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a Department of Mathematical Methods and Models for Scientific Applications, University of Padova,

via Belzoni 7, 35131 Padova, Italy
b Department of Geological Engineering and Sciences, Michigan Technological University,

1400 Townsend Drive, Houghton, MI, USA

Received 18 February 2005; received in revised form 30 June 2005
Available online 12 September 2005
Abstract

A key issue in poromechanical modeling, e.g. for predicting anthropogenic land subsidence due to fluid withdrawal,
is the evaluation and use of representative mechanical properties for the deforming porous medium at a regional scale.
One such property is the vertical uniaxial rock compressibility cM which can be obtained through either laboratory
oedometer tests or in situ measurements, and typically exhibits quite a marked scattering. This paper addresses the
influence of the cM uncertainty on the predicted land settlement using a stochastic simulation approach where cM is
regarded as a random variable and a large number of equally likely cM realizations are generated and implemented into
a poroelastic finite element model. A compressibility law, characterized by a log-normal distribution with depth-depen-
dent mean, constant variance and exponential covariance, is assumed. The Monte Carlo simulation provides a set of
responses which can be analyzed statistically. The results from a number of numerical experiments show how the cM

variance and covariance affect the reliability of the simulated land subsidence and provide a quantitative evaluation
of the intrinsic uncertainty of the model prediction.
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1. Introduction

Anthropogenic land subsidence due to the production of subsurface fluids, such as oil, gas, or water, has
been observed worldwide over the last few decades. Well-known examples of subsidence above compacting
oil fields may be found for instance in Long Beach, California (Colazas and Strehle, 1995), in Venezuela
(Finol and Sancevic, 1995), or in the North Sea Ekofisk field (Hermansen et al., 2000). In Italy the Northern
Adriatic coastland has experienced a pronounced settlement due to both groundwater and gas removal
(e.g. Gambolati et al., 1974, 1991; Baù et al., 2001).

The need for a more reliable prediction of the impact that the development of subsurface reservoirs may
have on the ground surface has led to a continuous improvement of the numerical tools employed in
poromechanics. At present the use of advanced models for the most accurate prediction of land subsidence
can be considered quite a common effort (Ferronato et al., 2005; Gambolati et al., in press). However,
although sophisticated poro-visco-plastic constitutive models have been developed for a realistic descrip-
tion of the actual soil behavior (e.g. Alonso et al., 1990; Coussy et al., 1998; Barthelemy and Dormieux,
2002), the geomechanical analysis over producing fields is usually performed at the macroscale, with the
reservoir being regarded as a homogeneous structure from a mechanical point of view and the solution
to the poro-elasto-plastic equations addressed deterministically. By distinction, the importance of describ-
ing the heterogeneous nature of the subsurface has been somewhat definitely recognized in the simulation of
several geohydrodynamical processes. To overcome the limits of a deterministic approach, which would re-
quire an extensive medium characterization neither supported by the available data nor allowed by the
available resources, the rock hydraulic heterogeneity at the field and regional scale has been incorporated
stochastically into geostatistical models (Dagan, 1989; Gelhar, 1993). While the geostatistical approach has
been extensively used over the last few decades for modeling flow and transport in random porous media, a
limited number of works have addressed the influence of stochastic rock heterogeneity on stress and dis-
placements (e.g. Darrag and Tawil, 1993; Griffith and Fenton, 2001; Frias et al., 2004). In particular, to
our knowledge no study has been performed on the stochastic analysis of geomechanically heterogeneous
porous media using actual field observations.

