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Abstract
Molecular imaging has been advanced into the field of infectious diseases, which provides not only new insights for basic science, but also
new strategies for the effective management of infectious diseases in clinical practice.
© 2016 Beijing You’an Hospital affiliated to Capital Medical University. Production and hosting by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Infectious diseases, including bacterial, viral, fungal and
parasitic infections, remain an enormous public health prob-
lem in both the developing and the developed world. Pop-
ulations that are particularly vulnerable to infections are
children, the elderly people and immunocompromised pa-
tients. Despite the rapid advancement of in vitro laboratory
diagnostic tests, such as polymerase chain reaction (PCR) with
a high sensitivity and specificity in identifying infectious
pathogens, in vivo imaging technologies are being developed
at a slower pace. Among the currently available imaging
techniques, molecular imaging has shown the greatest poten-
tial, permitting not only the fast and accurate diagnosis of
infectious diseases, but also guidance and the monitoring of
successful treatment.

Molecular imaging is designed to detect pathophysiological
changes in living subjects at the molecular or cellular level. It
has become a new and exciting frontier in modern medical
imaging [1]. Several molecular imaging modalities have been
successfully explored and implemented in diagnosing and
treating various infectious diseases, which include magnetic
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resonance imaging (MRI), optical imaging, nuclear imaging,
and radiographic-based imaging [2]. Among these modalities,
MRI has several unique advantages: high-spatial resolution,
multiplanar image capability, and functional assessment, all
without the risk of ionizing radiation. A new member in the
molecular imaging family is optical imaging, which includes
fluorescent imaging and luminescent imaging. By detecting
fluorescent or luminescent light emission from targeted tis-
sues, optical imaging provides real-time and highly sensitive
observations of superficially-sited targets. An additional mo-
lecular imaging modality is positron emission tomography/
computed tomography (PET/CT). PET/CT constitutes a
hybrid imaging mode to detect both anatomic and metabolic
abnormalities with high specificity.

The essential elements of any infectious disease process are
the pathogen, the host, and the interaction between the two.
Control of an infectious disease would involve the following
three primary objectives: 1) to identify, localize and eliminate
infectious pathogens, including bacteria, viruses, fungi and
parasites; 2) to assess the host reaction to an infection (e.g.
local and systematic inflammatory changes, characterized by
proliferation and accumulation of inflammatory cells and cy-
tokines); and 3) to guide appropriate treatment strategies and
monitor efficacy of treatment. According to these objectives,
advances in molecular imaging for infectious diseases in the
past few years can be summarized into the following three
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areas: 1) visualization of pathogens (organisms) for accurate
diagnosis; 2) assessment of inflammation and tissue/organ
damage; and 3) monitoring effectiveness of therapy and
identifying complications secondary to an infection [3].

First, molecular imaging has been used to identify infec-
tious pathogens. A typical example is labeling Leishmania
infantum strains by fluorescence for optical imaging of
visceral leishmaniasis, which may provide a robust model for
better understanding of the pathogenesis of various infectious
diseases [4]. Similarly, the luciferase gene from a firefly can be
inserted into pathogenic stains, such as Borreliaburgdorferi
and Trypanosomacruzi, which thus serve as ideal tools for
basic science to investigate, in vivo, Lyme disease and Chagas
disease [5,6]. However, clinical translation of optical imaging
is restricted by difficulties in detecting pathogens in deep
tissues. An attempt to solve this problem is by the use of a
“red-shifted” luciferase to label different pathogenic strains.
This modified luciferase emits light of a longer wavelength
than standard bioluminescence-generating proteins, which can
not only transport excitation and emission light into and from
deep targets, but also reduce interference of auto-fluorescence
from targeted tissues and organs of infections [7]. Similar to
optical imaging, labeling of the influenza A/Udorn/307/1972
virus (H3N2) with the MRI agent, 5-fluorotryptophan, dem-
onstrates the feasibility of using (19F) MRI to directly visu-
alize and quantify the helixehelix ED dimer interface of
NS1A protein in Influenza virus infection [8].

Second, bacterial infection can cause inflammation, tissue
damage, and ultimately disseminated septic shock [9].
Advanced technologies that enable the rapid detection and
localization of bacterial infections in living subjects can address
an unmet need for the diagnosis of certain infectious diseases
[10]. Identification of host-pathogen interactions provides a
great opportunity for the development of targeted molecular
imaging as well as targeted therapies [11e13]. An example of
this is the systemic administration of oligonucleotides that are
chemically modified to resist mammalian serum nuclease
digestion. The oligonucleotides are labeled with a fluorophore
and a quencher. Staphylococcus aureus nucleases can specif-
ically digest the oligonucleotides and thereby separate the flu-
orophore and quencher, which in turn generates fluorescent
signals at the infection site for optical imaging [10]. Another
example is to synthesize a dual-modality magneto-fluorescent
nanoparticle-based probe, by combining an ultra small super
paramagnetic iron oxide nanoparticle and Rhodamine B for
both MRI and optical imaging. This dual-imaging probe can be
used to specifically target monocyte-macrophages of myocar-
dial inflammation [14]. In addition, administration of a near-
infrared fluorescence (NIRF)-labeled anti-Siglec-F antibody
allows for non-invasive optical imaging of eosinophils, a
pathognomonic feature of parasitic infection [15].

Third, molecular imaging can be used to evaluate disease
progression and to monitor treatment. For example, MRI with
diffusion tensor imaging (DTI) has demonstrated the ability to
assess white matter deficits in patients with human immuno-
deficiency virus (HIV) infection [16]. Another example is using
optical imaging-based fluorescent angiography and spectral
optical coherence tomography (OCT) to monitor acute ocular
toxoplasmosis [17]. Furthermore, (18F)-Fluorodeoxyglucose
(FDG)-PET/CT has be recognized as a powerful tool in i)
assessing the metabolic response to treatment in malignancies
relating to viral infections, such as locally advanced cervical
cancer due to high risk human papilloma virus (HPV) infection
[18]; ii) detecting infections of central nervous system [19] and
vascular prosthetic grafts [20]; and iii)evaluating drug efficacy
in patients with tuberculosis [21,22].

Although still in its developmental phase, the clinical
implementation of molecular imaging should focus on the
three primary targets of infectious diseases: infectious patho-
gens, pathophysiological changes caused by infection, and the
response to treatment of infection. While labeling various
pathogen strains with different imaging dyes permits better
understanding of the pathogenesis of various infectious dis-
eases, further development of targeted and multi-modality
imaging probes will allow for in vivo detection of pathogens,
as well as evaluation of disease progression and therapeutic
responses.

Overall, molecular imaging is becoming an exciting tool in
infectious diseases, not only providing new insights for basic
science, but also new strategies for the effective management
of infectious diseases in clinical practice.
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