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a b s t r a c t

REE composition of the carbonates of the auriferous quartz carbonate veins (QCVs) of the Neoarchean
Ajjanahalli gold deposit, Chitradurga schist belt, Dharwar Craton, is characterized by U-shaped chondrite
normalized REE patterns with both LREE and HREE enrichment and a distinct positive Eu anomaly. As
positive Eu anomaly is associated with low oxygen fugacity, we propose that the auriferous fluids
responsible for gold mineralization at Ajjanahalli could be from an oxygen depleted fluid. The observed
positive Eu anomaly is interpreted to suggest the derivation of the auriferous fluids from a mantle
reservoir. The location of Ajjanahalli gold deposit in a crustal scale shear zone is consistent with this
interpretation.

� 2012, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. All rights reserved.
1. Introduction

Epigenetic Archean orogenic gold deposits occur in quartz
carbonate veins (QCVs) or as disseminations in crustal scale shear
zones (Groves et al.,1988, 2003). So far,more than100deposits of this
nature have been reported in different parts of the world (Goldfarb
et al., 2005). From the field, petrographic, geochemical and fluid
inclusion studies, it has been shown that gold in this deposit is carried
in low salinity, H2O-CO2 � CH4 � NaCl rich hydrothermal fluids
(Goldfarb et al., 2005) in a pH range of 5e6 and redox control by
HSO4/H2S and CO2/CH4 buffer (Mikucki and Ridley, 1993). The fluid
transports gold, as a reduced sulfur complex (Groves et al., 2003).
Redox calculations of alteration assemblages show that most
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deposits formed by relatively reduced ore fluids, are characterized by
assemblages pyrite � arsenopyrite � stibnite in the lowest temper-
ature of sub-greenschist facies; pyrite� arsenopyrite� pyrrohtite at
intermediate temperature greenschist to lowamphibolites facies and
loellingite � arsenopyrite � magnetite � ilmenite � pyrrhotite in
high-temperature conditions of amphibolite-granulite facies
(Mikucki and Ridley, 1993). However, some deposits formed from
relatively oxidized fluids are characterized by assemblages contain-
ing magnetite or hematite at low to intermediate temperatures and
pyrrhotite� pyrite� chalcopyrite� ilmenite� spinel assemblage at
high temperature. In general, high-temperature deposits appear to
have formed at high values of f (O2).

HFSE (Th, Nb, Ta, Zr, Hf, Ti, Y, P, Al, Ga), REE and compatible
elements such as Sc and V are usually alteration insensitive
(Kerrich, 1983; McCuaig and Kerrich, 1998). Most deposits are
characterized by enrichments of associated elements such as As, Sb,
Se, Te, Bi, W and B, LILE (K, Rb, Ba, Li, Cs, Tl) and volatiles (H2O, CO2,
CH4 and H2S) as suggested by Kerrich (1983 and references
therein). Other major elements, such as Fe, Mg, Ca and Na are
variably added or depleted depending on the bulk composition of
host lithology (Kerrich, 1983).

In spite of having many characters in common, gold deposits
differ in terms of their economic viability from world class to
prospect level. Source of the gold mineralizing fluids has been
eking University. Production and hosting by Elsevier B.V. All rights reserved.
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a subject of debate. Mantle, felsic magma, lamprophyre melts,
circulating metamorphic and meteoric waters have all been
suggested (Kerrich and Fyfe, 1981; Burrows et al., 1986; Groves
et al., 1988; Nesbitt, 1988; Rock et al., 1989; Ridley and
Diamond, 2000).

