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Abstract

We investigate the effects of Lifshitz dynamical critical exponent z on a family of minimal D = 4 + 1
holographic superconducting models, with a particular focus on magnetic phenomena. We see that it is 
possible to have a consistent Ginzburg–Landau approach to holographic superconductivity in a Lifshitz 
background. By following this phenomenological approach we are able to compute a wide array of physical 
quantities. We also calculate the Ginzburg–Landau parameter for different condensates, and conclude that in 
systems with higher dynamical critical exponent, vortex formation is more strongly unfavored energetically 
and exhibits a stronger Type I behavior. Finally, following the perturbative approach proposed by Maeda, 
Natsuume and Okamura, we calculate the critical magnetic field of our models for different values of z.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The AdS/CFT correspondence [1] is one of the most important developments in theoretical 
physics in recent years. Because of the very nature of the duality, it also provides a promising 
new way of studying gauge theories in the strongly-coupled regime, where the usual perturbative 
methods fail to apply. The gauge/gravity duality has been used to gain insight in a wide vari-
ety of physical systems, such as the quark–gluon plasma or in condensed matter theory. In this 
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last category, the gauge/gravity duality has been fruitfully applied in the study of high-Tc super-
conductivity, where the usual BCS model of Cooper-pair creation ceases to be valid due to the 
strong interactions between the system’s components. Because of these non-trivial interactions, 
holographic methods are hoped to shed some light in the understanding of these systems. This 
area of study, known as holographic superconductivity, is currently an exciting and very active 
area of research. (For some reviews, see, e.g. [2–6].)

In very general terms, the usual models of holographic superconductivity are built around a 
local gauge group symmetry breaking by one of the component fields in the gravity side, where 
the gravitational solution is an asymptotically AdS charged black hole. This symmetry break-
ing in the gravity side signals the beginning of a superconducting phase in the dual field theory. 
(See, e.g. [7,8].) It has been found, however, that in some condensed matter systems phase transi-
tions are governed by Lifshitz-like fixed points. These exhibit the particular anisotropic spacetime 
scaling symmetry

t → λzt , x → λx , (1.1)

where z is the Lifshitz dynamical critical exponent governing the degree of anisotropy. This 
anisotropy breaks Lorentz invariance and the systems are non-relativistic in nature. Therefore, 
in order to study such field theories holographically, the dual gravitational description has to be 
modified. Indeed, it was found in [9] that these Lifshitz-like fixed points can be described by the 
gravitational dual

ds2 = L2

(
−r2zdt2 + r2dr2 + r2

d∑
i=1

d �x2

)
, (1.2)

which, for z = 1 reduces back to the usual AdSd+2 metric, but for z �= 1 satisfies the anisotropic 
scaling (1.1). A black hole generalization of this metric was found in [10].

The purpose of this communication is to explore various aspects of holographic supercon-
ductivity with Lifshitz-like fixed points, with a particular focus on magnetic phenomena. We 
do this by starting from a minimal bulk model and by studying various choices of condensates. 
More concretely, we want to investigate how the dynamical critical exponent z affects our sys-
tem with respect to its behavior in the isotropic z = 1 case. Most of the existing research on 
the subject was realized in D = 4. See, for instance [11–15]. In [16], the authors do make an 
interesting treatment of the D = 5 case, but have their interest put mainly on studying different 
kinds of superconductors (s-wave, p-wave, soliton) and on the computation of condensation and 
conductivity. Regarding the study of magnetic effects in a Lifshitz background, we note in par-
ticular [17,18]. In the first reference the authors also treat the D = 5 case, but using a different 
condensate as the ones we will propose, and with a focus on the applicability of the matching 
method.

Although we will initially consider our minimal model in general dimensions, we will focus 
our attention on the D = 5 case. The reason for this choice of dimension is that, as noted in 
[19,20], dimensionality plays an important role in the way external magnetic fields act in the 
dual superconducting system. The standard argument is that in a 2 + 1 (D = 4) dimensional 
superconductor an external 3 + 1 dimensional magnetic field will always penetrate the material 
because the energy needed to expel the field scales as the volume, while the energy that the 
system gains from being in a superconducting state scales as the area. This results in the system 
being a Type II superconductor. In the case of a 3 +1 (D = 5) dimensional system such as the one 
we study, both energies scale as the volume and one has therefore a direct competition that does 
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not exclude the possibility of obtaining a Type I superconductor. Also, while high-Tc samples 
are typically composed of 2-dimensional CuO2 layers (cuprate superconductors), it is important 
to examine the effect of thickness when the system is probed by external magnetic fields.

