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Abstract

An algebra of subsets of a normal topological space containing the open sets is considered and in this context the uniform
exhaustivity and uniform regularity for a family of additive functions are studied. Based on these results the Cafiero convergence
theorem with the Dieudonné type conditions is proved and in this way also the Nikodým–Dieudonné convergence theorem is
obtained.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the Nikodým convergence and the Nikodým boundedness theorems for measures fail, in
general, in algebras of sets (see [4,5]) and that the same arrives for the Cafiero convergence theorem (see [6]). The
classical Dieudonné conditions [8] ensure that the Nikodým theorems are, with suitable conditions, true in algebras.
Many Dieudonné type theorems are known in literature [1–3,7,9–17].

In this paper we consider an algebra of subsets of a normal topological space containing the open sets and in this
context we prove the Cafiero convergence theorem with the Dieudonné type conditions; in this way we obtain also the
Nikodým–Dieudonné convergence theorem. The proofs are related with a study of uniform exhaustivity and uniform
regularity for a family of additive functions following the pattern utilized in [3]. We are aware that this method works
also in other more general situations, but we prefer for the sake of clarity to limit ourselves to the case of normal
topological spaces.
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2. Regular set functions

Let (Ω, τ) be a Hausdorff normal topological space, i.e., for each disjoint pair of closed sets C1,C2 there are two
disjoint open sets A1,A2 such that C1 ⊆ A1,C2 ⊆ A2. We will denote by R an algebra containing τ , and by C the set
of all closed subsets of Ω .

Definition 2.1. A set function μ :R → R is called C-regular if for every ε > 0 and every X ∈ R there exists H ∈ C
such that

H ⊆ X,
∣∣μ(Y )

∣∣ < ε for every Y ∈ RX\H .

We denote by ra(R,Ω, τ) the set of all finite additive C-regular set functions from R into R.
Let G be a subset of R, we will say that μ is G-exhaustive, exhaustive if G = R, if for every disjoint sequence

(Xn)n∈N of elements of G we have limk→∞ μ(Xk) = 0.
If (μn)n∈N is a sequence of functions from R into R and G is a subset of A, then we say that (μn)n∈N is uniformly

G-exhaustive if for every disjoint sequence (Xn)n∈N of elements of G we have limk→∞ μn(Xk) = 0 uniformly for
n ∈ N. It is clear what we intend saying that (μn)n∈N is uniformly C-regular.

Lemma 2.2. Let μ be a finite additive set function from R into R, then the following statements are equivalent:

(i) μ ∈ ra(R,Ω, τ);
(ii) for every ε > 0 and X ∈R there exist A ∈O such that

X ⊆ A,
∣∣μ(Y )

∣∣ < ε for every Y ∈RA\X;
(iii) for every ε > 0 and X ∈R there exist A ∈ τ and H ∈ C such that

H ⊆ X ⊆ A,
∣∣μ(Y )

∣∣ < ε for every Y ∈ RA\H .

We need some properties of C-regular set functions.

Lemma 2.3. Let μ ∈ ra(R,Ω, τ) and let ε > 0,B ∈ C and Γ ∈ τ with B ⊆ Γ . Then there exist A1,A2 ∈ τ such that

B ⊆ A2 ⊆ A2 ⊆ A1 ⊆ Γ,

∣∣μ(Y )
∣∣ < ε for every Y ∈RA1\B,

∣∣μ(Y )
∣∣ <

ε

2
for every Y ∈ RA2\B. (1)

Proof. Let A1,A
′
1 be two open sets such that

B ⊆ A′
1 ⊆ A1 ⊆ Γ,

∣∣μ(Y )
∣∣ < ε for every Y ∈ RA1\B,

∣∣μ(Y )
∣∣ <

ε

2
for every Y ∈RA′

1\B.

Then B and \A1 are two disjoint closed sets and so there exist two disjoint open sets A′ and A′′ such that

B ⊆ A′, \A1 ⊆ A′′.

Put A2 = A′
1 ∩ A′, then we have A2 ⊆ A′

1, A2 ⊆ \A′′ ⊆ A1, and this completes the proof. �
Lemma 2.4. Let μ ∈ ra(R,Ω, τ). Then we have for every A ∈ τ

μ(RA) ⊆ (
μ(τA) − μ(τA)

)−
.