The Neoarchean Dharwar greenstone belts in the Dharwar
Craton of southern India host a number of orogenic type gold
prospects and a few deposits that include a couple which are world
class deposits, namely the Kolar and Hutti gold deposits. Smaller
deposits which have been mined are at Bellara, Ajjanahalli, G.R.
Halli and Gadag. About 26 gold prospects occur in a 400 km long
Figure 1. (a) Distribution of gold prospects of Chitradurga schist belt vis-à-vis shear zones
et al. (2001) showing sample locations.
crustal scale shear zone along the eastern margin of the Chi-
tradurga greenstone belt in the Dharwar Craton including the
Ajjanahalli and G.R. Halli deposits that produced gold for about
a decade. Recently, based on C and O isotope studies of carbonates
of the auriferous quartz carbonate veins, Sarangi et al. (2012)
assigned magmatic/mantle source for the mineralizing fluids that
gave rise to Ajjanahalli and G.R. Halli deposits in common with
world class Kolar gold deposit (cf. Santosh, 1992). In this work, we
examine REE characters of the same carbonates from the Ajjana-
halli deposit to constrain redox conditions as well as source of the
auriferous fluids.
(after Radhakrishna, 1996), (b) Geological map of Ajjanahalli gold field after Prabhakar



Table 1
Stratigraphic sequence of the Archean rocks of the Dharwar Craton.

Orogenic event <2.6e2.5 Gaa Orogeny with polyphase deformation, greenschist to granulite
facies metamorphism, juvenile granitic magmatism, migmatization
and reworking of basement, late syntectonic thrusting and sinistral
strike-slip shearing

Schist belt formation from Archean sedimentary basins;
granulite formation in lower crust, formation of
Peninsular Gneiss by reworking of basement and
migmatization of Dharwar sequence, K-feldspar
granite/granodiorite emplacement including Closepet
Granite and other younger granitoids

Dharwar
Supergroup

2.72e2.66 Gaa Chitradurga Group Hiriyur Formations
Ingaldhal Formation
Vanivilas Formation

Conglomerate-greywacke-BIF deep water association
Pillow basalt-andesite-dacite-BIF deep water association
Polymictic/Oligomictic conglomerate
Quartz arenite-shale-stromatolitic cherty dolomite-
limestone-banded manganiferous iron formation
Shelf zone association

Unconformity
2.91e2.72 Gaa Bababudan Group Quartz pebble conglomerate-

quartz arenite-tholeiite-
rhyodacite-carbonaceous
argillite-BIF platformal to
shelf association

Non-conformity
3.4e3 Gaa Basement Gneisses and granitoids with

quartzite-metapelite-carbonate-
banded iron formation -
Ultramafic-mafic rock inclusions

a Geochronological informations have been taken from Jayananda et al. (2000) and references therein.
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2. Geology of the area

2.1. Regional geological setting

The Archean Dharwar Craton of southern India (Fig. 1) has
a w3300 Ma old TTG basement complex intruded by w3000 Ma
granodiorites. Volcanic and sedimentary supracrustal rock
sequence ranging in age from 2900 to 2600 Ma (Jayananda et al.,
2000) constituting the well known Dharwar Supergroup non-
conformably overlies this basement. The Dharwar Supergroup is
intruded by 2600e2500 Ma K-feldspar rich granitoids e the
Closepet Granite and its equivalents. The Neoarchean Dharwar
Supergroup is preserved as greenstone belts or schist belts, which
are the principal auriferous tracts of India (Radhakrishna and
Vaidyanathan, 2011). The litho-stratigraphic sequence of the
Dharwar Supergroup is given in Table 1. The Dharwar Supergroup is
divided into lower Bababudan Group and upper Chitradurga Group.
The Bababudan Group is sub-divided into the Kalasapura, Linga-
dahalli and Mulaingiri Formations, and the Chitradurga Group into
the Vanivilas, Ingaldhal and Hiriyur Formations (Swami Nath and
Ramakrishna, 1981). The Dharwar sequence was deformed by
superposed folding in a WNW-directed transpressional regime
(Chadwick et al., 1992). Early isoclinal folds formed during the first
phase folding were refolded coaxially during the second phase and
non-coaxially along NeS axial planes during the third phase (Naha
et al., 1996). During the last phase deformation, crustal scale
sinistral strike-slip shear zones developed within and at the margin
Table 2
Summary of field and petrographic character of carbonate rocks around Ajjanahalli (bas

Rock units Carbonate BIF Carbonated metabas

Outcrop BIF is brick red colored ankerite or minor
siderite and pyrite rich layers alternating with
cherts layers. (Fig. 2a).