In this respect, in this paper we see that it is possible to have a consistent Ginzburg–Landau 
phenomenological approach to holographic superconductivity [20] in a Lifshitz background. We 
then apply this Ginzburg–Landau approach to compute, among other physical quantities, the 
Ginzburg–Landau parameter of the system, and to see how it is affected by the dynamical critical 
exponent z. We will also study the effect of an external magnetic field acting directly on the 
system, using the approach proposed in [21]. In order to have a more complete study of the 
system’s properties, we managed to study a wide array of condensation cases, always within the 
D = 5 framework, so that the general tendencies in the behavior of physical quantities become 
more clear.

The article is organized as follows. In Section 2 we describe our minimal model of D = 5
holographic superconductivity with Lifshitz dynamical scaling and present the different cases of 
condensates we will consider. In Section 3, we study small fluctuations around the component 
fields of our model. From these fluctuations we are able to compute the penetration and correla-
tion lengths of the superconductor for our different cases. In Section 4 we show that the system 
can be consistently described in a phenomenological Ginzburg–Landau approach. We compute 
the Ginzburg–Landau parameter κ for the different cases in our model. In Section 5, we compute 
the critical magnetic field Bc of the superconductor. Finally, in Section 6 we summarize the main 
results and discuss some open problems.

2. Minimal holographic superconductor in D = d + 2 Lifshitz background

2.1. General setup

As mentioned in the Introduction, the D = d + 2 gravitational dual (1.2) can be generalized 
to a black hole solution [10]

ds2 = L2

(
−r2zf (r)dt2 + dr2

r2f (r)
+ r2

d∑
i=1

dx2
i

)
, (2.1)

where

f (r) = 1 − rz+d
h

rz+d
, (2.2)

and where rh is the horizon of the black hole. The Lifshitz dynamical critical exponent can take 
values 1 ≤ z ≤ d . The gravitational solution (2.1) can be obtained from the action [22]

S = 1

16π Gd+1

∫
dd+2x

√
g

(
R + � − 1

2
(∂ϕ)2 − 1

4
eλϕF2

)
, (2.3)

with the action-extremizing solution for the fields

Frt = qe−λϕ , eλϕ = rλ
√

2(z−1)d ,

λ2 = 2d

z − 1
, q2 = 2L2(z − 1)(z + d) ,

� = − (z + d − 1)(z + d)
. (2.4)
2L2
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For the remaining of the paper we will set L2 = 1. We will also prefer to work with the coordinate 
u = rh/r . This change of coordinates gives

ds2 = − r2z
h f (u)

u2z
dt2 + 1

u2f (u)
du2 + r2

h

u2

d∑
i=1

dx2
i , (2.5)

where

f (u) = 1 − uz+d , (2.6)

and the Hawking temperature is

TH = (z + d)

4π
rz
h . (2.7)

It is therefore the actions (2.3) that will provide us the gravitational Lifshitz background 
(2.5)–(2.6). We will now construct our minimal phenomenological model of holographic su-
perconductivity by adding to (2.3) the action term

Sm =
∫

dd+2x
√−g

(
−1

4
F 2 − |D�|2 − m2 |�|2

)
, (2.8)

where we have introduced a charged scalar field � and a U(1) gauge field Aμ, following [8], 
and where Fμν = ∂μAν − ∂νAμ, and Dμ = ∇μ − iAμ. We will assume that there is negligible
interaction with the gravitational background and therefore it remains fixed and given by the 
Lifshitz black hole solution (2.5)–(2.6). This lack of back reaction means we are effectively 
working in the probe limit (very large scalar field charge). As we will explain below, the scalar 
field mass will be set so as to get particular dimensions for the condensate under study.

The general equations of motion for these fields are

D2� = m2� , (2.9)

∇μFμν = J ν + |�|2 Aν , (2.10)

where

Jμ = i
(
�∗∇μ� − �∇μ�∗) . (2.11)

We propose the following ansatz for the component fields

�(u) = 1√
2
ψ(u) , A = φ(u)dt , (2.12)

where ψ(u) is a real function. Under this ansatz the equations of motion (2.9)–(2.10) become

ψ ′′ +
(

f ′

f
− d + z − 1

u

)
ψ ′ − 1

u2f

(
m2 − u2zφ2

r2z
h f

)
ψ = 0 , (2.13)

φ′′ − d − z − 1

u
φ′ − ψ2

u2f
φ = 0 . (2.14)

This system of equations admits the no-hair solution ψ(r) = 0. In this case the gauge field has 
solutions
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φ(u) = μ − ρ
ud−z

rd−z
h

, (z �= d) , (2.15)

φ(u) = μ − ρ log

(
ξrh

u

)
, (z = d) , (2.16)

where ξ is a constant. This no-hair solution will correspond to the normal phase of the supercon-
ductor. The superconducting phase will be given by solutions with ψ(u) �= 0. From the equations 
of motion (2.13)–(2.14) we see that the asymptotic u → 0 behavior of the fields is

ψ(u) ≈O−
u�−

r
�−
h

+O+
u�+

r
�+
h

+ · · · , (2.17)

and

φ(u) ≈ μ − ρ
ud−z

rd−z
h

+ · · · , (z �= d) , (2.18)