A most fundamental geomechanical parameter controlling the compaction caused by pore pressure
drawdown in a depleted formation is the vertical uniaxial rock compressibility cM. The parameter cM is of-
ten measured in the laboratory on samples with a few centimeter size taken from exploratory wells, but
many difficulties may arise when upscaling such data to the field macroscale. An alternative and promising
technique relies on the measurement of the in situ compaction during the field production life by the radio-
active marker technique. Originally developed more than 30 years ago (De Loos, 1973), the marker records
allow for a straightforward rock mechanical characterization by relating the measured compaction to the
pore pressure drawdown experienced by the depleted formation. Since 1992, the radioactive marker tech-
nique has been implemented by Eni-E&P, the Italian national oil company, in several offshore boreholes of
the Northern Adriatic Sea (see Fig. 1), in order to derive a most reliable assessment of cM. Marker data
processing has provided a constitutive law of cM at the basin scale in both the first and the second loading
cycle (Baù et al., 2002). The significant scattering of the original measurements, however, required a statis-
tical analysis, based on the weighted moving average method and on a logarithmic regression, with fairly
large confidence intervals.

The present paper addresses the impact of the cM uncertainty on the predicted land subsidence using a
stochastic simulation approach where cM is regarded as a spatial random variable. Experience suggests that
in normally pressurized and consolidated sedimentary basins the rock mechanical properties usually exhibit
a low horizontal variability and primarily depend on depth. Since the data from the Northern Adriatic ba-
sin fulfil such a requirement (Baù et al., 2002), cM is assumed to vary with depth only. A stochastic 1-D
ergodic process for the cM generation is implemented into a Finite Element (FE) 3-D axial-symmetric poro-
elastic model solved by a Monte Carlo simulation to predict anthropogenic land subsidence due to fluid



Fig. 1. The Mediterranean Sea. The geographic location of the Northern Adriatic basin is indicated by the panel.
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withdrawal. It is worth noting that the 1-D stochastic generation of cM, suggested by field observations,
does not detract from the three-dimensionality of the analysis. Several numerical examples are discussed
for a hydro-geological setting similar to that of the Northern Adriatic basin. A sensitivity analysis to the
vertical cM covariance, medium permeability and depth of the depleted formation is then performed. Final-
ly, some conclusions are provided in order to describe the influence of the cM stochastic characterization on
the reliability of the predicted land subsidence and the potential of the proposed approach to address the
geomechanical medium uncertainty of macroscale regional models.
2. Stochastic compressibility

The cM value provided by the ith pair of markers located within a producing formation is estimated as
cM ;i ¼
Dsi

si;0Dpi

ð1Þ
where Dsi is the shortening of the ith spacing due to the pore pressure drawdown Dpi, and si,0 is the initial
distance between the markers, i.e. about 10.5 m (Mobach and Gussinklo, 1994). Each cM,i value given by
Eq. (1) can be associated to the vertical effective stress rz,i at the average depth of the ith spacing, with the
pairs (cM,i; rz,i) thus obtained regressed to derive a constitutive relationship for the uniaxial vertical com-
pressibility. Several Dsi values are obtained during each monitoring survey in order to offset as much as
possible instrumental and operational errors, so the corresponding set of cM,i values can be regarded as
a sample from a statistical population of data. Hence each compressibility estimate is provided as an aver-
age value cM ;i with its standard deviation rcM ;i . Because of the large spatial variability of the original data,
groups of adjacent measurements can be clustered together using the weighted moving average technique
(Baù et al., 1999), thus allowing for narrower confidence intervals.

The analysis of the data distribution on an arithmetic plot reveals that the cM ;i values follow a non-linear
trend. In particular the regression by a power law provides the best correlation index, so the constitutive
relationship for the uniaxial compressibility takes on the general form
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cM ¼ arb
z ð2Þ
The regression by a power law is equivalent to a linear regression on a double log–log plot, i.e. a linear
regression carried on the population of the logarithms of the data (Hald, 1952)
yðxÞ ¼ aþ bðx� xÞ ð3Þ

where y and x are the logarithmic transformation of cM and rz, respectively, and x is the weighted mean of
the xi values. It should be noted that appropriate formulas must be used to transform the statistical pop-
ulation of the average cM ;i with the standard deviation rcM ;i into the logarithms yi and ryi

(Papoulis, 1965).
Eq. (3) provides the mean value for y. The empirical variance v2 of the regressed y data is given by (Hald,

