—2,2], (c) it depends only on ord,(r).

Proof. Follows easily from the previous theorem. [

Proof of 1.1. Take / =1and p; =p. O
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