φ(u) ≈ μ − ρ log

(
ξrh

u

)
+ · · · , (z = d) , (2.19)

with

�± = 1

2

(
(z + d) ±

√
(z + d)2 + 4m2

)
, (2.20)

from where we get the BF-bound on the mass

m2 ≥ − (z + d)2

4
. (2.21)

According to the AdS/CFT dictionary, the asymptotic coefficient O+ corresponds to an op-
erator of dimension �+, while O− corresponds to a source in the boundary theory. Meanwhile, 
μ and ρ correspond to the chemical potential and the charge density of the dual field theory, 
respectively. In order to solve Eqs. (2.13)–(2.14) we will impose the regularity condition at the 
horizon φ(u = 1) = 0. Also, from Eq. (2.13) we obtain the additional condition at u = 1

ψ ′(1) = m2

f ′(1)
ψ(1) . (2.22)

Additionally, in order to simplify the numerical calculations, we will make use of the scaling 
symmetries

r → ar , t → 1

az
t , xi → 1

a
xi , g → a2g , φ → azφ . (2.23)

As explained in the Introduction, we will focus on the particular case D = 5. This means 
we will take d = 3. When looking for hairy solutions to the equations of motion one has two 
possible boundary conditions at u → 0. One can set O− = 0 (standard quantization condition), 
in which case one has the operator O+ (dimension �+) as the superconductor order parameter. 
Conversely, one can set the boundary condition O+ = 0 (alternative quantization condition), 
which results in the operator O− (dimension �−) being the superconductor order parameter. 
Having set either one of these boundary conditions, one can proceed to solve the equations of 
motion through the shooting method.



A. Dector / Nuclear Physics B 898 (2015) 132–156 137
2.2. Different cases of condensation

Going back to the allowed values for the dynamical critical exponent, we see that for the 
D = 5 case we can have 1 ≤ z ≤ 3. Throughout this paper, for both brevity and simplicity, we 
will choose to work with the integer values z = 1, 2. This suits perfectly our primary objective, 
stated in the Introduction, which is to have a general idea of how the dynamical critical exponent 
z affects our holographic superconductor with respect to its behavior in the usual (z = 1) isotropic 
realization of the gauge/gravity duality. As will be seen in the following, the general tendency 
in the behavior of the physical quantities of the system will be very clear when treating these 
values.

In order to have a more comprehensive study of the effect of the dynamical critical exponent 
z on our holographic superconductor, we will choose to work in the following cases:

• Case I. We set the value of the scalar field mass as

m2 = −3 z . (2.24)

In this way, we have

�− = z , �+ = 3 , (2.25)

so that the asymptotic behavior of the scalar field at u → 0 is

ψ(u) ≈Oz

uz

rz
h

+O3
u3

r3
h

+ · · · . (2.26)

In this case, we will set Oz = 0 for all values of z considered, so that the superconducting order 
parameter of the system will be given by O3 of dimension 3.1

• Case II. We set the scalar mass as

m2 = −(z + 2) . (2.27)

This choice of mass results in

�− = 1 , �+ = z + 2 , (2.28)

so that near u → 0 we have

ψ(u) ≈O1
u

rh
+Oz+2

uz+2

rz+2
h

+ · · · . (2.29)

Here we will choose to set Oz+2 = 0 and the order parameter of the superconductor will be given 
by O1 of dimension 1.

In Figs. 1–2 we show the value of the condensate O� as a function of temperature for each 
one of the cases described above. We notice that the near-Tc the condensate behaves as

O� ∼ (1 − T/Tc)
1/2 , (2.30)

1 The same condensate was used in [16], but magnetic properties were not studied in that paper.
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Value of the condensate O� as a function of temperature, for different cases.

Fig. 1. Case I.

Fig. 2. Case II.

Table 1
Value of critical temperature Tc , for different cases.

Tc/ρ
z/3 z = 1 z = 2

Case I 0.198 0.087
Case II 0.517 0.351

for all values of z. Therefore, the dynamical critical exponent does not alter the mean-field theory 
behavior of the order parameter. In Table 1 we show the value of the critical temperature Tc for 
our different cases. We notice that the value of the critical temperature decreases with z for all 
cases, and therefore a large dynamical critical exponent inhibits superconduction.
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3. Field fluctuations

3.1. Gauge field fluctuation

In this section we will add small fluctuations to the component fields of our model. As ex-
plained before, we will set d = 3. We begin by adding the following gauge field fluctuation

A = φ(u)dt + δAx(t, u, y)dx , (3.1)

where

δAx(t, u, y) = e−iωt+ikyAx(u) . (3.2)

The corresponding equation of motion for Ax(u) is, to linear order

A′′
x +

(
f ′

f
− d − z − 3

z

)
A′

x +
(

u2z−2ω2

r2z
h f 2

− k2

r2
hf

− ψ2

z2f

)
Ax = 0 . (3.3)