1952)
v2 ¼
PN

i¼1 yi � y xið Þ½ �2

N � 2
ð4Þ
with N the total number of regressed values. Hence, the 95% confidence interval for y is obtained as
y ¼ a� b�xþ bx� 2v ð5Þ

Back transformation of (5) to cM provides
cM ¼ 10a�b�x�2vrb
z ð6Þ
and comparison between Eqs. (2) and (6) shows that the power law coefficients a and b read
a ¼ 10a�b�x�2v ð7Þ
b ¼ b ð8Þ
The above procedure has been used by Baù et al. (2002) to derive a constitutive relationship for cM in the
Northern Adriatic basin. The regression of the data obtained from 11 marker surveys in 3 instrumented
boreholes during the period 1992–1999 provided the following constitutive model:
cM ¼ 1:0044� 10�2r�1:1347
z ð9Þ
where cM represents the expected (mean) value of the uniaxial compressibility. The 95% confidence interval,
corresponding to �2v and +2v in Eq. (6), is defined by a = 5.1602 · 10�3 and 1.9546 · 10�2, respectively. In
Eq. (9) cM is in [MPa�1] and rz in [MPa]. A graphical representation of (9) is given in Fig. 2.

By the way it is calculated (see Eq. (7)), coefficient a of Eq. (2) is a log-normally distributed random var-
iable with mean value and variance given by (Hald, 1952)
E log að Þ ¼ log l ¼ a� b�x ð10Þ

E log a� log lð Þ2
h i

¼ r2 ¼ v2 ð11Þ
where a, b, and �x are obtained from the regression (Eq. (3)) of the available sample of data, and v2 is cal-
culated by Eq. (4). The coefficient b (see Eq. (8)) is directly obtained from the regression procedure. For the
Northern Adriatic basin, Eqs. (10) and (11) provide logl = �1.9981, with b = �1.1347 and r2 = 0.0209.

The vertical effective stress rz in undisturbed conditions can be calculated as a function of the depth z.
Using Terzaghi�s effective stress principle (Terzaghi and Peck, 1967), we have
rz ¼ r̂z � p ð12Þ

where r̂z is the total vertical stress (compressive stresses are assumed to be positive). The total vertical stress
can be calculated by means of the overburden gradient function obg(z), defined such that r̂z ¼ z � obgðzÞ.
Assuming the basin to be normally pressurized and fully saturated with groundwater, the pore fluid pres-
sure is calculated as cwz, where cw is the groundwater specific weight. Finally, Eq. (12) becomes
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Fig. 2. Constitutive model of the vertical uniaxial compressibility for the Northern Adriatic basin (after Baù et al. (2002)). The dashed
profiles show the 68% and 95% confidence intervals on a double log–log plot.
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rz ¼ obg zð Þ � cw½ �z ð13Þ

For the Northern Adriatic basin an average overburden gradient function has been estimated by density log
surveys yielding the following expression for Eq. (13) (Baù et al., 2002):
rz ¼ 1:2218� 10�2 � z0:0766 � 9:8� 10�3
� �

z ð14Þ
In Eq. (14) z is in [m] and rz in [MPa]. Using rz from Eq. (14) in (9) allows for the calculation of cM as a
function of depth z only, so that cM can be assumed to be constant within any horizontal layer.

In the analysis that follows, an ensemble of equally likely spatial distributions of cM is obtained by
assuming a as a linear (function of z only), stationary, and ergodic stochastic process (de Marsily, 1986),
characterized by a log-normal distribution with mean value and variance as defined in Eqs. (10) and
(11). The stochastic realizations of a are generated using the method of Rice (1954) as modified by Shin-
ozuka and Jan (1972), and assuming an exponential covariance function
cov log a z1ð Þ; log a z2ð Þ½ � ¼ r2 � exp � z1 � z2j j
k