Proof. Let X ∈RA. For every ε > 0 there exist G ∈ τ and H ∈ C such that

H ⊆ X ⊆ G ⊆ A,
∣∣μ(Y )

∣∣ < ε for every Y ∈ RG\H ,
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then we have∣∣μ(X) − (
μ(G) − μ(G \ H)

)∣∣ = ∣∣μ(X \ H)
∣∣ < ε

with μ(G),μ(G \ H) ∈ μ(τA). �
Lemma 2.5. A sequence (μn)n∈N of ra(R,Ω, τ) uniformly τ -exhaustive is also uniformly C-regular on every H ∈ C.

Proof. Let ε > 0 and H ∈ C. Suppose that A1, . . . ,An are τ -open sets such that

(i) H ⊆ Ai+1 ⊆ Ai+1 ⊆ Ai for every i ∈ {1, . . . , n − 1};
(ii) for every i ∈ {1, . . . , n}∣∣μj (Y )

∣∣ <
ε

2i
for every Y ∈RAi\H and for every j ∈ {1, . . . , i}.

By Lemma 2.3 there exists An+1 ∈ τ such that

H ⊆ An+1 ⊆ An+1 ⊆ An,∣∣μj (Y )
∣∣ <

ε

2n+1
for every Y ∈RAn+1\H and for every j ∈ {1, . . . , n + 1}.

Therefore we can construct, by induction, a sequence (An)n∈N of open sets such that

H ⊆ An+1 ⊆ An+1 ⊆ An,∣∣μj (Y )
∣∣ <

ε

2n
for every Y ∈RAn\H and every j ∈ {1, . . . , n}. (2)

To complete the proof it is enough to see that for every σ > 0 there exists m ∈ N such that∣∣μi(Y )
∣∣ < ε for every Y ∈ τAm\H and every i ∈ N.

Suppose the contrary. Then there exists σ > 0 such that for every p ∈ N there exists Y ∈ τAp\H and i ∈ N such that
|μi(Y )| > σ . Since, for every n, i ∈ N it is

μi(Y ) = μi(Y \ An) + μi(Y ∩ An)

and Y ∩ An belongs to RAn−1\H , for every n > i, we have
∣∣μi(Y ∩ An)

∣∣ <
ε

2n−1
.

Then

lim
n→∞μi(Y \ An) = μi(Y ) for every i ∈ N,

therefore there exists qi ∈ N such that∣∣μi(Y \ Ar)
∣∣ > σ for every r � qi.

We can now construct, by induction, two sequences of natural numbers, (ir )r∈N and (qr )r∈N, the second of them
increasing, and a sequence (Yr)r∈N of open sets such that

Yr ⊆ Aqr−1 \ H,
∣∣μir (Yr \ Aqr )

∣∣ > σ for every r ∈ N \ {1}.
From (2) it follows that (Yr \ Aqr )r∈N is a sequence of pairwise disjoint open sets and this contradicts the uniform
τ -exhaustivity of (μn)n∈N. �

We can observe that if (μi)i∈N is a sequence of ra(R,Ω, τ) uniformly τ -exhaustive form Lemma 2.5 it follows
that for every ε > 0 and H ∈ C there exists A ∈ τ such that H ⊆ A and |μi(Y )| < ε for every Y ∈ RA\H and i ∈ N.
But (Ω, τ) is normal then there exist two disjoint open sets Γ1 and Γ2 such that H ⊆ Γ1, \A ⊆ Γ2 and then

H ⊆ Γ1 ⊆ \Γ2 ⊆ A.

Therefore we have
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Lemma 2.6. If (μi)i∈N is a sequence of ra(R,Ω, τ) uniformly τ -exhaustive, then for every ε > 0, H ∈ C, and A ∈ τ

containing H , there exists F ∈ C and G ∈ τ such that

H ⊆ G ⊆ F ⊆ A,
∣∣μi(Y )

∣∣ < ε for every Y ∈ RF\H and every i ∈ N.

Lemma 2.7. A sequence (μn)n∈N of ra(R,Ω, τ) uniformly τ -exhaustive is also uniformly C-exhaustive.

Proof. Suppose that there exist ε > 0, a disjoint sequence (Hk)k∈N of closed sets and a subsequence of (μi)i∈N, that
for simplicity of notations we will yet denote it by (μi)i∈N, such that∣∣μk(Hk)

∣∣ > ε for every k ∈ N. (3)

Put

Bn =
n⋃

k=1

Hk for every n ∈ N,

and we choose σ > 0, by Lemmas 2.5 and 2.6, we can find A1 ∈ τ such that

B1 ⊆ A1,
∣∣μi(Y )

∣∣ <
σ

2
for every Y ∈RA1\B1

and for every i ∈ N.