We will consider the case where ω and k are much smaller than the scale of the condensate (low-
frequency/small-momentum regime), so that quadratic terms in k, ω in (3.3) can be neglected. 
Demanding regularity at the horizon u = 1, from (3.3) we have the following conditions

Ax(1) = Ax0 , A′
x(1) = ψ2

0

f ′(1)
Ax0 , (3.4)

where φ′(1) ≡ ψ0. Since Eq. (3.3) is linear, we will set Ax0 = 1 without loss of generality.
From (3.3) we see that the asymptotic behavior of Ax at u → 0 is

Ax(u) ≈ A(0)
x + Jx

ud+z−2

rd+z−2
h

+ · · · (3.5)

According to the AdS/CFT dictionary, A(0)
x corresponds to a vector potential in the dual field 

theory, while Jx corresponds to its conjugate current [8]. We can relate both physical quantities 
through the London equation

Jx = − 1

ms
nsA

(0)
x , (3.6)

where ns is the superconducting carrier density number and ms is the superconductor carrier 
mass. For simplicity we define the quantity

ñs ≡ 1

ms

ns , (3.7)

which can be computed holographically from (3.5) and (3.6) as ñs = −Jx/A
(0)
x . In Figs. 3–4 we 

show the value of ñs as a function of temperature, for different cases. We find that ñs behaves 
near-Tc as

ñs ∼ (1 − T/Tc) . (3.8)

It is found numerically that the ratio of O2
�/ñs as a function of temperature behaves almost 

constantly and has a definite value at T = Tc that varies according to the value of z within a 
specific case of condensation. We define this ratio at Tc as
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Value of ñs as a function of temperature, for different cases.

Fig. 3. Case I.

Fig. 4. Case II.

Table 2
Value of Cz for different cases.

Cz/ρ
(2�−z−1)/3 z = 1 z = 2

Case I 8.272 2.068
Case II 0.297 0.032

O2
�

ñs

= Cz . (3.9)

We show in Table 2 how the constant Cz varies for different cases. In Fig. 5 we show this ratio 
as a function of temperature, for Case I, z = 1, and Case II, z = 1. We can observe that the ratio 
behaves almost like a constant with respect to T . The ratio (3.9) will be important in the next 
section, when we apply the Ginzburg–Landau interpretation to our system.
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Fig. 5. Value of the ratio O2
�/ñs as a function of temperature, for different cases.

3.2. Scalar field fluctuation

We now consider a small fluctuation to the scalar field of the form

� = 1√
2

(ψ(u) + δψ(u, y)) , (3.10)

with

δψ(u, y) = eikyη(u) . (3.11)

The corresponding equation of motion is

η′′ +
(

f ′

f
− (d + z − 1)

u

)
η′ − 1

u2f

(
m2 − u2zφ2

r2z
h f

+ u2

r2
h

k2

)
η = 0 , (3.12)

where we set d = 3. Demanding regularity at the horizon u = 1, from (3.12) we have the follow-
ing conditions

η(1) ≡ η0 , η′(1) = 1

f ′(1)

(
m2 + k2

r2
h

)
η0 , (3.13)

while at u → 0 we have the asymptotic behavior

η(u) ≈ (δO−)
u�−

r
�−
h

+ (δO+)
u�+

r
�+
h

+ · · · (3.14)

When solving equation (3.12) we set the same boundary conditions at u → 0 as for the field ψ . 
Since we will not be concerned about the normalization of η, we set η0 = 1.

Following [23], we can compute holographically the correlation length of the boundary oper-
ator by calculating the wave number k. Indeed, the correlation length ξ0 is the inverse of the pole 
of the correlation function of the order parameter written in Fourier space

〈O(k)O(−k)〉 ∼ 1

|k|2 + 1/ξ2
. (3.15)
0
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Value of the wave number k as a function of temperature, for different cases.

Fig. 6. Case I.

Fig. 7. Case II.

To obtain the wave number k, one must solve Eq. (3.12) as an eigenvalue problem consistent with 
the boundary conditions. This is done near the critical temperature. Once having computed k, one 
obtains the correlation length simply as

|ξ0| = 1

|k| . (3.16)

In Figs. 6–7 we show the value of k as a value of temperature for our different cases. Also, in 
Figs. 8–9 we show the value of ξ0 as a function of temperature, for our cases. We find that near 
the critical temperature, k ∼ (1 − T/Tc)

1/2, and equivalently

ξ0 ∼ 1

(1 − T/Tc)
1/2

, (3.17)

for all values of z, which is in agreement with mean field theory.
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Value of the correlation length ξ0 as a function of temperature, for different cases.

Fig. 8. Case I.

Fig. 9. Case II.