� �
ð15Þ
where k is the vertical correlation length.
3. Numerical experiments

The ensemble of spatial realizations of cM generated with the correlated random line process are used in
a test case to simulate land subsidence by a Monte Carlo simulation. The problem concerns a cylindrical
porous volume with a radius of 8000 m and a height of 5000 m consisting of a sequence of alternating sandy
and clayey layers with hydro-geological properties typical of the Northern Adriatic basin. Hydraulic con-
ductivity of sand (ksand) and clay (kclay) is assumed to decrease with depth from 10�5 to 10�7 m/s, and from
10�9 to 10�11 m/s, respectively (Ferronato et al., 2004). The Poisson ratio m is set to 0.3 (Teatini et al., 2000)
and the grain compressibility to 1.63 · 10�5 MPa�1 (Geertsma, 1973). The lower boundary is fixed and
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impervious; the lateral boundary is fixed, too, with a zero pore pressure variation enforced on it. At the
ground surface zero external stress and zero incremental pore pressure are prescribed (Baù et al., 2004).

A pumping of 1000 m3/day, evenly distributed over a cylindrical volume with radius equal to 500 m, is
assumed to take place from a sandy layer 20 m thick and 1000 m deep. In the present study we address land
subsidence at the steady state, so that the problem is uncoupled with the pore pressure solution independent
of cM. Hence the incremental pressure field p is provided by the deterministic solution to the classical steady
state flow equation
r Kij
rp
cw

� �� �
¼ f ð16Þ
where Kij are the components of the hydraulic conductivity tensor and f the forcing source/sink function.
The stochastic solution to the poromechanical problem is obtained in terms of the displacements u =
(ux,uy,uz)

T by solving the equations of equilibrium for an isotropic, generally heterogeneous, porous
medium
Gr2ui þ Kþ Gð Þ o divuð Þ
oi

¼ op
oi

i ¼ x; y; z ð17Þ
where the shear modulus G and the Lamé constant K are random variables related to cM through the
following:
G ¼ 1� 2m
2ð1� mÞcM

ð18Þ

K ¼ m
ð1� mÞcM

ð19Þ
The test problem is solved using an axi-symmetric configuration. The porous volume is discretized into
annular elements with a 3-node triangular cross-section, totalizing 8096 nodes, 15834 elements, and 87 hor-
izontal layers with thickness ranging between 10 and 250 m. The mesh structure is shown in Fig. 3 along
with the boundary conditions imposed on displacements. The pore pressure field at steady state is obtained
Fig. 3. Vertical cross-section of the FE mesh with the displacement boundary conditions.
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by solving the flow equation (16) in a cylindrical reference frame via the FE method. The average pore pres-
sure drawdown within the pumped volume turns out to be about 1.5 MPa. The pore pressure field thus ob-
tained is used as an external source of strength in Eqs. (17) solved by FE with the total stress formulation
(Gambolati et al., 2001) for each of the generated spatial realizations of cM.

The stochastic simulation is performed using an ensemble of 1000 cM realizations, with each cM distri-
bution generated over a vertical step of 5 m. For layers thicker than 5 m cM is computed as the mean of the
compressibility values comprised within those layer. An example of the difference between the original dis-
tribution of cM generated every 5 m and the actual values used in the discretized FE layers of Fig. 3 is
shown in Fig. 4. The number of cM spatial realizations (1000) proves sufficiently large so as to reproduce
at the mid-depth of each layer the average (expected) value and the 95% confidence interval prescribed by
the constitutive law (9).

Since the cM values are log-normally distributed because of the definitions of a and b (Eqs. (7) and (8)),
and the displacement in a poroelastic model is linearly dependent on cM, land subsidence is also expected to
be log-normally distributed. The frequency distribution obtained with the Monte Carlo simulation is com-
pared to the theoretical log-normal Probability Distribution Function (PDF) (Hald, 1952)
Fig. 4.
in each
/ gð Þ ¼ M
rg

u uð Þ ð20Þ
with M = loge = 0.4343, g land subsidence, and u(u) the normal distribution function
u uð Þ ¼ 1ffiffiffiffiffiffi
2p
p

r
e�

u2

2 u ¼ log g� log l
r

ð21Þ
Fig. 5 shows this comparison, assuming a correlation length k (Eq. (15)) equal to 50 m, for two points lo-
cated on the top surface, one at the symmetry axis (r = 0, maximum subsidence) and the other over the
outer boundary of the depleted cylindrical volume (r = 500 m). As expected, land subsidence fits quite well
into a log-normal distribution and the size of the confidence intervals decreases as we move farther from the
symmetry axis.

