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Abstract

We prove an integration by parts formula on the law of the reflecting Brownian motion
X := |B] in the positive half line, wheréB is a standard Brownian motion. In other terms,
we consider a perturbation of of the form X*= X + ¢k with h smooth deterministic function
and ¢ >0 and we differentiate the law ak® at ¢ = 0. This infinitesimal perturbation changes
drastically the set of zeros oK for any ¢>0. As a consequence, the formula we obtain
contains an infinite-dimensional generalized functional in the sense of Schwartz, defined in
terms of Hida’s renormalization of the squared derivativeBoénd in terms of the local time
of X at 0. We also compute the divergence on the Wiener space of a class of vector fields not
taking values in the Cameron—Martin space.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we want to prove an infinite-dimensional integration by parts formula
with respect to the law of the reflecting Brownian motion (RBM) :=|By — al,
0 € [0, 1], whereB is a standard Brownian motion anrde R.
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Integration by parts formulae on infinite-dimensional probability measures are an
important tool in a number of topics in stochastic analysis. Typically, given a stochastic
processX, one considers the law of an infinitesimal variati®n := X + ¢h, whereh
is a process in a suitable class, and one tries to differentiate the |2 of.r.t. ¢ at
¢ = 0. In most cases one exploits a quasi-invariance property, i.e. one choossesch
a way that the law ofX*¢ is absolutely continuous w.r.t. the law &t see the mono-
graph[10]. If this is possible, then the problem is reduced to differentiate the density.

This project has been implemented e.g. for a large class of diffusiori& inr in
Riemannian manifolds, see e[d,7,6], and for Poisson measures, see {lg. Recently
integration by parts for a class of processes with value®jmo), the Bessel bridges
of dimensiond > 3, have been computed: sgi2,13]

However, the case of processes with a non-trivial behavior at a boundary remains an
open problem. A typical example of such processes is the RBM, which takes values
in [0, c0) and has a local time at the boundd}.

In Section 4 of[2] J.-M. Bismut developed a stochastic calculus of variations for
the RBM X = |B — a|, with the aim of studying transition probabilities of boundary
processes associated with diffusions. However, the resu[@] @oncern only variations
X +eh of X with the crucial propertys : h; = 0} = {r : X; = 0}. In this case the quasi-
invariance property holds. Notice thhtis necessarily a non-deterministic process.

In this paper, we consider perturbatioki§ = X +¢h of X = |B —a|, with h smooth
deterministic function with compact support {8, 1). In this case, the approach based
on the quasi-invariance fails, since the law Xf is not absolutely continuous w.r.t.
the law of X if ¢ > 0 andh not identically 0: see the argument at the end of this
introduction.

As a consequence of the lack of quasi-invariance, the integration by parts formula we
obtain does not contain only the law Bftimes suitable densities, as it is usual in the
Malliavin calculus, see e.dg7], but also an infinite-dimensional generalized functional,
in the sense of Schwartz: see Theor2r8 below.

This generalized functional is defined in terms of Hida’s square of the white noise,
i.e. a renormalization of the squared derivativeByfdefined e.g. if5], and in terms
of the local time ofB at 0: see Theorerg.1 below.

It turns out that this problem is closely related with the computation of the divergence
on the Wiener space of a class of vector fields not taking values in the Cameron—Martin
space. The divergence of vector fields taking values in the Cameron—Martin space is
typically an LP-variable: see the monograghi]. The divergence we obtain is not an
LP-variable but a generalized functional related with the one discussed above: see
Theorem2.2 below.

We show now that the law of? is not absolutely continuous w.r.t. the law of
X =|B —al if ¢ >0 andh is not identically 0. In the case mil < 0, with positive
probability min X¢ < 0, while X > 0 almost surely, so we can suppdse: 0. Let| be
a non-empty interval wherg > 0 and define the set of continuous paths o\@&r]:

QF = {w :min(w; — ehy) = O} .
tel

We claim thatP(X® € Q°) > 0 while P(X € Q°) = 0.
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Indeed,X® € Q° if and only if there existsx € I such thatB; = a. Since this event
has positive probability, thefi?(X® € Q°) > 0. On the other hand

P(Xec Q) = P(B—acQ) + P(a— B e Q).

By the Girsanov Theorem, the law 0B; —a — ¢h; : 7 € I) is absolutely continuous
w.r.t. the law of (B; : t € I), with Radon—Nikodym density. In particular,

P(B—aecQf) = [E[p L(min, B:O)]

but the r.v. min B has a continuous density, so tHatmin; B=0=0=P(B —a €
Q°). Arguing analogously fof®(a — B € Q°) we obtain thatP(X € Q°) = 0.

2. Main results
Let (By : 0 € [0,1]) be a standard Brownian motion ard:={k : [0,1]— R

continuous,kg = 0}. We denote byu the law of B on C: then (C, w) is the classical
Wiener space. We introduck:= L2(0, 1) with scalar product:

1
(h,k)::/ kohgd0, |h||?:=(h,h), h,kelL.
0

We consider the following function space @n the set Lip(L) of F : L+— R such
that

3¢>0: |Fthy—F&)| <M h—k|, hkelL.

Notice that all functions in Lip(L) are Lipschitz on balls oL, with constant growing
at most exponentially with the radius.
Let (p,)e~0 be a family of smooth symmetric mollifiers dR, i.e.

1

1
lpdx =1 pkx) = p(—x).

poi=n(2). pecErn. pzo0 [

We denote ford € [0, 1], £ € C:

1
28,9 = (p,x)g = /0 pe(o— 0 sda,

. d
lg= Lo = 2g be0 = (=P * £)g.
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With this definition, we denote throughout the paper

:Bsz,e: = (1536,0)2 - [E[(Bg,o)z], 0 [0, 1].

Here, we regularizé, we differentiate the regularizatioB; ., we square the derivative
and finally we center this r.v. by subtracting the mean.

Let (Lg : 0 € [0, 1]) denote the local time oB ata € R, defined by the occupation
times formula

0 0
(s, Bg)ds = / / W(s,a)dLida, 0€][0,1] (2.1)
0 R JO

for all bounded Borel) : [0, 00) x R~ R, see Chapter VI of9]. Finally, let C.(0, 1)
denote the space of continuobswith compact support in0, 1) and Cf(O, 1) the set
of h € C.(0, 1) with continuous second derivative.