4. Ginzburg–Landau approach

At this point we implement a phenomenological Ginzburg–Landau approach to our holo-
graphic superconductor, following [20]. The main assumption of this approach is that the dual 
field theory can be described near the critical temperature by the effective action

Seff ≈
∫

d4x

{
α |�GL|2 + β

2
|�GL|4 + 1

2ms

|D�GL|2 + · · ·
}

, (4.1)

where the component fields are a scalar field �GL representing the order parameter of the theory, 
and a vector field Aμ, with μ = 0, . . . , 3 and where Di = ∂i − iAi . Also, ms is the supercon-
ductor carrier mass and α, β are phenomenological parameters with temperature dependence. 
According to the AdS/CFT dictionary, the vector field components A0 and Ax correspond to the 
chemical potential μ in (2.18) and to vector potential A(0)

x in (3.5) respectively. According to 
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Table 3
Value of Nz for different cases.

ρ(2�−z−2)/3Nz z = 1 z = 2

Case I 0.121 0.484
Case II 3.367 30.986

mean field theory, the order parameter |�GL| has critical exponent 1/2. In order to match this 
critical exponent with that of O� we propose the identification

|�GL|2 = NzO
2
� , (4.2)

where Nz is a proportionality constant that depends on z and changes according to every model 
we consider.

In the remaining of this paper, we adopt the same notation and conventions of [20]. In partic-
ular, the superconducting carrier mass ms can be absorbed in definitions of the other parameters 
in Ginzburg–Landau theory, and we can therefore safely set ms = 1. Going back to (3.7), this 
means in particular that ñs = ns and the numerical equality (3.9) can be written as

O2
�

ns

= Cz . (4.3)

However, one has according to Ginzburg–Landau theory the following relation between the order 
parameter |�GL| and the charge carrier density ns

|�GL|2 = ns . (4.4)

Then, substituting (4.4) and our identification (4.2) in (4.3) we obtain

Nz = 1

Cz

. (4.5)

In Table 3 we show the value of the proportionality constant Nz for various cases.
We can also calculate the penetration length λ of the superconductor, defined as

λ = 1√
4πns

. (4.6)

In Figs. 10–11 we show the value of λ as a function of temperature, for our different cases. As in 
the case of ξ0, we have that the behavior of λ at T ≈ Tc is

λ ∼ 1

(1 − T/Tc)1/2
, (4.7)

for all z. This result is in agreement with mean field theory.
In order to have a consistent Ginzburg–Landau description of the dual field theory, we must 

be able to determine by holographic methods the parameters |α| and β . Regarding |α|, we can 
determine it directly from the Ginzburg–Landau theory relation2

2 The actual Ginzburg–Landau theory relation is

|α| = h̄2

2msξ2
, (4.8)

where ξ is the Ginzburg–Landau coherence length. The coherence length is in turn related to the correlation length ξ0 as 
ξ2 = 2ξ2. See [20].
0
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Value of the penetration length λ as a function of temperature, for different cases.

Fig. 10. Case I.

Fig. 11. Case II.

|α| = 1

4ξ2
0

. (4.9)

In Figs. 12–13 we show the value of |α| as a function of temperature, for our various cases. We 
see that the near-Tc behavior of |α| is

|α| ∼ α0 (1 − T/Tc) , (4.10)

which is in agreement with usual Ginzburg–Landau theory, for all z. However, we find numeri-
cally that the value of the coefficient α0 decreases as the value of z raises.

The remaining phenomenological parameter β can be computed through the Ginzburg–
Landau theory relation

|�∞|2 = |α|
β

, (4.11)

where |�∞| is the value of the condensate deep inside the superconductor, where external fields 
and gradients are negligible. Since we are in the limit of small field perturbations, we indeed find 
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Value of the parameter α as a function of temperature, for different cases.

Fig. 12. Case I.

Fig. 13. Case II.

ourselves in that approximation. Substituting (4.2) and (4.9) in (4.11) we obtain the following 
expression

β = 1

4Nz

1

O2
�ξ2

0

. (4.12)

In Figs. 14–15 we show the behavior of β as a function of temperature, for our different conden-
sation cases. We observe that, near-Tc, β behaves in agreement with Ginzburg–Landau theory, 
having a definite value at T = Tc. We also observe that this value decreases as the value of z
raises.

Having calculated the characteristic lengths of the system ξ0 and λ, we can compute the 
Ginzburg–Landau parameter κ , defined as

κ = λ
, (4.13)
ξ



A. Dector / Nuclear Physics B 898 (2015) 132–156 147
Value of the parameter β as a function of temperature, for different cases.

Fig. 14. Case I.

