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The purpose of this paper is to investigate some global generalizations of 
the famous Birkhoff-Kellogg theorem [ 1 ] and give some applications. The 
main tool in this paper is the following lemma, which was proved in [Z] by 
Guo Dajun: 

LEMMA 1. Let X he an infinite-dimensional Banach space, D a bounded 
open set in X, and A: D -+ X a completely continuous operator. Suppose that 
Axfpx for xtaD, O<p< 1, and 

inf llAxll > 0. (1) Yit ,?I., 

Then the Leray-Schauder degree deg(I- A, D, 0) = 0. 

It should be noticed that Lemma 1 has been proved in [ 131 by the same 
method as [2]. Some applications and generalizations of Lemma 1 are dis- 
cussed in [3]-[7]. 

In this paper, we suppose that X is an infinite-dimensional Banach space 
and A: X-+ X is a completely continuous operator. We shall denote by E 
the Banach space R’ x X with norm II (A, x)11 = (A* + llxll *)I’*. The closure of 
the set of nonzero solutions of the equation x = 1Ax will be denoted by L, 
i.e., 

L={(l.,x)) (I,x)EE,x=~Ax,x#~}. 
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THEOREM 1. Suppose that (i) there exists a bounded open set D in X, 
0 E D, such that the condition (1) is satisfied, and (ii) AtI = 8 and A is Frechet 
differentiable at 8. Then L possesses a maximal subcontinuum (i.e., a 
maximal closed connected subet of L) C which is unbounded, 
C c (0, + co ) x X, and there exists ;I > 0 such that 

(i) C n ([A, + co) x D) is unbounded; 

(ii) Cn (((0, + 00) x X)\((& + co) x 6)) is unbounded; 

(iii) Cn([A, +co)xaD)=@. 

To prove Theorem 1, we need some lemmas. 

LEMMA 2. Suppose that the conditions of Theorem 1 are satisfied, then 
there exists x > 0 such that 

Ln([X, +co)xaD)=Qr, (2) 

deg(Z- AA, D, 0) = 0 for any 12 1. (3) 

Proof Let j3 = inf.,tiiD l\Axjl > 0, M= SUP,~~,,~ IIxII, A > M/Z?, then 

(4) 

for I. > X, x E 8D. By Lemma 1, (3) holds for ,I > 1. That (2) holds is 
obvious. This completes the proof of the lemma. 

We choose two sequences of real numbers 1, and R,,, such that 

X-CA, <A,< ... <A,,< ... (n = 1, 2, 3, . ..). 

sup II(& =M,<R,<R,< ... <R,< . . . . (n = 1, 2, 3, . ..) 
XE D 

lim A,= +oo, lim R,,= +co, (5) II - oc n-rr 

and A,, are not characteristic values of A;. Let 

F,,= {(L,x)EEI XED}, 

Gn={(AxkW\((k +~)x@)I II(L4II=R,), 
W,={(~,X)EE~XED,~E[~,~,]} 

” {(A .K)E (E\((J, + 00) x B)) I IIt4 XIII G R,}. 

LEMMA 3. Suppose that the conditions of Theorem 1 are satisfied, then 
for each n, there exists a maximal subcontinuum C, of L n W,, such that 

C,nF,,Z0, C,nG,#0. (6) 
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Proof. Let n be fixed and T = { (1,) x) 1 x E D, x = A,, Ax, x # 0 }. Then T 
is a compact set, For any u E T, we denote by C(u) the maximal subcon- 
tinuum, containing U, of L n W,. We claim that there exists a u E T such 
that C(U), corresponding to U, satisfies C(U) A G, # 0. In fact, if this is 
false, then for any u E T, C(U) A G, = 0. By the same method as the proof 
of Lemma 1.2 in [S], we can prove that there exists a relatively open sub- 
set U(U) of W, such that au(u) n L = 0, (A,, 19) C U(u), d(U(u), G,) > 0, 
d(U(u), [A, +oo)xaD)>O, where au(u) is the boundary of U(U) in W,, 
and d( ., .) denotes the distance between two sets. Obviously, in the metric 
space {k>xD, {U(u)n({k)xD) I u E T} is an open covering of T. Since 
T is a compact set in { 1,) x D, so there exist ui E T (i = 1, 2, . . . . k) such that 
{U(q) n ({A,} x D) I i= 1, 2, . . . . k} is also an open covering of T. Let 