Then we can state the first theorem:

Theorem 2.1. For all h € C.(0,1) and F € Lip,(L), there exists the limit
1 .
lim [E[F(B)fo ho :BZy: dLZ}
1 .
=: [E[F(B)/O hg :BZ: dL;;]. (2.2)

In the r.h.s. of 2.2), :Bg: is the renormalization of the square of the derivative of
B, i.e. Hida's square of the white noise: sinBeis not differentiable, the expression
B2 is not well defined; nevertheless, subtracting a diverging constant, we obtain
convergence to a generalized functional on the Wiener space. This is made rigorous by
the white noise analysis, a generalization to infinite dimension of Schwartz’'s Theory
of Distributions, see e.g[5]. However, the convergence of the particular functional
defined by 2.2) does not seem to be covered by the existing theorems in the literature,
because of the integration w.r.t. the local time process.

Notice that Theoren2.1 defines the r.h.s. of2(2) through the limit in the L.h.s.: this
can be unsatisfactory and it seems reasonable to look for a direct way of computing
the functional onF € Lip,(L): this is done in the last result of the paper, Corollérg
below. We remark that it is crucial for the application to the RBM given in Thed2e3n
below that the limit in 2.2) exists for a large class of Lipschitz-continuous functions
on L, like Lip,(L).

Before stating the second theorem, we need a few more notations. We introduce
the Cameron—Martin spacHl:={h € C : k' € L, h(0) = 0}. We also consider a
second function space dn the seth(L) of all F € Lip,(L) with continuous Fréchet
differential VF : L — L. Notice thatV F satisfies

Jc¢>0: |VFW)| <M pelL.
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For any ¢:R+— R with continuous derivative and any smooth deterministic
h:(0,1)— R with compact support, we can define the following vector field
over C:

K:C—C, K :=h ¢ ().

Notice thatC does not take values in the Cameron—Martin spHce since in general
the regularity ofg’(w) is not better than that of» € C. Therefore the divergence of
K on the Wiener space cannot be computed with the classical theory of the Malli-
avin calculus, se¢7]. One of the results of this paper, given in Theor@m, is the
computation of this non-classical divergence.

During the paper, we shall considerin the class

ConvR) := [(pl — ¢y, ¢; : R— R convex

Je>0: || < e, VxeR,i:l,Z}.

If F e Cel(L), h € C.(0,1) and ¢ € ConvMR), then we can define the directional
derivative of F at w € C along K(w)

F(o+¢eh @' (w) — F(w)

On o' (o F(w) = lim
h¢'(w) ( ) e 0 e

Theorem 2.2. For all ¢ € ConvR), 1 € C?(0,1) and F € CX(L) the following
integration by parts formula holds

1
E[0n g F(B)]=—E |:F(B) /O b @(By) dO}
1 .
+/ [E[F(B)/ hg :Bg:sz} ¢’ (da). (2.3)
R 0

We notice that an infinitesimal transformation alofigloes not preserve the absolute-
continuity class of the Wiener measure. For instance, in the gdsg = r2, the
infinitesimal transformation alongf is B+ B + ¢h¢’(B) = B(1+ 2¢h) and it is well
known that the laws oB and B(1 + 2¢h) are singular ifeh # 0. This explains why
the r.h.s. of 2.3) contains a term, the second one, which is not a measure but a
generalized functional ove€. We treat the case(r) = r? and h = 1 separately in
Section 7.

We can now turn to the reflecting Brownian motioh:=|B — a|, for somea > 0.

For all smoothf : C+— R andh € CCZ(O, 1), by applying 2.3 to F(w):= f(lw — a|)
we obtain the following:
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Theorem 2.3.We setX :=|B — a| and we denote bﬂg : 0 € [0, 1]) the local time
of X at0. Then for allh € C?(R) and f € CX(L):

1 1 .
E[onf(X)] = —[E[f(X)/O h’H’ngH:| + [E[f(X)/O hy B deg]. (2.4)

By Tanaka’s formula® = 2 L%, see Chapter VI of9]. Moreover f(X) = f(|B—al).
Therefore the second term in the r.h.s. 8f4f is defined by 2.2).

We give a heuristic argument motivating the result of Theo@ If F € C1(L),
then the classical integration by parts formula for the Wiener measure states:

1
E[onF(B)] = [E[F(B)/ h/edBo}
0
for all deterministich € H1, i.e. such that:’ € L2(0,1) and #(0) = 0.

Consider now a procesdCy(B) : 0 € [0, 1]) such that

1. Ky = fOH K, ds, with K(B) adapted and uniformly bounded.
2. There exists a continuou®y » (o) : 0, 0 €10,1)) s.t. for allk € HL:

d
— Ko(w + ¢k)
de

1
= / Qpo@kydld, 0e[0,1], weL.
e=0 0 ’

Then the integration by parts formula becomes

1 1
E[ox F(B)] = [E[(/O Ko(B)dBy — /O QQ,O(B)de) F(B)].

We set nowKy(w) :=hy ¢'(wy), whereh € CCZ(O, 1) and ¢ : R— R is twice contin-
uously differentiable with bounded derivatives. In this c&Seis adapted but not a.s.
in H1, since’(B.) has a non-trivial martingale part. Moreover for ale H?!

= hg¢"(wp) kg, 0€[0,1]

d
— Ky(w + ¢k)
de e=0

so that Q¢ = hg@"(wg) 6(0 — 0'), where § is the Dirac function. In particular
Qp.0 = hg ¢ (wy) 6(0) is ill-defined, sinced(0) = co. However, arguing formally, we
can write

1 1
/0 Qpo(B)d0 = /O ho @' (Bg) 5(0) d0.
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Moreover, pretending thaB is differentiable andiBy = Byd0, we obtain

L. 1d , .
/O ICg(B)dB@:/O ﬁ[h(p(B)] Bd0

1 1
:/ h' ¢'(B) BdO +/ h¢"(B) B d0.
0 0

Since ¢/(By) By = %@(Bo), integrating by parts ovef0, 1] in the first term of this
sum, we obtain

1 1
fo Ko(B)dBy — /o Q.9(B) d0
1 1
= —[ h" o(B)d0 +/ h:B%:¢"(B)do,
0 0

where: B2:= B2 — §(0). In order to get 2.3 we apply the occupation times formula

(2.2) formally
1 . 1 -
/ h:B%:¢"(B)d0 = / [/ h:BZ:dLZ)} ¢ (da).
0 R 0

The paper is organized as follows. In Section 3, we prove that Theofeinand
2.2 holds for allF in a suitable space of test functions. In Section 4, we introduce an
infinite-dimensional Sobolev space @hand several related functional analytical tools.
We prove Theorem&.1-2.3 in Section 5, postponing the proof of the main estimate,
given in Lemmab.3 to Section 6. Finally, in Section 7 we discuss the particular case
of quadratice.

We denote byC,(R) the space of bounded continuous real functionsRoand by
Cﬁ(R) the set of f € C,(R) such theith derivative off belongs toC,(R) for all
i=1... k.