Fine grained metaba
massive, generally n
with fine pyroclastic
rocks greenish black
veins (Fig. 2c).

Texture Fine to medium (�20 mm) sparry carbonate
with anhedral, deformed and elongated quartz
minerals. Carbonates occur either as massive
monomineralic phase laminated with
alternating chert/quartzite layers (Fig. 2b).

Fine (w10 mm) aggr
plagioclase feldspar,
Carbonate veins com
(20�>100 mm) calci

Mineralogy Quartz, ankerite and pyrite Actinolite, feldspar,
of the schist belts (Chadwick et al., 2000). All the known gold
occurrences in the Dharwar Craton, including the world class Kolar
and Hutti gold deposits, occur within these shear zones, mainly in
the Ingaldhal and Hiriyur Formations of the Chitradurga Group. The
Ajjanahalli deposit occurs in such a crustal scale shear zone in the
Chitradurga greenstone belt (Fig. 1).

2.2. Geological setting of Ajjanahalli gold deposit

The Ajjanahalli gold deposit is situated 80 km southeast of
Chitradurga (Fig. 1). It is a small deposit with 1.75 million tonnes of
gold ore reserve having an average grade of 3 g/t in themain central
block. It has earlier been mined by M/S Hutti Gold Mines Ltd., by
open-cast process. Quartz carbonate veins traversing the BIF carry
gold mineralization which is associated with pillow basalts. The
pillow lavas are devoid of vesicles or amygdales and the iron
formations are carbonate and sulfide (pyrite) bearing. The non-
vesicular nature of pillow lava and deposition of carbonate-sulfide
iron formations suggest that they accumulated in deep water
euxinic environment (cf. Srinivasan and Naha,1993). The auriferous
veins occur along NeS trending shear zones displacing the hinge
zones of folds with NeS axial planes (Prabhakar et al., 2001). Gold
mineralization is in the form of stringers and disseminations
associated with sulfide minerals. The mineralized zone shows
brecciation and wall-rock alteration including sericitization,
chloritization, muscovitisation, carbonatization, etc. Gold is
refractory and occurs as inclusions in pyrite and arsenopyrite.
ed on thin section/XRD studies).

alt Auriferous quartz carbonate veins (QCVs)

salt, pillowed and variolitic,
on-vesicular, associated
rocks-tuffs; metavolcanic
in color, show carbonate

Milky white QCVs have traversed BIF and
metabasalt. These are the main carriers of gold.
The length of veins vary from 10 to 80 m
(Fig. 2e). At the contact the host rocks are
sericitized or muscovitised.

egates of actinolite,
epidote and chlorite.
posed of coarse
te (Fig. 2d)

Sparry carbonates (generally: �20�200 mm,
sometimes up to 800 mm or more). Quartz grains
(generally 50�500 mm, sometimes up to 1 mm)
are anhedral and deformed (Fig. 2f).

epidote, chlorite and calcite Quartz, calcite.