u= (J U(u,), (7) 
,=l 

then U is an open subset of W,,, 

aunL=(21, (4,,@ 5 c (8) 

and d( U, [A, + co) x aD) > 0, d( U, G,,) > 0. Obviously, T c II. 
By the same method as the proof of Theorem 1 in [lo], we can prove 

deg(Z- &A, U(&), 0) - 0 (mod 2), (9) 

de&J- 44, u,(AJ, 0) = 0, (10) 

where U(i,)=Un({l,)xX), U,(I~,,)=Un(({l,,}xX)\({~,,}x~)). Let 
U,(&)= U(I,,)\U,(&,), then by (9) (10) we have 

deg(l- LA UAA,), 0) = 0 (mod 2). (11) 

Since 1, is not a characteristic value of A;, so 

lind(Z-i,A, e)l = 1. (12) 

From (ll), (12), we obtain deg(Z-I,,A,D,O)-1 (mod2), which 
contradicts Lemma 2. Lemma 3 is proved. 

For each n, we take a maximal subcontinuum C, of L n W,, such that 

C,nFFZ0, C,nG,Z0 (n = 1, 2, 3, . ..). 

Define the superior limit H of {C, 1 n = 1,2,3, . ..} as 

(13) 

H = lim C, = {z 1 there exist a subsequence { nk > of {n } 
“-CC 

and znk E C,, such that lim znii = z}. 
k-m (14) 
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For any z E H, we denote by C(z) the maximal subcontinuum, containing 
z. of H. Let 

4z)=sup{l I (A x)~(C(z)n(C& +a)xD))), (15) 

R(z) = sup{ II@, XIII I(k x1 E (C(z) n (E\(@, + 03) x @)I). (16) 

LEMMA 4. Suppose that the conditions of Theorem 1 are satisfied, then 
for any ZE H, either A(z) = + co or R(z) = + co. 

Proof: If the lemma is false, then there exists Z~E H such that 
A(z,) < + co, R(z,) < + co. Obviously, C(z,) is a compact set. By the same 
method as the proof of Lemma 1.2 in [S], we can prove that there exists a 
bounded open subset U of E such that 

C(z,) = u aUnH=@. (17) 

Since U is bounded, so there exists n’ such that 

sup(Al (A,x)E(Un([X, +co)xD)))<A,., 

suP{II(~,x)ll I (kx)~(Un(E\((k +co)xD)))}<R,.. 

By the definition of H, there exist a subsequence {nk > of {n} and 
Z,,k E cn, such that lim, _ 5 znL = zO. Without loss of generality we can 
assume that nk > n’ and z,, E U for all k. By the connectivity of C,, and (6) 
we have Cnkn aU # /25 for all nk. Take y,,~ C,, n au, then there exist a 
subsequence {y,, } of {y,,} and y* E i?U such that limi, o. y,, = y*. By the 
definition of H, ’ y* E H, so y* E H n aU, which contradicts (17). This 
contradiction proves the lemma. 

Let H(X) = H n (1x1 x D), then obviously H(X) is a nonempty compact 
set. We can prove the following lemma: 

LEMMA 5. Suppose that the conditions of Theorem 1 are satisfied, then 
there exists a z* E H(A) such that A(z*) = + 03, R(z*) = + CO. 

Proof. Let 

M= {zEH(X) 1 A(z)= +a}, N= {ZE H(X) I R(z)= +co}, 

M, = {z E H(A) I R(z) < R, >, N, = {z E H(l) I A(z) < 4 >, 

M,={zEH(X)I R,-,dR(z)<R,} for n = 2, 3, . . . . 

N,=(zEH(X)I~,-ld/Z(z)<l,} for n=2,3, . . . . 