We will use the letterx to denote positive finite constants whose exact value may
change from line to line.

3. White noise calculus

In this section, we prove that formula2.2) and @.3) hold for all F in the following
space of test functions oves:

Exp(C) :=Sparfexp((-, k)) : k€ C},

i.e. we prove the following:
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Proposition 3.1. Let & € C.(0,1), and a € R. Then for all F € Exp(C) the limit in
(2.2 exists

Proposition 3.2. Leth € CCZ(O, 1) and ¢ € ConR). Then for all F € Exp(C) formula
(2.9 holds

Propositions3.1 and 3.2 show that Theorem&.1 and2.2 hold for all F in a suitable
space of test functions. The proof of this result is elementary and based only on the

Cameron—Martin theorem and on It6’s formula.
We introduce the operator

1
Q:L— L, ng::/ Onoksdo, 0€]0,1].
0

For all » € L we haveQh € H! and for allk € H:
(Q(W),K') = (h, k). (3.1)

Moreover, the law ofB in L is the Gaussian measure with mean 0 and covariance
operatorQ, i.e.

[et] = BOH, ger,

By the uniqueness of the Laplace transform, we obtain the following version of the
Cameron—Martin formula: for all bounded Borél: C — R

E [(D(B) e<B’k>] — 2(OKK F[g(B + Qk)], ke C. (3.2)

This simple formula is crucial in white noise analysis, in particular in the definition of
the so-calledS-transform: see e.g. Chapter 2 |&.
We set fore < min{6, 1 — 0}

—i[52.] = 00 : _ 2 _ lpl?
coo=E[B2y] = (ol =00l =) = I =01 = - (33)

where in the third equality we us&.0). We also define

2
2, xy oy —0
A0, x,y) i =x+ o + —492 , 0€(0,1), x,yeR. (3.4)

The proof of Propositior8.1 is based on the following:
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Lemma 3.3. For all y € C,(R), k e C, K:=Qk, 0 €[e,1—¢] C (0,1)
.p2 L BR| _ i0kk , /
[E[lp(B@).B&O.e ] — ot [E[lp(Bg+K@) 0. K., B@)]. (3.5)
Proof. We fix 0 € (0,1) and set
o
L= 1[0,9](0') 5 + 1(0,1](0'), Bs:=Bs — Byls, o€l0,1].
Then  and By are independent, i.e. for atb : C — R bounded Borel
E[y/(Bg) B(B)] = /R N, 0)(dy) W) E[®(B+y0)].

Then by B8.2)

[E[l//(Bg) : Bzgzew’k)]
_ horbE [zp(Bg +Kp) [((B + K);,g)2 - CC’9:|:|

_ e%<Qk,k>/RN(o, 0)(dy) ¥(y + Kp) |:[E [((p’ Fyet K);,())Z] - cg,o} .

Sinced € [¢,1 — ¢], we have

1 1
g = (pext)g = /Pg(a—e)él[o,e](a) do = —.

Then easy computations yield
. \2
EL(B+ye+K),) | = oo
2 2 2
= (Ké,()) + 2y Kty + ¥ (4.0) +E [(51;,0) ] —Ce
2y 1,
= (ki) + Ko+ 2070,

This yields the thesis. [J
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Proof of Proposition 3.1. Let 2 € C.(0, 1). Multiplying (3.5 by &y and integrating
in 0 we have

1
E|:e<3’k>/o hg: B2 :(By) d@}

1
= [E|:e(B’k)/c; hg M0, K/ g, By — Kg) Y (Bp) d@].

By the occupation times formul& (1), this implies for alla € R

1 1
[E[e““)fo ho :ng:dLg} = [E|:e<B’k>/0 ho (0, K;ﬁ,a—Kg)dLg].

Since for allk € C we haveKé 0= Ké ase¢ — 0, we obtain

1 1
[E[e<3,k>/0 h():BgzdL‘é} = l@OE[aB*“/O hO;ngzsz]

1
= [E|:e(3'k>/ ho (0, K}, a — Kg)dL‘;)]. O (3.6)
0

In Lemma3.3, we have in fact computed the Laplace transform of the distribution
on the Wiener space defined bg.2).

Corollary 3.4. Forall a e R, h € C.(0,1) andk € C

1
E |:e(B’k>/0 hy: Bg: dL‘éi|

1 —(a—Ky)?/20
1 e
= 2(0Qkk) / hg ———— A(0, K(/), a— Kp)do,
0

210
where 1 is defined in(3.4).

We turn now to the proof of PropositioB.2. For ¥, := exp({-, k)), k € C, we have

Yi(w +eh @' () — Yi(w)
¢

1
o Vi) = lim = Wi [ kaho ¢'ton) do,
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Therefore, by 8.2), the l.h.s. of 2.3) with F = ¥, is equal to

1
E [ah (p’(B)\Pk (B)] = I:‘Pk(B) /(; kg hg @' (Bp) d9i|
. 1
:ez<Qk»k>[ hokg E[¢' (By + Ky)] dO. (3.7)
0

The proof of Propositior3.2is based on the following easy application of 1td’s formula.
Lemma 3.5. For all ¢ € CA(R), k € C, K := Qk and 0 € (0, 1) we have

ko E[¢' (Bg + Kp)]
2

d
=% E[@(Bo+ Ko)] + E[¢"(By+ Kg) A0, K), Bp)]. (3.8)

Proof. By approximation, it is enough to consider the casec C,‘,‘(R). By Itd’s
formula

0
0By + Ko) = 0(0) + /0 ¢ (By + Ko) (dBy + K. do)

1 0
15 fo ¢ (By + Ko) do.

Taking expectation and differentiating thwe obtain

d 1
i E[o(By+ Kp)] = K)E[¢'(Bg+ Kp)] + > E[¢"(By+ Kp)].