Fig. 15. Case II.

where ξ is the Ginzburg–Landau coherence length, which is related to our correlation length ξ0
as ξ2 = 2ξ2

0 . (See [20].) In Figs. 16–17 we show how the Ginzburg–Landau parameter κ behaves 
as a function of temperature, for our different cases. We notice that all plots have a definite 
value at T = Tc . We will take this to be the value of κ of our holographic superconductor for 
each case considered. The value of κ for different cases is shown in Table 4. We note that all 
values of κ are lower than 1/

√
2 ∼ 0.707 for all cases of z considered, which means that our 

system behaves always as a Type I superconductor. Also, we notice that the value of κ is always 
lower for z = 2, which means that in holographic superconductors with higher dynamical critical 
exponent, vortex formation is more strongly unfavored energetically and has a stronger Type I 
behavior.

To finalize this section, another interesting physical quantity that can be computed in the 
present Ginzburg–Landau approach is the critical supercurrent Jc. To introduce it in a holo-
graphic context, we first go back to equation (3.3), which, having neglected the terms in ω and k, 
is just a homogeneous (only u-dependent) equation for Ax . Switching on a nonzero Ax(u) cor-
responds, as described first in [24,25], to turning on a supercurrent in the system. In that context, 
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Value of the Ginzburg–Landau parameter κ as a function of temperature, for different cases.

Fig. 16. Case I.

Fig. 17. Case II.

Table 4
Value of the Ginzburg–Landau parameter κ , for dif-
ferent cases.

κ z = 1 z = 2

Case I 0.527 0.467
Case II 0.070 0.002

the asymptotic coefficient A(0)
x in (3.5) corresponds to the source, or superfluid velocity vs , while 

Jx corresponds to the supercurrent. We note that, since we are considering Ax as a perturbation 
where the backreaction on the fields ψ and φ is neglected, then one is effectively switching a 
perturbative supercurrent Jx .3

3 I wish to thank the referee for pointing out this connection.
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The relation between the supercurrent Jx and the superfluid velocity is very well known in the 
context of Ginzburg–Landau theory, where it is studied in the limit where strong fields or currents 
change the order parameter |�GL| from its value deep inside the superconductor |�∞|. This limit 
is associated with the physical situation where the superconducting sample is a thin wire or film. 
(See, e.g. [33].) Using holographic methods, the relation between Jx and vx has been previously 
studied in [26], where the authors started from a minimal 3+1 dimensional bulk-model in the 
same spirit as ours, and considered three fields equivalent to our ψ , φ and Ax , and considered 
them to be all of the same order and to fully backreact between them.4 In the study of the relation 
between Jx and vx , one the most important conclusions they reached is that for temperatures 
close to Tc, the system has the same behavior predicted by Ginzburg–Landau theory. Building on 
this result and on the essential similarities between our bulk models, we can compute the critical 
current Jc, that corresponds to the value of the supercurrent above which the system passes to the 
normal phase [33]. According to Ginzburg–Landau theory, it is given by the general expression

Jc = qs |�∞|2
(

2

3

)3/2
√

|α|
ms

, (4.14)

which we can rewrite in terms of our holographically-computed quantities O� and ξ0 as

Jc = 1

2Cz

(
2

3

)3/2 O2
�

ξ0
. (4.15)

In Figs. 18–19 we show the value of Jc as a function of temperature, for our various cases of 
condensation. We note that the value of the supercurrent decreases as the value of z rises. More 
importantly, we see numerically that the near-Tc behavior of Jc is

Jc ∼ (1 − T/Tc)
3/2 , (4.16)

which is in accordance with the predictions of usual Ginzburg–Landau theory.

5. Constant magnetic field

We will now study the effect of an external magnetic field to the superconducting phase of 
our models. As done before, we begin with in the general dimensional case and then focus on 
D = 5. We follow the procedure developed by [21] and will proceed in a perturbative fashion by 
proposing a series expansion for the component fields

�(�x,u) = ε1/2�(1)(�x,u) + ε3/2�(2)(�x,u) + · · · (5.1)

Aμ(�x,u) = A(0)
μ (�x,u) + εA(1)

μ (�x,u) + · · · (5.2)

where �x = (x, y), and the expansion parameter is given by

ε = Bc − B

Bc

, ε � 1 , (5.3)

were Bc is the value of the magnetic field that breaks the superconducting phase (critical mag-
netic field). Since this expansion is done near the value B = Bc , this means that we find ourselves 
near the point where the condensate vanishes. We substitute expansions (5.1)–(5.2) in the general 
equations on motion (2.9)–(2.10). The zero order equation for the gauge field is

4 For additional studies of the supercurrent density in the presence of a superfluid velocity, see [27,28].
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Value of the critical current Jc as a function of temperature, for different cases.

Fig. 18. Case I.

Fig. 19. Case II.