THE BIRKHOFF-KELLOGG THEOREM 235 

If the lemma is false, then Mn N= 0. By Lemma 4, we have 

Mu N= H(X), M= (j M,, N= c N,. (18) 
n=l n=l 

Let z E M, then R(z) < + co, and by the same method as the proof of (7) in 
Lemma 3 we can prove that there exists a bounded open subset U(z) of 
(I!?\((& + co) x a)) u ([A, A,] x D) such that 

(C(z)n ((E\((k +a)xD))u (CL A,1 xD)))c Wh 

dU(z)nH=@, d(U(z), [A, +oo)xaD)>O, and 

sw{II(~,xH I (5x)E(U(z)n(E\((k +m)xD)))}< +a, 

where au(z) is the boundary of U(z) in (E\((A, co) x D)) u ([A, A,] x D). 
By the same method, for z E N there exists a bounded open subset V(z) 

of ([A, +c~)xD)u {(A,x)E(E\((& +w)x~)) 1 Il(A,x)ll <R,} such that 

u {(bk(E\((k +~)x&) I ll(~,x)ll <R,}))c V(z), 
JV(z)n H=@, d(V(z), [X, +cO)xaD)>o, 

sup{J. I (&x)~(V(z)n([X, +co)xD))}< +a. 

Obviously, {U(z)n((;i}xD)Iz~M)u{V(z)n({;i}xD)Iz~N) isan 
open covering of H(X). Since H(A) is a compact set, so there exist zi 
(1~idp),suchthatzi~M(l<i6m),zi~N(m+1~i6p),and 

{U(z,)n({X}xD)Ii=l,2,..., m))u{V(z,)n({X}xD)~i=m+l,...,p} 

is also an open covering of H(L). Let 

u, = (j W;), v, = 0 Vz;), 
i= I i=m+ I 

then U, is a bounded open subset of (E\((X, + co) x D)) u ([IX, ,I,] x D), 
au, n H= 0, and 

sup{ Il(k z)ll I (4 X)E (U, n (E\((k + ~0) x D)))> < + ~0. (19) 

Similarly, I/, is also a bounded open subset of ( [X, + cc) x D) u { (,I, x) E 
(E\(@, +00)x6)) I II(A < R,), aV,nH=@, and 

sup{A I (A,X)E(V\([X, +oo)xD))}< +co. (20) 
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Let J=aU,uaV,u(({x}x~)\(U,u P’,))u([X,+co)xaD). Obviously, 
JnH=@ and there exists n’ such that C,nJ=@ for Nan’. By (19), 
(20), there exists n” such that 

R,>su~{Il(& x)ll I (A x)~ (u, n (E\((& +a)~@))), 

~,>~uP{~~I(~X)E(V,~(~,, +~)xD)I 

for n 2,“. Take n* = max{n’, n”}. Since C,n J= @ for n an*, C, is 
connective, so C,n(({X} xD)n U, n V,)#@ for n>n*. Hence 

H,(X) = H(A) n U, n V, # 0. 

It is easy to see that H,(X) is a compact set. Let z E H,(X), if z E M, then by 
8 V, n H = 0, we have R(z) > R, , hence z 5 Mr. Similarly, if z E N, then 
z5Nr. Thus 

H,(J) n W, u N,) = 0. (21) 

Substituting separately R,, A,, H,(n) for R,, A.,, H(X) as above, we can 
similarly prove that there exists a nonempty compact set H*(X) c H,(X) 
such that 

H,(X) n Of, u Nd = 0. (22) 

Similarly for each n = 3, 4, . . . . there exists a nonempty compact set 
H,(x) c H,,-,(x) such that 

H,(X) n (M, u N,) = 0. (23) 

Let H* = n,“= I H,(X), then H* c H(X) is a nonempty compact set by 
Theorem 1.2.18 in [14]. From (21) (22), (23) it follows that 
H* n (M, u N,) = 0 for all n. Hence H* n (M u N) = 0, which con- 
tradicts (18) since H* is a nonempty subset of H(X). This contradiction 
proves the lemma. 

Proof of Theorem 1. By Lemma 5 there exists a maximal subcontinuum 
C* of H such hat C* n ([X, +co) xD) and C* n (E\((A, +co)xd)) 
are all unbounded. From the definition of H it is obvious that C* c L. 
Let C be the maximal subcontinuum of L containing C*, then 
Cn([& +co)xD) and Cn(E\((& +00)x@) are all unbounded. The 
conclusion (iii) follows from (2). By the same method as the proof of the 
conclusion (ii) of Theorem 1 in [2] we can prove Cc (0, + co) x X. The 
proof of Theorem 1 is completed. 