By iteration of this formula we obtain

d2
ZE[pBy+ Kp)]=—ko E[¢'(Bo+ Ko)] + (K}) E[¢" By + Kp)]

do?
FRE[9" By Ko)] + 3 E [0 By + K],
Applying the integration by parts formulae
H/RIV(y + Ko) N (0, 0)(dy) = /Rylﬁ(y + Ko) N0, 0)(@y),
2 [ W+ KN ©.0@ = [ 62 =00+ K A0, 0a

to y = ¢, we obtain 8.8. O
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Proof of Proposition 3.2. Leth € Ccz(O, 1). By a density argument we can reduce to
the casep € Cf(IR). Multiplying (3.8) by kg and integrating ind we have, recalling
(3.9

1 1
f hokg E[¢ (Bg + Kp)] d@:—/ hy E[@(Bg+ Kg)] d0
0 0

1
+E [/ ho (0, K, Bg) " (Bg + Kg) dH} ,
0
3.9)

where 4 is defined by 8.4). By (3.2), (3.7) and the occupation times formula.q) this
yields

E [0 o 5) Pk (B)]

1
= _/O Ky E[@(Bp) P(B)] d0

1
+/ [E[Tk(B)/ hg 2(0, K(/),a—Kg)dL‘g} ¢"(a)da. (3.10)
R 0

Therefore, we conclude by3). O

4. Dirichlet forms on the Wiener space

In this section, we introduce infinite-dimensional Sobolev spaces which we need as
spaces of test functions. Since, we consider vector figldsking values inC or L
rather than in the Cameron—Martin spabié, then the Malliavin derivative is not the
correct notion of gradient and we must introduce a different differential calculus on

For F e Exp(C), the usual derivative operator in the Malliavin calculus is
DF : C+— L, defined as follows:

, EeHl,

(DF(w), ) := % F(w+ &l)
e=0

see e.g. Section 1.2 ¢8]. Moreover we have closability ilL?(y) of
1 2
D(F. F):=3 [E[||DF(B)|| ] F e Dom(D) = Dom(D),

and D is a Dirichlet form on the Wiener space. Then all functions in @Dmare
differentiable in a weak sense alor'-valued vector fields.
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On the other hand we want to study, , ) F(®), see the Lh.s. ofX3), and in
general, the regularity of — hy ¢’ (wy) is not better than that ab € C. In particular,
the vector fieldKC(w) :=h ¢’ (w) is not Hl-valued and a generdl € Dom(D) cannot
be differentiated alongc.

For this reason, we must consider here a different gradignt C — L = L2(0, 1)
of F € Exp(C), defined by

(VF(w), ) := % F(w + &0)

, LelL,
e=0

i.e. VF is the Fréchet differential oF in L. Also in this case we have closability in
L(p) of

E(F, F):= % E [||VF(B)||2], F € Dom(V) = Dom(&)

and £ is a Dirichlet form on the Wiener space. Comparing the definition®Bfand
VF we obtainD =PV for all F € Exp(C), where

1
P:L+— L, PZ91=/ETdT, 0 € [0, 1].
0

In particular, for some constamt > 0
E(F,F) > kD(F,F) YF cDom(&)c Dom(D).

For a discussion of these infinite-dimensional Sobolev spaces, we refer to Section 9.2.1
for Dom(€) and to Section 9.3 for Do(®) in [3]. We recall, in particular, that Do(&)
also admits a description in term of the It6—Wiener decomposition: see e.g. Theorem
9.2.12 in[3].

Now all functions in Doni€) can be differentiated, at least in a weak sense, along
vector fields taking values ih or C, in particular alongK(w) = h ¢’(w). Moreover
for h € C and ¢ € ConMR), setting

1
DPpo=P:C—R, O(w):=h,pw)= / hg p(wy) dO,
0

then ® € Dom(£) and V@ (w) = h ¢’ (w), i.e. for allw € C

1
(VO(w), £) =f0 hg @' (wp) Ly do.
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Then for all F € CX(L) the Lh.s. of 2.3 is
E[0hp ) F(B)] = E[(VF(B),h¢'(B))] = 2E(F, Py ). (4.2)

We recall now that the semigroup’tD .t > 0) in L%(w) associated witlD is given
by the Mehler formula

PPFG = [FO) N (P2 e 0) W) zeC. Fell(,

where N (a, Q) denotes the Gaussian measure dvevith meana € L and covariance
operatorQ : L+ L. This semigroup is a basic tool in the Malliavin calculus: see e.g.
Chapters 1-2 if7] and Section 1.4-1.5 ifB].

Since in this paper, we work witl rather than withD, a crucial role is played by
the transition semigroupP; : t > 0) in L?(u) associated witf€, given by

Pr@ = [ FO N (e o) @y, zec. Feri,
where (¢!4 : t > 0) is the semigroup il generated by the operator

1
DA):={heC:h eL, h(Q=h(1) =0}, Ah:==h"

2
and we set
t ] _ oA
0, :=/0 A ds = — t€l0ol (4.2)
Notice, in particular, that
O = (—24)71 = 0. (4.3)

The second equality of4(3) says thatQ and —2A are inverse of one another and can
be verified by an explicit computation.

The operator:{P,D :t>0)and (P, : t > 0) are two different examples of Ornstein—
Uhlenbeck semigroups: we refer to Chapters 6 and 1@3]n For a more detailed
description of(P; : t > 0) see Section 6.

Two important properties of Do) are stated in the following:

Lemma 4.1. The spacd.ip,(L) is contained inDom(£). The spaceExp(C) is dense
in Dom(¢&).
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Proof. We recall thatF € Dom(€) if and only if sup_o&(PF, P, F) < co. Now
|P; F(z1) — P, F(z2)]

< / IF(y+e21) — F(y + €42)| N0, 0)(dy)
< / eCIFIzaD 70 — 2o MO, Q1) (dy) < el |z — 25|

so that||VP, F(z)| < eIzl for all z € C and we obtain the first claim. For the second
one, we refer to Section 9.2.1 §]. O

5. Proof of the main results

We want to use the tools introduced in the previous section to prove Theorems
2.1-2.3

In Propositions3.1 and 3.2 we have proved that2(2) and @.3) hold for all F €
Exp(C). This space is dense in the topology of the Sobolev space(Bprmtroduced
in the previous section. An a priori estimate, given in Lemm8 and a density
argument allow to extend2(2) and @.3) to much larger spaces of test functions and
to prove Theoremg.1 and 2.2 and also Theoren2.3 as a corollary. In particular, in
this section we prove

Proposition 5.1. Let 2 € C.(0,1) and a € R. Then the limit in(2.2) exists for all
F e Lip,(L).

Proposition 5.2. For all & € hf(O, 1), ¢ € ConMR) and F € Lip,(L)
1
E[(VF(B).h¢'(B))] =—[E[F<B> /0 h @(Be)de}

1
+/ [E[F(B)f h(,:Bg:dLg] ¢ (da). (5.1)
R 0

Proposition5.1 proves Theoren2.1 Theorem?2.2 follows by Proposition5.2 and
formula @.1), recalling thatC1(L) c Lip,(L). At the end of the section, we derive
Theorem?2.3 from Proposition5.2 We also recall thaV F is well defined, since by
Lemmad4.1 F € Lip, (L) C Dom(€) = Dom(V).