Figure 2. Field photographs of Ajjanahalli and photomicrographs of samples studied. (a) Field photograph of carbonate BIF with alternating chert layers. (b) Photomicrograp of carbonate BIF (10�, cross polar). (c) Field photograph of
pillowed carbonated metabasalt. (d) Photomicrograph of carbonated metabasalt. (e) Field photograph of quartz carbonate veins. (f) Photomicrograph of quartz carbonate ins.
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Sarma et al. (2011) have reported 2520 � 9 Ma as the age of
mineralization. Hydrothermal origin has been deduced for ore
fluids based on fluid inclusion studies by Pal and Mishra (2004).
Though metamorphic devolatilization of the rocks of the Chi-
tradurga schist belt at deeper level was thought as the source of
auriferous fluids (Pal and Mishra, 2004; Kolb et al., 2004), recent C
and O isotope studies by Sarangi et al. (2012) have shown evidence
for fluids from mantle or juvenile magmatic source. We examine
REE evidence in this paper to understand better the source of the
fluids and also the redox nature of the fluid at the site gold
deposition.

3. Materials and methods

Samples of quartz carbonate veins (QCVs) and the host
carbonate and sulfide bearing BIF were collected from the faces in
the open-cast gold mine at Ajjanahalli located w3.5 km WSW of
Ajjanahalli village. A few samples of carbonate veins from carbon-
atized metabasalt, and carbonate facies BIF were also taken from
Table 3
d18O(&), REE (ppm) and trace element (ppm) data and QCV data of carbonates from aur
nahalli. d18O and mineral phases are based on XRD study (after Sarangi et al., 2012).

d18O(&), REE (ppm) and trace element (ppm) data of QCVs of Ajjanahalli

Element AJ-16(W) AJ-16(IV) AJ-16(WR

d18O(&) 16.94 23.80 18.56
La 3.56 5.70 6.29
Ce 4.10 8.46 10.75
Pr 0.49 1.07 1.48
Nd 1.86 4.46 6.34
Sm 0.36 1.13 2.04
Eu 0.28 0.61 1.11
Gd 0.52 1.47 2.31
Tb 0.12 0.30 0.60
Dy 0.90 1.70 3.70
Ho 0.26 0.38 0.82
Er 0.83 0.97 2.45
Tm 0.15 0.16 0.45
Yb 0.92 0.88 3.06
Lu 0.16 0.15 0.57
Sr 135.99 303.04 610.11
Ba 16.80 12.09 15.88
Zr 3.39 3.74 8.07
SREE 14.50 27.45 41.99
SLREE 10.37 20.82 26.90
SHREE 4.13 6.63 15.09
(La/Lu)N 2.25 3.87 1.14
(La/Yb)N 2.62 4.37 1.39
Eu/Eu* 1.96 1.45 1.56
Mineral phases Q þ Cc Cc þ Q þ
REE (ppm) and trace element (ppm) data of carbonate BIFs and metabasalt of Ajja

Element (ppm) AJ-13 AJ-6

La 1.93 2.40
Ce 2.61 3.29
Pr 0.36 0.43
Nd 1.33 1.58
Sm 0.28 0.38
Eu 0.17 0.25
Gd 0.37 0.42
Tb 0.09 0.10
Dy 0.52 0.64
Ho 0.14 0.16
Er 0.42 0.48
Tm 0.08 0.09
Yb 0.42 0.61
SREE 8.79 10.94
(La/Lu)N 2.50 2.17
(La/Yb)N 3.07 2.64
Eu/Eu* 1.66 1.88
Mineral phases Ank
the hills located w1 km SW of Ajjanahalli village for comparison.
Field and petrographic characters of the carbonate rocks studied
are presented in Table 2 and Fig. 2. Petrographic studies and XRD
have confirmed that the carbonate of the QCVs and metabasalts is
calcite and that of BIFs is ankerite (See Sarangi et al., 2012).

Carbonates were separated from the rock matrix and powdered
carbonate samples from the various rock types were analyzed for
REE using Inductively Coupled Plasma Mass Spectrometer (ICP-
MS), model Perkin Elmer Sciex ELAN DRC II at the National
Geophysical Research Institute, Hyderabad, India. Japanese Lime-
stone (JLs-1) international reference standard was used for check-
ing the accuracy.