COROLLARY 1. Suppose that the conditions of Theorem 1 are satisfied. 
Then L possesses a maximal subcontinuum C’ which is unbounded, 
C’ c (( - co, 0) x X), and there exists A’ < 0 such that 
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(i) C’n (( - 00, A’) x D) is unbounded, 

(ii) C’n(((-co,O)xX)\((-co,I/‘)xB)) is unbounded; 

(iii) C’n((-co,l’]xL?D)=@. 

Proof Apply Theorem 1 to the operator -A. 

Remark 1. In [ll], Sun Jingxian point out that the proof of 
Theorem 2.1 in [12] is false. By the same method as the proof of 
Theorem 1 in this paper we can give a correct proof for Theorem 2.1 
in [12]. 

In Theorem 1, we suppose that the operator A is differentiable at 8. If 
we do not suppose that the operator A is differentiable at 8, then we can 
prove 

THEOREM 2. Suppose that there exists a bounded open subset D in X, 
0 E D, such that the condition (1) is satisfied. Then L possesses a maximal 
subcontinuum C which is unbounded and there exists x > 0 such that 

(i) Cn(((0, +~)xX)\((l, +co)xB)) is unbounded; 

(ii) Cn([& +co)xaD)=@, Cn({O}x(X\{tl}))=@; 

and either 

(iii) C n ([A, + 00 ) x D) is unbounded, or 

(iii)* Cn([O, +00)x {~9))#0. 

To prove Theorem 2, we first prove a lemma. Let /I = inf,, iiD IIAxl/, 
M = sui?r, i3D i[xII, A> M//I, M, = SUP.~~~ II(& x)11; we choose three sequen- 
ces I,, R,, and r,,, 

X-CA,<&< ... <I.,,< . ..) 

M, < R, < R, < . . < R, < . ., 

r,>r,>r,> ... >r,> ... 

(n= 1, 2, 3, . ..) such that r, <inf,.,, l/xll and 

lim i,=+co, lim R,=+co, lim rn =O. 
“‘3c n-a n+m 

Let B, = (x E X I llxll < r,}, 

F,={(~,,x)~~lx~(D\~,)}u{(~,x)I~~~CO,~,l,x~~~,}, 

G,= {(UHE\Uk +~)xD)) I II(A =R,), 

Wn= t(LddE\((k +~)x~)) I II(k GR,) 
u {(~,x)EE~xE(D\B,),E,E[O,~~,]}. 
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LEMMA 6. Suppose that the conditions of Theorem 2 are satisfied, then 
for each n, there exist maximal subcontinuums C, of L n W,, such that 

C,nF,,#%, C,,nG,f%. (24) 

ProoJ: Let n be fixed. We define the operator A,, on X by 

A,x = Ax when llxll 3 rn 

=O when jlxll <$. 

Obviously, A,, is also completely continuous. Let 

then by Theorem 1, L, possesses a maximal subcontinuum C;, which 
satisfies 

(i) C:, n ([A, + cc ) x D is unbounded; 

(ii) CA n (((0, + co) x X)\((& + co) x B)) is unbounded; 

(iii) Ckc(O, +co)xXand CLn([X, +oo)xaD)=Qr. 

For zEC;n F,, we denote by C:,(z) the maximal subcontinuum, 
containing z, of CL n W,. If for all z E C:, n F,, CH(z) n G, = 0, then by the 
same method as the proof of Lemma 3, we can prove that there exists a 
bounded open subset U, of W, such that 

F,, n C:, c U, au,nL,=%, d(U,,, G,)>O. 

It is obvious that CL c (U, u ([A, + co) x D)\( [0, X] x B,)), which con- 
tradicts the property (ii) of C:, mentioned above. This contradiction shows 
that there exists z* E I;, n C, such that C;(z*) n G, # a. Let C, = CL(z*), 
then from the definition of A, it follows that C, c L, which implies C,, is 
also a maximal subcontinuum of W,, n L and (24) holds. This completes 
the proof. 