We recall thatu denotes the Wiener measure, law Bfi.e. for all bounded Borel
F:C—R

WF) = /Fd/x = E[F(B)].
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By Proposition 10.5.2 0of3], £ satisfies the Poincaré inequality
2 1
(F —p(F)*du < . E(F,F), F eDom(¢),
1

where /1 = n%/4, see 6.7) below. Since(P, : t > 0) is the semigroup inL?(u)
associated witlf, the Poincaré inequality implies the exponential convergencg, bf
to u(F) in L%

1P F = ()25, < €2/ 125, 120, FelLl?u. (52)

In particular, for allG € L?(u)
o0
RG::/ (P,G — u(G))dt € Dom(€)
0

and for all F € Dom(&)
E[F(B) G(B)] = E[F(B)]E[G(B)] + &E(F, RG).

Let nowh € C.(0,1) anda € R. For all ¢ > 0 we defineG;, € L2(1)

1
Gg,a(B):zfo hg :BZ2y:dLj, Gy:=Gyp. (5.3)

Then @.2) is equivalent to the existence of the limit as> 0 of
[E[F(B) G(;.a(B)] = HE[F(B)] [E[Glz,a(B)] + S(F7 RG{I,LZ) (5-4)

for all F e Lip,(L). The main tool in the proof of Propositiors1 and 5.2 is the
following estimate:

Lemma 5.3. If 1 € C.(0, 1) then there exists a constart> 0 such that

1+In¢|®

2
”PtGSHLZ(u) g KT’

te©1], ¢>0. (5.5)

The proof of Lemma5.3 is postponed to Section 6. As a consequence of Lemma
5.3 we have the following:

Proposition 5.4. Let h € C.(0,1) and a=0. Then the limit in(5.4) exists for all
F € Dom(&).
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Proof. By Lemma3.3 for k = 0 andy € C,(R) we have

1 : 1 B2-0
[EU hg :BFZO:z//(B(,)dO:| = [E[/ hge—zlﬁ(Bg)dQ].
o K 0 40

By the occupation times formul&(l) we obtain for allyy € C»(R)

e—az/29

1 a2_0
E[G. . (B da = h —_— da do.
/ﬂ% (Gea(B) (@) da fo ()/R T V@

In particular

L 42 o—d?/20
E[Gea(B)] =/ h)g ——— — d0,
‘ o ' a2 om0

which does not depend an Therefore, by §.4) the existence of the limit in2.2) with
a =0 for all F € Dom(€) is equivalent to the weak convergence®&, in Dom(E).
Now, by Proposition3.1, the limit in (2.2) with a = 0 exists for all F € Exp(C),
which is dense in Dorf). Therefore, if we can prove that

sup E(RG,, RG,) < o0 (5.6)

e>0

then we conclude. Indeed, for aye Dom(€) we can find a sequendé},), C Exp(C)
converging toF in Dom(&). Write

IECF, Gy — G)| < |EFn, Ge— Go)| + [E(F — Fp, Go — Gy)l.

By (5.6) we can make the second term arbitrarily small for sambig enough but
fixed, uniformly in¢ 6 > 0. Then by Propositior8.1 we can make the first term
arbitrarily small ase, 6 — 0.

For the proof of .6), we recall the following formula:

E(RG, RGy) = / RG, (G, — u(Gy)) du
_ /O / (PG, — 1(G)) (Go — W(Gy)) dud

o0
= [O 1Pj2Ge — 1G22, dt.
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Moreover by 6.2) and 6.5), since Py, = PiP1,t >0
1Py Go — (G2, < e 2/ IPIGIT, ) < ke /5,

Therefore 5.6) follows from:

o0

1
E(RG,. RG,) < fo 112Gl 2z, dt + /1 1Pj2Gs — p(Go) 2, dt

1 6 00

1+|Int )

< ;c/ %dt—i—x/ e7dMdr < co. O
0 13/ 1

We can now apply the results of Propositid®4, 3.2 and 5.4 to prove Propositions
5.1and5.2

Proof of Proposition 5.1. We fix ¢ € (0, %) such that supf) cC [0, 1 — J] and we
considere € (0, 6/2). By Proposition5.4, (2.2) holds fora = 0 and for allF € Dom(&).

Let ¢ : [0, 1] — R be of classC? such thatéo = 0 and¢y = 1 for all 6 € [6/2, 1].
By the Cameron—Martin theorem we have the following formula:

E[F(B)] = E[F(B +at) exp(a(t’, B) — c(€, a))], (5.7)
wherec(, a) :=a?||0'|?/2. If G, is defined as inJ.3), then almost surely
Gea(B+al) = Gea(B+a) = Geo(B) = Ge(B),

where the first equality holds becaukevanishes where # 1 and the second one
because the local time & + a at a is equal to the local time oB at 0. Let nowF
be in Lip,(L). Then by 6.7)

E[F(B)G:a(B)| = E[F.(B) Go(B)], (5.8)
where:  F,(z):=F(z +al) expla{t’,z) —c(,a)), z€C.

Now, F, € Dom(£), so that, by Propositios.4, E[F(B) G, ,(B)] converges as — 0
and Q.2 is proven for alla e R. 0O

Proof of Proposition 5.2. We consider first the case

o) i=lx —al = @'(x) = sign(x —a), ¢(dx) = 25,(dx)
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for somea € R, whered, is the Dirac mass aa and
sign: R— {0, 1}, sign(x) :=1(0,00)(x) — L—00,0(x).

In this case, §.1) becomes
1
E[(VF(B), hsign(B —a))]=—E [F(B) / hy |By — al d0:|
0

1
+2[E|:F(B)/ hg ;BgzdLg] (5.9)
0

Consider first the case = 0. By Proposition5.4, the r.h.s. of 5.9) defines a
bounded linear functional on Doi@#). Moreover, by Propositior8.1, (5.9 holds for
all F € Exp(C). Since both sides of5(9) are bounded linear functionals on Daf,
coinciding on the dense subset E&p, they coincide on Dorf). Therefore $.9)
is proven fora = 0.

Let ¢ and F, be the functions introduced in the proof of Propositied. By (5.8
and by 6.9 with « = 0 we obtain

sliLno 2E[F(B)G;4(B)]

= l'imO 2Lk [Fa(B) GEI(B)]
1
= E[(VF.(B), hsign(B))] + [E[FQ(B) / h’élBeld(?]
0
1
=E[(VF(B), hsignB —a))] + E |:F(B) / hy |By — a| dH] )
0

Therefore §.9) is proven for alla € R and F e Lip,(L). Let now ¢ € CE(R).
Multiplying (5.9 by ¢”(a) and integrating inda we obtain 6.1) and

1
V [E[F(B)/ ho :Bg:dL’(l)} ¢"(a)da
R 0
1

. K/o E[e1P1 (1p(Bo)l + ¢’ (Bo)l) | do.