4. Results

The REE data for carbonates from six quartz carbonate vein
samples, five from BIF and one from metabasalt (total 12 samples)
are presented in Table 3. Chondrite normalized REE patterns are
shown in Fig. 3a and b.
iferous quartz carbonate veins and associated rocks and carbonate BIFs of the Ajja-

)-2 AJ-16(V)2-hst AJ-16(V)2-vn AJ-16

11.41 11.49 13.60
8.94 8.23 3.66

13.94 12.62 4.20
1.82 1.56 0.48
7.58 6.36 1.83
1.86 1.63 0.37
0.87 0.84 0.29
2.18 2.04 0.54
0.48 0.47 0.12
2.97 3.13 0.89
0.62 0.66 0.26
1.64 1.77 0.81
0.27 0.30 0.15
1.70 1.78 0.90
0.27 0.27 0.16

327.06 767.33 136.31
12.71 9.85 17.38
26.20 2.87 3.17
45.15 41.66 14.65
34.14 30.41 10.53
11.01 11.25 7.16
3.46 3.15 2.41
3.56 3.13 2.75
1.32 1.41 1.98

CcL Q þ Cc þ Ank

nahalli

AJ-14 AJ-9 AJ-5 (metabasalt)

1.63 1.51 5.33
2.16 2.26 13.09
0.26 0.28 2.17
1.00 1.02 10.89
0.22 0.20 3.55
0.16 0.13 1.25
0.29 0.27 3.91
0.06 0.07 0.97
0.41 0.40 6.46
0.11 0.11 1.39
0.33 0.30 3.74
0.07 0.06 0.66
0.33 0.32 3.70
7.06 6.98 57.64
2.73 2.79 1.06
3.38 3.16 0.97
1.90 1.75 1.02



Figure 3. (a) Chondrite normalized REE plots of QCVs of Ajjanahalli, and (b) Chondrite normalized REE plots of carbonate BIFs and metabasalt of Ajjanahalli.
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4.1. REE of carbonates of QCV

The SREE values of QCV carbonates range between 14.5 and
45.14 ppm (average 30.9 � 14.05). Although, there is a mild
enrichment of LREE over HREE with (La/Yb)N ranging between
2.62 and 4.37 (average 2.97 � 1.00) and (La/Lu)N ranging from
1.14 to 3.87 (average 2.71 � 0.98). Chondrite normalized REE
plots (Fig. 3a) clearly show concave upward U-shaped REE
pattern with enrichment of both LREE and HREE. A distinct
positive Eu anomaly (Eu/Eu*) in the range of 1.32e1.98, average
1.61 � 0.3 is observed.
4.2. REE of carbonates of BIF

The SREE of BIF carbonates range from 6.98 to 10.94 ppm
(average 8.44 � 1.86 ppm). The chondrite normalized REE plot
(Fig. 3b) shows LREE enriched and flat HREE patternwith a positive
Eu anomaly (Eu/Eu* range: 1.01e1.90; average: 1.8 � 0.1). Slight
enrichment of LREE over HREE is reflected also by from (La/Lu)N
values ranging between 1.06 and 2.79 (average: 2.55 � 0.3) and
(La/Yb)N ranging between 2.64 and 3.38 (average 3.06 � 0.3). In
respect of having low abundance of SREE and positive Eu anomaly,
the iron formations resemble the Archean sedimentary formations



Figure 4. Correlation diagrams (a) Zr-SREE, (b) Zr-SHREE, (c) Sr-SREE, (d) Sr-SLREE, (e) Sr-SHREE, (f) Sr-Ba, (g) Sr-Eu/Eu*, (h) d18O-SLREE, (i) d18O-SHREE, (j) plot of d18O (smow) vs
d13C (pdb) for the carbonates of Ajjanahalli (Data taken from Sarangi et al., 2012) from mineralized quartz carbonate veins.