Proof of Theorem 2. From Lemma 6 it follows that for each n there 
exist subcontinuums C, of L such that (24) holds. By the same method of 
the proofs of Lemma 4 and Lemma 5, we can prove that there exists a 
maximal subcontinuum C of L such that 

CnF,,#%, CnG,#% (n = 1, 2, 3, . ..). 
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It is obvious that the conclusions (i), (ii) hold. Finally, if 
C n ([A, + co) x D) is bounded, then from the definition of F,, it is easy to 
see that there exists n* such that for all n > n*, (C n ([0, A,.] x as,)) # @. 
Take (pH, x,) E (Cn ([0, A,.] x as,)), and we can assume without 
loss of generality that lim,, o. 11, = p*. Since lim,, m l/xnll = 0, so 
lim, - m (A, x,) = (p*, 0), which implies (p*, 0) EC. This completes the 
proof. 

Remark 2. Theorem 1 and Theorem 2 are obviously global 
generalizations of the Brikhoff-Kellogg theorem. They give the main 
features of the global structure of L under the conditions of the 
Birkhoff-Kellogg theorem. 

Remark 3. If A is a set-contraction operator, then we can prove results 
similar to Theorem 1 and Theorem 2 by the conclusions obtained in [7]. If 
A is a cone mapping, we can also prove similar results. 

THEOREM 3. Suppose that A is differentiable at 8, A0 = 8, and 

Then 

II Axll 
,,di”mIl-xl= +co. (25) 

(i) 0 is a unique asymptotic bifurcation point of A; 

(ii) L possesses a maximal subcontinuum Ct , passing through (0, co) 
(i.e., for any 6 >O, M>O, there exists (lb, X)E C+ such that IAl < 6, 
llxll > M), C+ c (0, + 00) x X, and for any 1~ 0, there exists xj, such that 
(i, Xi.) E c+; 

(iii) L possesses a maximal subcontinuum C-., passing through (0, co ), 
C- c (- 00, 0) x X, andfor any 1, < 0, there exists xi. such that (2, xi,) E C-; 

(iv) lim i.+O,(j.,.r,.)EC+ UC‘- lIxAl = + Co. 
Proof: Suppose that X is a given positive number. By (25), there exists 

R > 0 such that 

2 
Mxll a- IIxII, A 

when llxll > R. (26) 

Let D=x 1 XEX, llxll CR}, fl=inf,.,, IjAxll, M=supxEdD IIxII, then from 
(26) it follows that /I> (2/A) M, i.e., 2 > M//I. By Theorem 1 (from the 
proof of Theorem 1 we know that for any A: > M/B the conclusion of 
Theorem 1 hold) L possesses a maximal subcontinuum C+ c (0, + co) x X 
such that 

(i)* C+ n ([A, + 00) x D) is unbounded; 
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(ii)* C+ n (((0, + a) x X)\((X, + 00) x D)) is unbounded; 

(iii)* C+ n([X, +co)xaD)=@. 

It is obvious that for any I B X there exists x1 ED such that (A, XJ E C+. By 
(26) we have IIUxjl 2 2 llxll for 12 X, llxll 2 R, i.e., 

Ln([% +a)x(X\D))=@. (27) 

From (27) and (ii)* it is obvious that C+ n ((0,x) xX) is unbounded. 
Hence, by (25) we have 

lim A= llxll lim - 
(i.,.x)sC+,ll.xll -cc (L,.x)EC+,(IxII -00 IlAXll =O’ 

which implies that 0 is an asymptotic bifurcation point of A and C+ passes 
through (0, co). By the connectivity of C+ the conclusion (ii) is proved. 
Similarly, we can prove the conclusion (iii). The conclusion (i) follows from 
(25). The conclusion (iv) can be proved by the same method as the proof 
of conclusion (ii) of Theorem 1 in [2]. This completes the proof of 
Theorem 3. 

Remark 4. Theorem 3 is an improvement and generalization of the 
main results in [2,9]. 

Next we give some applications of the general results in this paper to 
integral equations. 

Suppose that G is a bounded closed domain in R” and k(x, y) is 
continuous on G x G. Consider Hammerstein integral equations 

u(x) = 2 j- k(x> Y)~(Y, U(Y)) dv = A-Wx) (28) 
G 

in Banach space L”. 