An additional piece of information provided by the stochastic approach is the probability that at some
points of particular interest the expected subsidence will exceed a limit threshold value gt. As is well known,
the probability that g > gt is obtained by integrating over the point of interest the PDF between gt and +1
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Fig. 5. Frequency plot (linebars) and theoretical (dashed profile) PDF of land subsidence at: (a) surface point with maximum
subsidence (r = 0 m); (b) surface point over the outer boundary of the depleted cylindrical volume (r = 500 m).
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P g > gtð Þ ¼
Z þ1

gt

/ gð Þdg ð22Þ
As an example, consider as a threshold value gt = 5 cm. At r = 0, the mean value for g is 4.65 cm and the
95% confidence interval is 2.88 < g < 7.14 cm. The probability of exceedance P(g > gt) turns out to be 34%.
At r = 2000 m, for instance, where the mean value for g is 3.00 cm and the 95% confidence interval is
2.02 < g < 4.32 cm, P(g > gt) turns out to be only 0.1%.

3.1. Sensitivity analysis

To gain a better insight on the impact of the cM uncertainty on the land subsidence prediction in different
field conditions, a sensitivity analysis has been performed for the following parameters:

(1) the correlation length k;
(2) the permeability contrast j = ksand/kclay;
(3) the pumped aquifer depth h.

3.1.1. Correlation length

The influence of the correlation length k is studied for the limiting cases k! 0 and k!1. An example
of the generated random cM vs. z for various k values is provided in Fig. 6 which helps understand how the
correlation length affects the cM realizations. The 95% confidence intervals for the predicted land subsidence
are given in Fig. 7 along with the subsidence profiles obtained from the cM constitutive law of Eq. (9) with
a = 1.0044 · 10�2 (mean value), and a = 5.1602 · 10�3 and 1.9546 · 10�2 (95% confidence interval limits).
When k! 0, practically obtained by setting k = 1 m, the cM in adjacent layers is not correlated and the 95%
confidence interval turns out to be quite narrow. By contrast, as k!1, practically obtained by setting
k > 10000 m, all cM are correlated and the stochastic simulation provide almost the same 95% confidence
interval as the one obtained with the extreme profiles of Fig. 2. The latter turns out to be the most conser-
vative assumption, as it provides the largest confidence interval.
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Fig. 6. Examples of cM stochastic realizations with: (a) k! 0 m; (b) k = 50 m ; (c) k = 500 m; (d) k!1.

3332 M. Ferronato et al. / International Journal of Solids and Structures 43 (2006) 3324–3336
3.1.2. Permeability contrast

The hydraulic conductivity assumed for sand and clay in each test problem is summarized in Table 1
along with the ratio j. Groundwater withdrawal is calibrated so as to achieve in any case a maximum pore
pressure drawdown approximately equal to 1.5 MPa within the pumped sandy formation. Hence, the effect
of decreasing j is that of increasing the volume of the depleted porous medium, as is shown in Fig. 8 which
provides the extent of the steady state drawdown in three test cases around the pumped aquifer.