Therefore, by a density argumeri.1) holds for all¢ € ConR). O

Proof of Theorem 2.3. We start by recalling that, by Tanaka’s formul®, = 2 L¢,
where (9 is the local time process of = |B—a| at 0 andL? is the local time process
of B at a.
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Fix 7 € C2(0,1) and f € CX(L). Setting F(z):= f(|z — al), z € L, then clearly
F € Lip,(L). By Lemma4.1l, F € Dom(£) and by the chain rule

(VF(z),h) = (Vf(lz—al),h signz —a)), u-ae. z.
In particular, foru-a.e.z
(VF(2), hsignz —a)) = (Vf(z—al), h)

since [sign(z — a)]? = 1. Therefore, formulaq.9) applied to F(z) := f(|z — a|) and
p(x)=|x —al, ze L, x € R, yields ¢.4. O

6. The main estimate

In this section, we prove Lemma3. We recall thatG is the sum of two diverging
terms. Applying P, to G, we have a regularization effect: indeed, we wrifeG,
as a sum of terms, which after some cancellations converge tasds to 0. This
compensation of infinities requires a careful study of each term.

We start with a more detailed description of the semigrqép : ¢+ > 0) of the
Dirichlet Form £ in L?(u), defined in Section 4. We introduce first the Green function
(g:(0,0):¢t>0,0,0 €0, 1]) of the heat equation associated wihi.e. solution of

6_g 1 @Zg

Ot 2 00?

with boundary and initial conditions
/ 081 / ’ ’
g:(0,0) = %(1,0)=0, 20(0,0) = 0p(d0),
where oy is the Dirac mass afl. Then we set for alk € C
1 t rl
z(t,0) = / 2:(0,0) zgrdf)/, v(t, 0) = / / gir—s(0,0)Y W0, ds), (6.1)
0 0 Jo

u(t,0):=z(t,0) + v,0), U/ (z):=u(t,-)eC, (6.2)
where (W(0',s) : 0’ € [0, 1], s > 0) is a Brownian sheet. Then

P F(z) = E[F(U;(z))], t>20, zeC, Fe L2(,u).
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Although this is not needed in this paper, we remark tadt, 0) : + > 0,0 € [0, 1]) is
the unique solution of the stochastic partial differential equation driven by space—time
white noise:

ou 1% N w

o 25%2 0100’

u(t,0) = “=(1.1) = 0,

00
u(0, 0) = zy,

see[11].

Notice that (z(¢,0) : t > 0,0 € [0, 1]) is a deterministic continuous function and
(v(t,0) :t > 0,0 € [0,1)]) is a centered continuous Gaussian process. A crucial role is
played by the function

t

q:(0,0):=E[vt, 0)v(t, 0)] = /0 g25(0. 0N ds,  q:(0):=q;(0, 0) (6.3)
for 0,0 [0, 1], t > 0. Notice that for allt € L
1 t
/ q:(0,0) Ly d0 = / e Agds = 0.4y,
0 0

where Q; is defined in 4.2). By (4.3) above,Q = O, i.e.

Goo (0,0 := tll/rrgo g:(0,0) = OA0,  goo(0):=quo(0,0) = 0. (6.4)
We also set
o0
q"(0,0):=[qo0 — q:1(0,0) = / g2s(0, 0 ds, q'(0):=4"(0,0). (6.5)
t

We denote byy, (0 — 0') the density of the Gaussian measw&b, 1)(d0) over R
with mean 6 and variancet. Then g — y is smooth over0, co) x (0,1) x (0,21). In
particular, for allé € (0, %) there exists a constamty; > 0 such that for all € [0, 1],
0e[o,1-9]:

t d t
:(0) = /O JT% + /0 (8250, 0) — 1o (0)) ds > 1c51Y/2. (6.6)

Finally, we introduce the complete orthonormal systeniof

2
ei(0) =212 sin(/Ze) . 0e[01], A= EZ 2i — 1)2,
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i=12 .... Then(e); is a system of eigenvectors @, A and ¢'4:
1 ;L' bl
Qe = —ej, Aei = ——e¢, e = e il?g;. (6.7)
Ai 2
In particular
0 1— efﬂ,,'t
q:(0,0) = Z ;—ei(O) ei(0), tel0,00], 0,0 €[0,1]. (6.8)
i=1 Y

Proof of Lemma 5.3. We fix ¢ € (0, %) such that supih) < [0, 1—J] and we consider
¢ € (0,0). Recalling 6.1) and 6.2, we set

Ve(t, ) i=p xv(t,0),  ze(t,-):=p, % 2(t, ), Ug:=2¢+ V.

We denote the partial derivative w.rl.by dy.

An explicit formula for P,G.. By definition 6.3) of G., and by the occupation
times formula, foru-a.e.w

1
f Gua(@) Y@ da = / ho (@02 = co) (@) d0
R 0
for any y € C»(R). By Fubini's theorem
f P,Gya(2) (@) da = P, [ / Gg,m(a)da} @)
R R
1
= [ no [t 0 (@002 - c.0)] a0 (69)

0

As in the proof of Lemma3.3 we set for fixedr > 0 and6 € (0, 1)

— Qt (O-v 9)

by =——,
7 g0

0(t,0):=v(t,0) —v(t,el;, oe(0,1).

Then, the covariance between the two Gaussian varidliles) and v(z, 0) is zero, so
that 0(z, -) andv(z, 0) are independent. Denotirg.=z(z, ) andg :=¢,;(0) we obtain

E [Wute, 0) [@oustr, 002 = 0]
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f— — / 2
= /R NO.Dy) Y+ E | (Qpuatt, 0+ (v = v, 0) €)= ¢

= / N©O.q)dy) Yy +7) [(69230, 0+ y¢, 9)2 - q(z’ 9)2 - 0]
R &, &, &,
(6.10)

where, recalling 4.2) and settingQ’ :=e'4Qe'4 = Q — Q,, by 3.3

¢l gi=con = E[(Govatt, 0)%] = (@04 = 00, i = 0)). (6.11)

Therefore, by §.9 and 6.10
| PGeato) @ da
1
=/0 dHhB/RN(O, g1 () @dy) Y (y +z(, 0)

2
x [(%zg(t, 6))2 — Cpg T2y, 0pze(t, 0) + <y2 - 61z(9)> (52,(9) ] :

Therefore we obtain

1 = G,0)%/24:(0)

PGy(2)= | hg——m—— [(0pz:(t. 0))° = ¢
tUg 0 0 ,—ant(e) [( 0<e ) 0
2
=221, 0) €] 4 92,00, ) + (1, 002 = 4:(0)) (¢ ) ] do,
and
3 .
1P Gell? < 4 It e), Ik, 0):= V., I,
i=1
where

1 o= @(t.0)%/24:0) >
/0 hy ——— [(aezs(l, )" — Cg,g] do,

V/2mq:(0)

Vi) =

, 1 o (.0)%/24:(0)
V2(2) = — /0 hy S 221, 0) €, Oz (t, 0) dO),

vV 2mq, (0)
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. 1 —(,0)%/24:(0)
Ve (@) = hg [

0 V2mq(0)

For F e CXL), k € L and K := Qk € H' we have integrating by parts w.r.t. the
Wiener measure

(21, 0)% - 4:(0)] (z;ﬁ)z do.