1√
g

∂μ

(√
gF

μν

(0)

)
= 0 , (5.4)

and has solutions

A
(0)
t (u) = μ − ρ

ud−z

rd−z
h

, (5.5)

A(0)
y (x) = Bc x , (5.6)

and the rest of spatial components equal to zero: A(0)
i = 0, i �= y. Since the solution for A(0)

t

is equal to solution (2.15), we set the notation A(0)
t = φ, for simplicity. Meanwhile, the general 

scalar field equation is

ud+1−z∂u

(
f

uz+d−1
∂u�

(1)

)
−

(
m2

u2z
− φ2

r2zf

)
�(1) = − 1

r2u2z−2
δIJ DIDJ �(1) , (5.7)
h h
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where I, J = x, y. Eq. (5.7) is clearly separable. We follow the standard treatment and propose

�(1)(�x,u) = eipyϕ(p)(x,u) , (5.8)

so on the right hand side of (5.7) we have

δIJ DIDJ �(1) =
(
∂2
x + (

∂y − iBc x
)2

)
�(1) = eipy

(
∂2
x − (p − Bc x)2

)
ϕ(p) , (5.9)

and we get the following equation

ud+1−z∂u

(
f

uz+d−1
∂uϕ

(p)

)
−

(
m2

u2z
− φ2

r2z
h f

)
ϕ(p)

= 1

r2
hu2z−2

(
−∂2

x + (p − Bc x)2
)

ϕ(p). (5.10)

Now, we make the separation

ϕ
(p)
n (x,u) = ρn(u)γ

(p)
n (x) , (5.11)

and define the variable

X = √
2Bc

(
x − p

Bc

)
, (5.12)

so that the operator on the right hand side of (5.10) becomes[
−∂2

x + (p − Bcx)2
]

= (2Bc)

[
−∂2

X + 1

4
X2

]
, (5.13)

and acting on γ (p)
n we have the eigenvalue equation(

−∂2
X + 1

4
X2

)
γ

(p)
n = λn

2
γ

(p)
n , (5.14)

that has as a solution the eigenfunctions

γ
(p)
n (x) = e−X2/4Hn(X) , (5.15)

with eigenvalues

λn = 2n + 1 , n = 0,1 . . . (5.16)

We choose the n = 0 mode, which corresponds to the most stable solution [8,21,29,30]. As 
described originally in [21], the more general solution to the scalar field is given by linear super-
position of the solution obtained above, with different values of p. (We adopt the authors notation 
in the following.) Going back to (5.8), (5.11) and (5.15), we write our solution explicitly as

�(1) (u, �x) = ρ0(u)

∞∑
l=−∞

Cle
iplyγ0 (x;pl) , (5.17)

where

γ0 (x;pl) = exp

{
−Bc

2

(
x − pl

Bc

)2
}

, (5.18)
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and where we define

Cl = exp

(
−i

πa2

a2
1

l2

)
, pl = 2π

√
Bc

a1
l , (5.19)

and a1, a2 are real parameters. Solution (5.17) can be rewritten as

�(1) (u, �x) = 1

L
ρ0(u)e− Bcx2

2 ϑ3(υ, τ ) , (5.20)

where ϑ3(υ, τ) is the elliptic theta function, defined as

ϑ3(υ, τ ) =
∞∑

l=−∞
eiπτ l2e2iπυl , (5.21)

and where the variables υ and τ are defined as

υ ≡
√

Bc

a1
(−ix + y) , τ ≡ 1

a2
1

(2iπ − a2) . (5.22)

Owing to the elliptical theta function ϑ3, the scalar field solution �(1) has the following 
pseudo-periodicity in the x–y plane

�(1) (u, x, y) = �(1)(u, x, y + a1) , (5.23)

�(1)

(
u,x + 2π√

Bca1
, y + a2√

Bca1

)
= exp

[
2πi

a1

(√
Bcy + a2

2a1

)]
�(1) (u, x, y) . (5.24)

In addition to this, the ϑ3 function has zeros located periodically at

�V =
(

m + 1

2

)
�v1 +

(
n + 1

2

)
�v2 , (5.25)

where the �vi vectors are given by

�v1 = a1√
Bc

∂

∂y
, �v2 = 2π√

Bca1

∂

∂x
+ a2√

Bca2

∂

∂y
. (5.26)

Thus, the �(1) solution has a lattice profile in the (x–y) plane, spanned by the vectors �vi . 
We note that, in our given approximation, we will get a 2-dimensional plane, orthogonal to the 
remaining (d − 2)-dimensional boundary space, where the vortices live. We should note that the 
presence of the vortex solutions given above does not contradict the fact that our system was 
found in the previous section to be Type I.5 Indeed, the computation of κ presented above comes 
from an energetic analysis, conducted directly from the dual system’s Ginzburg–Landau action. 
(See [20].) This shows that, according to Ginzburg–Landau theory, the formation of the above 
vortex solutions costs more energy to the system than the energy needed for the system staying in 
a superconducting state. (See, e.g. [33].) To be more specific, the case where B > Bc corresponds 
to a physical situation where the energy of the superconducting state is bigger than that of the 
normal state, while for B < Bc the inverse situation is truth, with a phase transition occurring 
at B = Bc. Furthermore, since our system was found to be Type I, the phase transition in the 

5 A dynamical approach to vortex solutions in D = 4 can be found in [19], where it was concluded that, for some values 
of the system’s parameters, the dual superconducting system was Type I. For other dynamical approach, see [31,32].
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Value of the critical magnetic field Bc as a function of temperature, for different cases.