The results obtained from the Monte Carlo simulation with k = 50 m are shown in Fig. 9. To perform a
meaningful comparison, land subsidence g(r) is normalized with respect to �gðrÞ, i.e. the mean value at the
radial distance r. Fig. 9a suggests that the prediction uncertainty, as quantified by the amplitude of the 95%
confidence interval, decreases as a larger porous volume is depleted. This is further evidenced in Fig. 9b,
where narrower PDFs of the normalized land subsidence at r = 0 correspond to smaller j values. This
behavior is due to the fact that land subsidence primarily depends on the compaction of the depleted med-
ium. For smaller j, the overall compaction is controlled by the cM of a larger set of adjacent layers and, as is
known from statistics, the size of the corresponding confidence interval decreases as the number of random
values within the group increases.
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Table 1
Hydraulic conductivity of sand and clay in the numerical test problems. The ratio ksand/kclay is denoted by j

ksand [m/s] kclay [m/s] j

Base case 10�5–10�7 10�9–10�11 10000
k1 10�5–10�7 10�8–10�10 1000
k2 10�5–10�7 10�7–10�9 100

Fig. 8. Pore pressure drawdown (in MPa) for the test cases: (a) base case; (b) k1; (c) k2. Groundwater pumping is calibrated so as to
attain a maximum pore pressure drawdown of 1.5 MPa.
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Fig. 9. (a) 95% confidence intervals of the normalized land subsidence obtained with the Monte Carlo simulation and different j
values; (b) PDF of the normalized land subsidence at the symmetry axis.
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3.1.3. Aquifer depth

Two further examples are discussed by using a pumped aquifer depth h of 500 m and 2000 m. As was
done previously, the normalized land subsidence gðrÞ=�gðrÞ is considered in order to compare meaningfully
the different test cases. Fig. 10 points to a very small difference among the test cases, with an almost neg-
ligible decrease of the 95% confidence interval size as h increases. This is accounted for by the general form
of Eq. (2), where a is the actual stochastic parameter with constant mean and variance. As h increases, rz

increases too and rb
z decreases, being the exponent b negative. The most notable consequence is that the size

of the confidence interval associated with cM decreases with depth, hence a reduced uncertainty is expected
as the depth of the depleted formation increases. Because of the exponential form of (2), however, such a
variation is very small for the depth of usual interest. Thus we can conclude that the depth h plays a
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negligible role on the uncertainty of g as is related to the stochastic geomechanical properties of the porous
medium.
4. Conclusions

The present paper addresses the influence of the geomechanical uncertainty of the porous medium on the
prediction of anthropogenic land subsidence due to subsurface fluid withdrawal. The study focuses on the
vertical uniaxial rock compressibility cM and uses a stochastic approach where cM is regarded as a random
spatial process. An axi-symmetric aquifer system is simulated with a stratified hydro-geological setting typ-
ical of a sedimentary basin with the geomechanical properties taken from the Northern Adriatic, Italy. A
basin-scale constitutive law for cM, log-normally distributed with depth-dependent mean and constant var-
iance, is derived from the statistical analysis of available in situ marker measurements (Baù et al., 2002) and
implemented into a poroelastic stochastic FE model based on a Monte Carlo simulation of an ensemble of
1000 realizations.

A sensitivity analysis to the cM vertical correlation length, permeability contrast between sand and clay,
and depleted aquifer depth is performed. The following results are worth summarizing:

• the correlation length k has a significant impact on the amplitude of the 95% confidence interval, which
increases as also k increases. In the limiting case with k!1 the largest confidence interval is obtained,
i.e. the one derived by Baù et al. (2002);

• a larger permeability contrast helps reduce the volume of the depleted porous medium, and hence
increase the uncertainty of the resulting land subsidence;

• the uncertainty of land subsidence prediction proves almost insensitive to the aquifer depth.

Finally, the results point out that the cM stochastic characterization may help define the quality of the
simulation and represent a first contribution to the evaluation of the geomechanical uncertainty on the reli-
ability of the predicted land subsidence. New on-going research is addressing the influence of the cM uncer-
tainty on the transient land subsidence where the flow field is also affected by the geomechanical response of
the porous medium.
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Baù, D., Ferronato, M., Gambolati, G., Teatini, P., 2001. Land subsidence spreading factor of the Northern Adriatic gas fields, Italy.
International Journal of Geomechanics 1, 459–475.
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