In the same way we can find an open set A2 such that B2 ∪ A1 ⊆ A2,∣∣μi(Y )
∣∣ <

σ

22
for every Y ∈RA2\(B2∪A1)

and i ∈ N.

We observe now that

A2 \ B2 ⊆ (
A2 \ (B2 ∪ A1)

) ∪ (A1 \ B2) ⊆ (
A2 \ (B2 ∪ A1)

) ∪ (A1 \ B1).

Then, if Y ∈ RA2\B2
, there exist Y1, Y2 such that

Y1 ∈RA1\B1
, Y2 ∈ RA2\(B2∪A1)

, Y = Y1 ∪ Y2

and we have B2 ∪ A1 ⊆ A2,∣∣μi(Y )
∣∣ <

σ

2
+ σ

22
for every Y ∈RA2\B2

and i ∈ N.

Suppose now that we have A1, . . . ,An in τ such that

Bp ∪ Ap−1 ⊆ Ap for every p ∈ {1, . . . , n} (A0 = ∅),

∣∣μi(Y )
∣∣ <

p∑
q=1

σ

2q
for every Y ∈ RAp\Bp

and every i ∈ N,

and let (see Lemmas 2.5 and 2.6) An+1 be an open set such that

Bn+1 ∪ An ⊆ An+1,∣∣μi(Y )
∣∣ <

σ

2n+1
for every Y ∈ RAn+1\Bn+1∪An

and every i ∈ N.

We observe now that

An+1 \ Bn+1 ⊆ (An+1 \ Bn+1 ∪ An) ∪ (An \ Bn+1)

⊆ (An+1 \ Bn+1 ∪ An) ∪ (An \ Bn);
for every Y ∈RAn+1\Bn+1

we have Y = Y1 ∪ Y2 with

Y1 ∈RAn\Bn
, Y2 ∈ RAn+1\Bn+1∪An

,

and so

Bn+1 ∪ An ⊆ An+1,
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∣∣μi(Y )
∣∣ <

n+1∑
q=1

σ

2q
for every Y ∈ RAn+1\Bn+1

and every i ∈ N.

In this way we can construct by induction, a sequence (An)n∈N of open sets such that

Bn ⊆ An ⊆ An ⊆ An+1,

∣∣μi(Y )
∣∣ <

n∑
q=1

σ

2q
for every Y ∈ RAn\Bn

and every i ∈ N. (4)

By (4) we have, for every n ∈ N,

Hn+1 ⊆ An+1 \ Bn ⊆ (An+1 \ An) ∪ (An \ Bn),

then there exists Yn ∈ RAn+1\An
such that

∣∣μi(Hn+1)
∣∣ �

∣∣μi(Yn)
∣∣ +

n∑
q=1

σ

2q
<

∣∣μi(Yn)
∣∣ + σ for every i ∈ N. (5)

By Lemma 2.4 we can also find two elements A′
n,A

′′
n of τAn+1\An

contained in An+1 \ An such that
∣∣μi(Yn)

∣∣ �
∣∣μi(A

′
n)

∣∣ + ∣∣μi(A
′′
n)

∣∣ + σ ;
by the disjointness of the sequence (An+1 \ An)n∈N it follows that also the sequences (A′

n)n∈N and (A′′
n)n∈N are

disjoint and then, by the uniform τ -exhaustivity of (μi)i∈N we have that there exists m ∈ N such that∣∣μi(Yn)
∣∣ � 3σ for every i ∈ N and n � m.

From (5) we have∣∣μi(Hn+1)
∣∣ < 4σ for every i ∈ N and n � m,

a contradiction with (3) if we choose σ < ε/4. �
We arrive now to the main result of this section.

Theorem 2.8. A sequence (μn)n∈N of ra(R,Ω, τ) uniformly τ -exhaustive is uniformly exhaustive and uniformly
C-regular.

Proof. Suppose that there exist ε > 0, a disjoint sequence (Xk)k∈N of R and a subsequence of (μi)i∈N, that for
simplicity of notations we will yet denote it by (μi)i∈N, such that∣∣μk(Xk)

∣∣ > ε for every k ∈ N.

Let, for every k ∈ N, Hk be a closed set contained in Xk such that
∣∣μk(Y )

∣∣ <
ε

2
for every Y ∈ RXk\Hk

,

it follows∣∣μk(Hk)
∣∣ �

∣∣μk(Xk)
∣∣ − ∣∣μk(Xk \ Hk)

∣∣ >
ε

2
for every k ∈ N.