Fig. 20. Case I.

Fig. 21. Case II.

magnetic field is first order and, also as a consequence of being Type I, vortex formation is not 
energetically favored. Therefore the system undergoes a phase transition from a homogeneous 
superconducting phase to the normal phase as the magnetic field is increased.

Returning to the scalar field equation (5.10) and substituting the results given above, we obtain 
the following equation for the radial function ρ

ud+1−z∂u

(
f

uz+d−1
∂uρ(u)

)
−

(
m2

u2z
− φ2

r2z
h f

+ Bc

r2
hu2z−2

)
ρ(u) = 0 , (5.27)

which can be written as

ρ′′ +
(

f ′

f
− d + z − 1

u

)
ρ′ − 1

u2f

(
m2 − u2zφ2

r2z
h f

+ u2

r2
h

Bc

)
ρ = 0 . (5.28)

This equation of course has the same behavior at u → 0 as (2.17)
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ρ ∼ C−u�− + C+u�+ , (5.29)

with �± given by (2.20). We set the same boundary conditions at u → 0 as for the field ψ in 
(2.12). By applying the shooting method to Eq. (5.27) we find the value of the critical magnetic 
field that breaks the superconducting phase of the system. In Figs. 20–21 we show the value of 
the critical magnetic field Bc as a function of temperature, for our different cases. We see that 
near-Tc the critical magnetic field Bc behaves as

Bc ∼ (1 − T/Tc) , (5.30)

which is in agreement with mean field theory, for all values of z. We also note by comparing 
Eqs. (5.28) and (3.12), that the procedure to obtain the near-Tc values of the square of the wave 
number k and the critical field Bc is the same. This in turn confirms the relation between the 
correlation length and the critical magnetic field put forward in [18]

Bc ≈ 1

ξ2
0

, (T ≈ Tc) . (5.31)

6. Conclusions

In this paper we have constructed a D = 5 minimal model of holographic superconductivity in 
the probe limit, with a Lifshitz black hole background. Within this framework, we have studied 
different cases of condensation, varying within each of them the dynamical critical exponent in 
order to gain insight on how the system is affected by z with respect to its usual isotropic be-
havior. We have added small scalar and gauge field fluctuations to the original component fields. 
These fluctuations allow us to compute holographically the penetration and coherence length of 
the superconducting system. We saw that both characteristic lengths have the standard near-Tc

functional dependency on temperature for all condensate cases and all values of z. However, the 
dynamical critical exponent z does affect the value of the characteristic lengths, as it becomes 
evident in the change of the value of their ratio as given by the Ginzburg–Landau parameter κ . 
We also saw that it is possible to construct a consistent Ginzburg–Landau phenomenological 
interpretation of the dual theory with Lifshitz scaling. We computed through holographic tech-
niques the Ginzburg–Landau Lagrangian parameters α, β and, as with the characteristic lengths, 
concluded that they have the standard near-Tc functional dependency on temperature for all con-
densate cases and all values of z. However, the presence of z does have a non-trivial effect on this 
phenomenological parameters, diminishing the value of their numerical coefficients as z raises.

We have also computed with holographic techniques the Ginzburg–Landau parameter κ of 
the system. For all cases of condensation and all values of z, we saw that κ < 1/

√
2. This means 

that for all cases the dual system will behave as a Type I superconductor. Moreover, we also 
observed that, for each case of condensation considered, the value of κ became lower for higher 
values of z. This means that in systems with higher anisotropy, vortex formation is more strongly 
unfavored energetically and exhibit a stronger Type I behavior.

Finally, we computed the critical magnetic field Bc needed to break the superconducting phase 
of the system, following the perturbative procedure first developed in [21]. We observed that the 
critical field near-Tc functional dependence on temperature is the one predicted by Ginzburg–
Landau theory. However, we also note that the value of the critical magnetic field is smaller 
for higher values of z. Additionally, within this perturbative approach, we have confirmed holo-
graphically the conjecture posed in [18] that the critical magnetic field is inversely proportional 
to the square of the correlation length, in accordance to Ginzburg–Landau theory.
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All of the above results were obtained from a minimal model of superconductivity following 
[8]. It would be interesting to see how these results would be affected by the choice of other 
models, such as, for instance, d-wave holographic superconductors [34], models with higher 
corrections to the scalar field potential such as the ones that appear in top–down approaches 
[35–37] or less conventional models such as ones with Chern–Simons terms, higher-derivative 
couplings or in the context of New Massive Gravity [38–40].
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