1
E[ox F(B)] = [E[F(B)/ KédB()]
0

On the other hand, integrating by parts @ 1] we obtain

/OlKg,ng = K1 B1 — K\, Bo —/OlKngdH = /OlkngdH,
since K] = Bo = 0. Therefore, we obtain the following formula:
E[F(B) (k. B)] = E[0kF(B)]. (6.12)
lterating 6.12) several times we obtain foF € C}(L), k' € L and K’ := Qk':

E [F(B) (kL. B (K2, B)]

— (KL KA E[F(B)] + [E[af(l,,(z F(B)], (6.13)

E [F(B) kL, BY? (k2, 3)2]
- ((Kl, kY (K2, k2) + 2(K1, k2>2) E[F(B)]

+ (KL KVE[ 3 ks FB)] + (K2 KN E[ 03 k2 F(B)]
i#i

+ E[ Tk krk2x2 FB)]. (6.14)

Estimate of/;. We set for the rest of the proof

kli=— e pl(-—0), k?=—epl(-—0), K :=Qk, (6.15)
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—(z(t,0)—a)? /24, (0 —(z(1,0)—=b)2)2q, (0
F“’b(z) ::e (z(t,0)—a)*/2q,(0) e (z(t,0)=b)=/2q,(0') ol p00

V' 2mq;(0) V2, (0)

for z e L anda, b € R. Then we have

1 o=(0.0)2/24:(0) 2
I, &) = / | [ g [(@zett, 02—t ;] a0

V 2mq, (0)

:f d0d0 hyhy
(0,112

x ELF(B) ({(k*, B)? (K, B)? — (K, B)? <]
—cl g (%, B)? + ¢}yl 1.
Moreover by 8.3) and 6.11)

(KL KL = (Q'p/( =00, p/ (= 0) = ¢l (KZK) = .

1.2, _ t ./ / / .t
(K1 k%) = (Q'p' (= 0),p' = 0) =2 ¢y
Using 6.13 and 6.14), several terms cancel and what remains is
Il(t,s):/ d@dg/h()he/
[0,1)

x E[F(B)2(KY k%% + 4 (K™, k?) %1 g2 F(B)
+ 641’(1,K1,K2,K2 F(B)]

Notice that the function” : R? — R,

_ (B,eop)—a)? ((B,e”‘ém—b)z)
eXp< 24, (0) 24, (0)

21/ q,(0) qt(H/)

F(a,b)::[E[F“’b(B)] = E

is the density of the convolution betwee¥i(0, ¢;(0)) ® N (0, ¢;(0')) and the law of
((B, e15y), <B,€tA56/)). Thereforel” is the density of the Gaussian measure
with zero mean and covariance matrix

(%(9) 0 ) n ( q'(0) qt(ﬁ,ﬁ/)) _ (qoo((?) q'(9,9/)>=./1 ,
0 ¢/(0) q'(0.0) ¢'(0) q'(0.0) goo(0) ) — 700
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Moreover
@ 0.077 = (E[(B.e6) (B.¢5)])"
E

[(B ¢5p) ] [(B,e’Aéef)Z]
q'(0)q"(0) < q'(0) goo ().

Using this inequality and recalling that, — ¢’ = g; we have
det Ap g = Goo(0) goo(0) — (q" (0. 0)* = 4, (0) oo (0).

Therefore by 6.6), for 0,0 €[5, 1— 9]

1 5—1/2

< :
2n(det Ay g)/2 = 114

E[F(B)] = I'(0,0) =

Now, by 6.8
, o e—l;t
oy = QP =0, pi - =) = Y (ps* €)o (py* ey
i=1
Settingy; :=/11.1/2e,- we have that(;);cn iS a c.o0.s. inL. We obtain

2
d0d0 hyhy E[F(B Lo
/[0,1]2 ohy ELF(B)] (6&919)
K 2
< = d0d0 hghy (c,
t1/4 /[0,1]2 0% (66,9,9>

2
- t1/4 Z e it [/ (ps*nz)ﬁ(pg*ﬂj)()h@d@} :

i,j=1

Now, sincep, is a symmetric convolution kernel

1
/0 (pe*n)o (P xn)ghgd0 = (n;, pg* [h(pg *n;)])
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2

o 1
= Y [/O (e *0)0 (pg % 1)0 hed(?]
j=1

= |lp, * [h(p, * n)1I> < |12

so that

K ||7]|? K ||7||?
d0d0 hghy E[F(B)] ) < < .
/[o, " 0 ( 0,0 ) s Z 13/4

Now for all £ € L we have
F(Z‘i‘sg) — F*Se’Aeg,fse’AE()/ (Z) — Fse’Aég,se'AK(,/(Z)

so that, settingd’ := e’ Qk':

2

E [ailykz F(B)] S [F(B +rit +sK2)]

or 0s

r=s=0

2

1 2
= 6 . (rHB +sH6, rH +sH9,)

r=s=0

.
vi Azt v,
___tTe0E (6.16)

2r [detd o

wherev; = (Hj, H,) € R® Since the entries ofl,, are bounded uniformly in
0,0 €[0,1] and for all 0, 0" € [0, 1]

. S e—),it o —) it
|%<Z7ﬂw%wm\zl~wmmm (6.17)
i=1 ' i=1 l

then we obtain

2 KL+ [Int])?

< —_
‘E[a’fl’“ F(B)]‘ = (detdy )¥2
and therefore

1+ |In £])?
d0d0 hyhy (K™ K2 E[ s g2 FB)| < wiCa Likl)s
(0.1]2 l3/4
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Analogously

4
~4 0
B0k ke iz FOBY| = 5 T H} + sHE, rH +5Hp)
i r=s=0
_;R /(Hl H2 H]_ Hz)
N (det/lo 0/)3/2 0.0 0 0 g g /s

where R o is a multi-linear form onR* with uniformly bounded coefficients w.r.t.
0,0 € [0, 1]. Therefore