Figure 5. Chondrite normalized REE plot of different wall rocks after Kolb et al. (2004). (a) Chlorite-actinolite schist; (b) Phyllites; (c) Quartz-sericite schist; (d) Host BIFs.
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deposited in reducing waters (cf. Chen and Zhao, 1997; Tang et al.,
in press).

4.3. REE of carbonates in metabasalt

The SREE of the carbonates of metabasalt is of the order
57.64 ppm and ismuch higher than that in carbonates of QCV or BIF.
Chondrite normalized REE plot of carbonate frommetabasalt shows
flat REE pattern without any significant enrichment of LREE over
HREE ((La/Lu)N: 1.06; (La/Yb)N: 0.97). Also no significant Eu
anomaly is observed (Eu/Eu* range: 1.02) (Fig. 3b).

5. Discussion

In the following discussion we critically evaluate the reasons for
the observed REE patterns of the auriferous QCVs which show
characteristic positive Eu anomaly. Kontak and Jackson (1999)
proposed that such REE patterns could be due to one of the
following reasons:

(i) Presence of micro-inclusions of minerals such as zircon,
scheelite, monazite, xenotime;

(ii) Contamination from wall rocks;
(iii) Presence of Eu rich feldspar;
(iv) Post-depositional alteration;
(v) Inherent nature of the fluid from the source with appropriate

temperature, pH and oxidation (i.e. f (O2)) condition of the
fluid.

Petrographic studies of the analyzed QCVs do not show the
presence of mineral phases such as zircon, monazite, apatite, xen-
otime or scheelite in them. X-ray diffraction data corroborate this
inference. However, it may be stated that XRD cannot detect any
mineral whose abundance is less than 5%, SREE values of QCVs are
very low. Presence of one or more of the above mineral phases
would have resulted in higher abundances of REE which is not the
case. Also, there is no correlation between Zr-SREE (Fig. 4a) and
Zr-SHREE in binary plots (Fig. 4b). In the light of the foregoing
discussion, we infer that the REE abundances and patterns of the
QCV carbonates cannot be due to the contribution of REE rich
mineral phases such as zircon or monazite etc.

There is a poor positive correlation between Sr-SREE (Fig. 4c),
Sr-SLREE (Fig. 4d), Sr-SHREE (Fig. 4e) and negative correlation
between Sr-Ba (Fig. 4f), and Sr-Eu/Eu*(Fig. 4g), These relationships
preclude plagioclase as a contributing mineral to the REE abun-
dance or Eu/Eu* anomaly.

In themetamorphic devolatilizationmodel for the orogenic gold
deposits, the auriferous fluid is considered to be derived from the
breakdown of hydrous and carbonate minerals during progressive
metamorphism (Kerrich and Fyfe, 1981). Comparison of REE
patterns of QCVs with those of associated rocks (Fig. 5, Kolb et al.,
2004) shows that REE patterns of QCVs in respect of having slight
LREE enrichment and positive Eu anomaly are some what similar
only to that of host BIF. However, the total REE of the former are
much higher than the latter. If fluids for QCVswere derived fromBIF
during metamorphism, mass balance considerations require that
the REE pattern for the carbonates of QCVs and BIFs should be
complementary. But the REE pattern of QCVs is not complementary
to those of the BIFs.

The QCV carbonates are characterized by a wide range of d18O
values from a very low 11.41& to values as heavy as 23.8&. The
cross plot d13C/d18O for the QCV carbonates is given in Fig. 4j after
Sarangi et al. (2012). It is obvious that there is no correlation
(R2 ¼ 0.02) between the two. However, a trend nearly parallel to
d18O axis is observed. This may be due to partial resetting of d18O
caused by alteration by fluids with lower fluid/rock ratio as
exemplified by Tang et al. (2011, in press) and Guerrera et al. (1997).
It is however pertinent to note that such heavy d18O (up to 23.8&) is
also found in many altered igneous carbonates like in carbonatite,
which have been affected by meteoric water alteration at very low
temperature (Le Bass, 1999; Gwalani et al., 2010).