A contradiction because by Lemma 2.7 the (μi)i∈N is uniformly C-exhaustive. So (μi)i∈N is uniformly exhaustive.
We need now to prove that μi, i ∈ N, are uniformly C-regular. Let X ∈ R. We can construct by induction an

increasing sequence (Hn)n∈N of C and a decreasing sequence (An)n∈N of τ such that

Hn ⊆ X ⊆ An,

∣∣μi(Y )
∣∣ <

1
for every Y ∈RAn\Hn and i ∈ {1, . . . , n}.
2n
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Since (An \ Hn)n∈N is a decreasing sequence of R and we have proved that (μi)i∈N are uniformly exhaustive, then
by (2.2) of [5] we have that for every ε > 0 there exists m ∈ N such that for every n � m∣∣μi(Y )

∣∣ < ε for every Y ∈RAn\Hn and i ∈ N,

and this completes the proof. �
3. Cafiero–Dieudonné theorem

We are now able to prove the main results of the paper.

Theorem 3.1 (Cafiero–Dieudonné). Let (Ω, τ) be a Hausdorff normal topological space and let R be an algebra
containing τ . Let (μn)n∈N be a sequence of τ -exhaustive elements of ra(R,Ω, τ). Then (μn)n∈N is uniformly exhaus-
tive and uniformly regular if (and only if ) for every disjoint sequence (Ak)k∈N of τ and for every ε > 0 there exist
k,n0 ∈ N such that∣∣μi(Ak)

∣∣ < ε for every i � n0.

Proof. Let (Xk)k∈N be a disjoint sequence of τ and let

G =
{
X ∈ τ

∣∣∣ ∃Δ ∈ P(N) such that X =
⋃
k∈Δ

Xk

} (⋃
k∈∅

Xk = ∅
)

.

Then G is a σ -ring so the restrictions of the μi to G verifies the hypothesis of 2.11 of [5], then they are uniformly
exhaustive and we have

lim
k

μi(Xk) = 0

uniformly for n ∈ N. It follows that the (μn)n∈N is uniformly τ -exhaustive. The thesis is a consequence of Theo-
rem 2.8. �
Theorem 3.2 (Dieudonné convergence theorem). Let (Ω, τ) be a Hausdorff normal topological space and let R be
an algebra containing τ . Let (μn)n∈N be a sequence of ra(R,Ω, τ) which is τ -exhaustive and pointwise convergent
in τ . Then (μn)n∈N is uniformly exhaustive, uniformly C-regular and pointwise convergent to an exhaustive element
of ra(R,Ω, τ).

Proof. If (μn)n∈N is pointwise convergent to 0 then by Theorem 3.1 (μn)n∈N is uniformly exhaustive and uniformly
C-regular.

We consider now the general case, if (μn)n∈N is not uniformly exhaustive, then there exist ε > 0, a sequence
(Ak)k∈N of disjoint open sets, and a subsequence of (μn)n∈N, that yet we denote by (μn)n∈N, such that∣∣μk(Ak)

∣∣ > ε for every k ∈ N.

But every μn is τ -exhaustive then it is possible to construct a subsequence (μnr )r∈N of (μn)n∈N such that for every
r ∈ N we have∣∣μnr (Ak)

∣∣ <
ε

2
for every k � nr+1.

The sequence (μnr+1 − μnr )r∈N is a sequence of ra(R,Ω, τ), τ -exhaustive and pointwise convergent to 0 in τ , then,
by our previous observation, it is also uniformly exhaustive, but we have also, for every r ∈ N,∣∣(μnr+1 − μnr )(Anr+1)

∣∣ �
∣∣μnr+1(Anr+1)

∣∣ − ∣∣μnr (Anr+1)
∣∣ >

ε

2
for every r ∈ N,

a contradiction. Therefore also in the general case the (μn)n∈N is uniformly exhaustive and then, by Theorem 2.8 it is
also uniformly C-regular.

To prove the pointwise convergence of (μn)n∈N, let X ∈R and ε > 0, let A be an open set such that

X ⊆ A,
∣∣μi(A \ X)

∣∣ < ε for every i ∈ N.



P. de Lucia, E. Pap / J. Math. Anal. Appl. 337 (2008) 1151–1157 1157
Then we have, for p,q ∈ N,∣∣μp(X) − μq(X)
∣∣ �

∣∣μp(A \ X)
∣∣ + ∣∣μq(A \ X)

∣∣ + ∣∣μp(A) − μq(A)
∣∣

� 2ε + ∣∣μp(A) − μq(A)
∣∣,

and this completes the proof. �
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