. KL+ |In t?
/[Ao 172 d@d@’he hy E [akl’Kl,Kl’Kz F(B)] < ——

Estimate of/lo. Continuing with the notations introduced in the previous step, we
notice now that

o~ (0.0)2/24,(0) 2(t, 0) o—(@(0,00)%/24,(0) 2(1,0) &

V2@ @ J2ng0) @  dadb

Fa,b(z)

a=b=0

Then, settingv, g := (p, * (-, 0));, we have

1 —(2(t,0)%/24;(6) t0 ?
I(t, &) 2/#(dz)[ 0 hg ‘ 22( - )Vs,e 0yze(t, 0)d0

V2nq,(0) q:(0)

=4/ d0d0 hohy vegv, ¢
[0.112 ’
a=b=0j|

2

x E |:(B, k%) (B, k?) ;w F%P(B)
a

By (6.13 we have

E [(B, K%y (B, k2) F“’b(B)]

— (KL KAE [F“'b(B)] +E [8%1’1{2 F”'b(B)]

2

0
= 62’0’0/ I'(a,b) + Mf(a —rHol—sHoz, b—rHel, —SHBZ/)

r=s=0



L. Zambotti/Journal of Functional Analysis 223 (2005) 147-178 175

Now, recalling thatl" is the density ofA/(0, Ag.¢), We can compute

2 /

g q'(0.0)
- 1" , b - 177
Oa 0b (Cl ) e 27t(det/19’9/)3/2

64
mr(a_rHH _SHea b_rHO/_SHO/)
a=b=r=s=0
= R 1 42 gl 12
= (detA, )32 Ry (1,1, Hy, Hy, Hy, HY)

where 1'?\0’0/ is a multi-linear form onR® with uniformly bounded coefficients w.r.t.
0,0 €10, 1]. By (6.8

S —/11'[
q0.0) = 00 =Y ——ei(0) e(0).

i=1 !

Since (p; * goo (-, 0))y = (p, * 10,90 = 1/2, then

0 —2it

=3 S uxeho e

i=1

Ve, 0 = (ps‘ * Qt(V 0))29 =

NI =

and therefore

Veol < k(1+[Ing]).

Therefore we have proven that

1+ Ry (L 1, H}Y HE HY, H2)|
I(t,e) < x d0dO hohyv, v, » : g0
2(1, €) /[0,1]2 0y Ve,0 Ve 0 (det/le’e/)3/2
k(1 +In 1))
= (3/4 :

Estimate ofl3. Arguing like for I, we obtain

e—(Z(t,()))z/Zq,(()) (z(t, 0))2 1 5 2
Vio do

1
I3(t, = d h —
5(t. 0) /u(z)[o o

@0 40
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4

d
= d0do hghyv? )v2 , ————T'(a, b)
/[0,1]2 070 0 2 2, o
k(1 + [Inz))®
S A

and the proof of Lemm&.3 is complete. [
Using the proofs of PropositioB.1 and Lemmab.3, we prove also the following:

Corollary 6.1. For all » € C.(0,1), RG, converges weakly ibom(£) to RGo €
Dom(&), where foru-a.e.z € C

0o pl e,(z(t,()))Z/Zq,(é‘) 0z(t, 0) 2
RGo(z) := / / h ( ’ ) .
0 o Jo ‘ 2nq,(0) 90 o

2(1,0) 0z(t,0) [z(t, Q)T 1
—2vp g T =2 - )| dod
00 g0 o0 ”‘w( «® | 40 t

for 0 € (0, 1), t € (0, 00), z(z, 0) is defined by(6.1) and

o0 —/lil‘ 0 —;.;t

e 1 e
cho=2. O voo:=5 =D €0 ei0).
i=1 i=1 !

Moreover for all F € Lip, (L) anda € R

1
E [F(B)/ hy: BgzdL;;}
0

1 2 —a?/20

a~ — 0 e ” 210112
= E[F(B)] / hgp——— ———dO + &(e® ) F, RGo) e 1€17/2,
o T4 om0 ( 0)

(6.18)
where!l € C2([0, 1]), /(0) =0 and /(x) = 1 for all x such thath(x) # 0.

Formula 6.18 allows to compute directly the value of the generalized functional
constructed in Theorerf.1 without using the limit in the I.h.s. of2(2).

7. The case of quadratice and constanth

We want to consider the divergence of a vector field of particular interest, namely
the identity C(w) = w. This case corresponds ta(r) = %rz and i = 1, and therefore
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it does not fit in the assumptions of Theoréh®, sinceh has not compact support in
(0, 1). Still, since¢” = 1, this case is simpler than the general one and can be treated
without the main estimate of Lemn&a3.

Let us go back to the result of Lemn&5: formula 3.8) becomes

2

1d 2 1 ’
ko ELBy + Kol = — 5 E[(Bo+ Ko)?| + E[40, K, By)],
H 1 dz 2 /N2

Integrating overf0, 1] in d0 we obtain

1
/ ko Kpd0 = —= / (Kj2do = / (Kp)2do,
0

since Ko = K7 = 0. By (3.2) this yields for ¥y : =)
1 1 .
[E[aBlPk(B)] o2 (Qk.k) / (K )2d9 [E|:'Pk(B)/ :Bg:d0:|
0
= SIiLnO[E|:‘Pk(B)/O :ngzde]

In this case: Bg: appears without integration w.r.t. the local time process and is
therefore defined in the classical way, 46 Arguing like in Sections 5 and 6, we
set now

1
G.(8):= [ 182y a0
0
and we compute for alt € C:

1
P[g;;(z) == / I:(aHZ(,(tv 9))2 - C8,9:| de
0

Arguing like in the proof of Lemmab.3, see in particular the estimate @f, we
compute

2
” Ptg8||L2(H)
2

1
= /M(dz) [/ [(5015(1, 0))? —cl 9] dO} =/ doaoy
0 ’ [0,1]2
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x[E[(kl, B)2 (k%, B)2 — (K, B>2c;9, — ¢!, (k% B)? + c;ﬁc;ﬁ/]

2
S 7}.,’1
= d0do 2(Qk' k?)? =2 d0d0 | 3" S (p, % & (0, ¢y
[0.1]2 [0,1]2 i

00 1 2 00 »
— —(}4—!—/})[ —1,'[
—2”2::16 / UO (pg*n,»)e(pg*n,»)edﬁ] < de 72

ThereforeRG, converges weakly in Do) to RGp € Dom(£) and

1
E[(VF(B), B)] = |im0 [E[F(B)f :B?,: d@} = &(F, RGo),
&—> 0 ’

for all F € Dom(£), where

2
N/ 0z(t, 0)
RGo(z) = [o (T) — "6.6 dt, p-ae zeC,

see Corollary6.1 above.
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