THEOREM 4. Sqpose that (i) 

f(x, u) = i] a,(x) u’, 
i= I 

where n is an even number, a,,(x) is a bounded measurable function defined on 
G, infX,o a,(x) >O, and a,(x) E L”‘(“-i) (i= 1, 2, . . . . n - 1); 

(ii) there exists c(x) E L”/(“p ‘) such that 

s c(x) k(x, y) dx > 0 for LEG. 
G 
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Then 

(i) 0 is a unique asymptotic bifurcation of A defined by (28); 

(ii) L possesses a maximal subcontinuum C+, passing through (0, CD), 
C+ c ((0, + co) x L”), and for any ;1> 0, there exists Us such that 
(I, UJE c+; 

(iii) L possesses a maximal subcontinuum C, passing through (0, co ), 
CP c ((--co, 0) x L”), and for any ,? ~0, there exists uj, such that 
(A, UJ E c-; 

(iv) lim %-+O,(%,uj.)EC+ UC- llU%ll = + al. 

Proof It is easy to prove that A is a completely continuous operator, 
acting from L” into itself, A8 = 8, and A is differentiable at 0. Thus to 
complete the proof of the theorem, it is sufficient to show 

lim II4 
Ilull - m m= +a. (29) 

We define a bounded linear functional on L” by 

h(u(x)) = j c(x) u(x) dx 
G 

and denote its norm by llhlj. Then 

II4 a& Ih( =h /I,+, [j/(x, y)f(L., U(Y)) &] dxl 

=- ll;l, 1 fGf(y, u(y)) 4 jG c(x)~x, Y) dxi 

1 

%I G If 
a,(y)[u(y)l” dy fG c(x) W, Y) dx 

-- 11~11 II, 1:: ai(y)Cu(y)Ey)l’dy lG 4~) Wx, Y) dxl 

26 ll~lln-fi II,; c(x) dxl nfl Ilaill”““p” lIuIIi, 
i= I 

(30) 

where t = inf,. G a,,(x), B = inf,.. fG c(x) Qx, y) dx, and A4 = 
max(,,-V,,,,, lk(x, y)l. From (30) it follows that (29) holds. This completes 
the proof. 

ACKNOWLEDGMENT 

This research was supported by the Science and Technique Foundation of the People’s 
Republic of China. 



242 GUO AND SUN 

REFERENCES 

1. G. D. BIRKHOFF AND 0. D. KELLOGG, Invariant points in function space, Trans. Amer. 
Math. Sm. 23 (1922) 96115. 

2. Guo DAJUN, Eigenvalues and eigenvectors of nonlinear operators, Chinese Ann. Math. 2 
(English issue) (1981), 65580. 

3. Guo DAJUN, A new fixed point theorem, Acta Math. Sinicu 24 (1981), 444450. [In 
Chinese] 

4. Guo DAJUN, Eigenvalues of Hammerstein nonlinear integral equations, Am Math. 
Sinica, 20 (1977) 99-108. [In Chinese] 

5. SUN JINGXIAN, “Some Problems on Nonlinear Operators,” Doctoral thesis, Shandong 
University, Jinan, China, 1984. [In Chinese] 

6. SUN JINGXIAN, Computation of topological degree and applications to nonlinear 
operators, Actu Math. Sin&, 28 (1985), 347-359. [In Chinese] 

7. SUN JINGXIAN, A generalization of Guo’s theorem and applications, J. Math. Anal. Appl. 

126 (1987) 566573. 
8. P. H. RABINOWITZ, Some global results for nonlinear eigenvalue problems, J. Funct. Anul. 

7 (1971), 487-513. 
9. J. CRONIN, Eigenvalue of some nonlinear operators, J. Math. Anal. Appl. 38 (1972), 

659-667. 
10. E. N. DANCER, On the structure of solutions of nonlinear eigenvalue problems, Indiana 

Univ. Math. J. 23 (1974), 1069-1076. 
11. SUN JINGXIAN, A theorem on the point set topology, J. Systems Sci. Math. Sci. 7 (1987), 

977104. 
12. C. A. STUART, Concave solutions of singular nonlinear differential equations, Math. 2. 

136 (1974), 117-135. 
13. Yu QINGYU AND F. E. BROWDER, Bounded conditions for condensing mappings, 

Nonlinear Anal. 8 (1984), 209-219. 

14. V. I. ISTRATESCU, “Fixed Point Theory,” Reidel, Boston/London, 1981. 