Use of REEs for genetic interpretations relies largely upon the
fact that these elements are generally immobile (Barth et al., 1993;
Cousens et al., 1993) although there are exceptions (Wendlandt and
Harrison, 1979; Rolland et al., 2003). But such mobilization only
takes place at a very high water-rock ratio (Bau, 1993). Though
a partial resetting of d18O cannot be ruled out, lack of correlation
between d18O and LREE (Fig. 4h) and d18O and HREE (Fig. 4i)
signifies no effect of low temperature alteration on REEs. Based on
the discussion presented above, we consider the REE patterns of
QCVs as pristine signature and could reflect inherent nature of the
fluid from the source.

QCVs with strong positive Eu anomaly have been reported in
auriferous quartz veins of Sovetskoye orogenic gold deposits,
Russia (Tomilenko et al., 2008, 2010) which has been attributed to
migration of reducing gold bearing fluids enriched in Eu2þ along
faults zones from lower part of continental crust or mantle to the
sites of ore deposition (Taylor and McLennan, 1985). Raman Spec-
troscopic analysis of fluid inclusions in quartz of this deposit has
revealed highly reduced fluid systems in auriferous zones with CO2/
CH4 � 22. Similar scenario holds good for the Ajjanahalli gold
deposits. The deposit is located on a 400 km long crustal scale shear
zone known as Chitradurga Boundary Shear Zone (Kolb et al.,
2004). Such crustal scale shear zones have been proposed
to penetrate very deep to tap CO2 rich fluids frommantle (Pili et al.,
1997). The d13C composition of the QCV carbonates (�5.5 � 1.3&),
and calculated fluid d13C (�5.81 �1.14&) reported by Sarangi et al.
(2012) is in favor of mantle source of the fluids for the Ajjanahalli
deposit. Narrow range of d34S (2.1e2.7&: Kolb et al., 2004 and
3.3e4.6&: Sarvanan and Mishra, 2009) of Au-bearing sulfides of
this deposit also indicate mantle/magmatic sulfur. Pal and Mishra
(2004) have reported CO2/CH4 ratio of 7.13 for the fluids by
Raman Spectroscopic study of fluid inclusions of this deposit. This
indicates highly reduced nature of the ore fluid.

Positive Eu anomaly arises from low oxygen fugacity condition
of the fluid (Drake andWeill, 1975; Bau,1993; Chen and Zhao,1997).
Chen and Zhao (1997) have suggested that when f (O2) is low the
anions will be prevailed by soft bases such as HS�, S2�, SCN�, S2O3

2�,
CO, CH4, and low values of Eu3þ/Eu2þ. Eu is dominated by Eu2þ. As
a kind of acid, Eu2þ is softer than trivalent REE ions (R3þ) including
Eu2þ which are all hard acids. Eu2þ is easier than R3þ to combine
with soft bases into stable complexes and to precipitate fromwater
thereby generatingþve Eu anomaly. Hence the positive Eu anomaly
of carbonates of QCVs indicates that auriferous fluids were char-
acterized by low oxygen fugacity which is also supported by
reduced nature of the fluid (CO2/CH4 ¼ 7.13, Pal and Mishra, 2004).

According to Cameron and Hattori (1987) such fluids give rise to
smaller gold deposits compared to the fluids that are characterized
by high oxygen fugacity fluids which produce world class deposits.
The small tonnage of gold deposits of Ajjanahalli in the Dharwar
Craton supports this inference.

6. Conclusion

REE evidence is in favor of the formation of auriferous quartz
veins from reducing fluids derived from mantle source and chan-
neled through crustal scale shear zone traceable along the eastern
margin of the Chitradurga schist belt in the Dharwar Craton. The
strong positive Eu anomaly shown by QCV carbonates serves as
evidence for low oxygen fugacity (reduced nature) of the fluid.
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