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Abstract

We prove an integration by parts formula on the law of the reflecting Brownian motion
X := |B| in the positive half line, whereB is a standard Brownian motion. In other terms,
we consider a perturbation ofX of the formX�=X+ �h with h smooth deterministic function
and �>0 and we differentiate the law ofX� at �= 0. This infinitesimal perturbation changes
drastically the set of zeros ofX for any �>0. As a consequence, the formula we obtain
contains an infinite-dimensional generalized functional in the sense of Schwartz, defined in
terms of Hida’s renormalization of the squared derivative ofB and in terms of the local time
of X at 0. We also compute the divergence on the Wiener space of a class of vector fields not
taking values in the Cameron–Martin space.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we want to prove an infinite-dimensional integration by parts formula
with respect to the law of the reflecting Brownian motion (RBM)X� := |B� − a|,
� ∈ [0,1], whereB is a standard Brownian motion anda ∈ R.
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Integration by parts formulae on infinite-dimensional probability measures are an
important tool in a number of topics in stochastic analysis. Typically, given a stochastic
processX, one considers the law of an infinitesimal variationXε :=X + εh, whereh
is a process in a suitable class, and one tries to differentiate the law ofXε w.r.t. ε at
ε = 0. In most cases one exploits a quasi-invariance property, i.e. one choosesh in such
a way that the law ofXε is absolutely continuous w.r.t. the law ofX: see the mono-
graph[10]. If this is possible, then the problem is reduced to differentiate the density.

This project has been implemented e.g. for a large class of diffusions inRd or in
Riemannian manifolds, see e.g.[4,7,6], and for Poisson measures, see e.g.[1]. Recently
integration by parts for a class of processes with values in(0,∞), the Bessel bridges
of dimensiond � 3, have been computed: see[12,13].

However, the case of processes with a non-trivial behavior at a boundary remains an
open problem. A typical example of such processes is the RBM, which takes values
in [0,∞) and has a local time at the boundary{0}.

In Section 4 of[2] J.-M. Bismut developed a stochastic calculus of variations for
the RBM X = |B − a|, with the aim of studying transition probabilities of boundary
processes associated with diffusions. However, the results of[2] concern only variations
X+εh of X with the crucial property{t : ht = 0} = {t : Xt = 0}. In this case the quasi-
invariance property holds. Notice thath is necessarily a non-deterministic process.

In this paper, we consider perturbationsXε = X+εh of X = |B−a|, with h smooth
deterministic function with compact support in(0,1). In this case, the approach based
on the quasi-invariance fails, since the law ofXε is not absolutely continuous w.r.t.
the law of X if ε > 0 and h not identically 0: see the argument at the end of this
introduction.

As a consequence of the lack of quasi-invariance, the integration by parts formula we
obtain does not contain only the law ofX times suitable densities, as it is usual in the
Malliavin calculus, see e.g.[7], but also an infinite-dimensional generalized functional,
in the sense of Schwartz: see Theorem2.3 below.

This generalized functional is defined in terms of Hida’s square of the white noise,
i.e. a renormalization of the squared derivative ofB, defined e.g. in[5], and in terms
of the local time ofB at 0: see Theorem2.1 below.

It turns out that this problem is closely related with the computation of the divergence
on the Wiener space of a class of vector fields not taking values in the Cameron–Martin
space. The divergence of vector fields taking values in the Cameron–Martin space is
typically an Lp-variable: see the monograph[7]. The divergence we obtain is not an
Lp-variable but a generalized functional related with the one discussed above: see
Theorem2.2 below.

We show now that the law ofXε is not absolutely continuous w.r.t. the law of
X = |B − a| if ε > 0 andh is not identically 0. In the case minh < 0, with positive
probability minXε < 0, whileX � 0 almost surely, so we can supposeh � 0. Let I be
a non-empty interval whereh > 0 and define the set of continuous paths over[0,1]:

�ε :=
{
� : min

�∈I (�� − εh�) = 0

}
.

We claim thatP(Xε ∈ �ε) > 0 while P(X ∈ �ε) = 0.
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Indeed,Xε ∈ �ε if and only if there exists� ∈ I such thatB� = a. Since this event
has positive probability, thenP(Xε ∈ �ε) > 0. On the other hand

P(X ∈ �ε) = P(B − a ∈ �ε) + P(a − B ∈ �ε).

By the Girsanov Theorem, the law of(B� − a − εh� : � ∈ I ) is absolutely continuous
w.r.t. the law of(B� : � ∈ I ), with Radon–Nikodym density�. In particular,

P(B − a ∈ �ε) = E
[
� 1(minI B=0)

]
but the r.v. minI B has a continuous density, so thatP(minI B = 0) = 0= P(B − a ∈
�ε). Arguing analogously forP(a − B ∈ �ε) we obtain thatP(X ∈ �ε) = 0.

2. Main results

Let (B� : � ∈ [0,1]) be a standard Brownian motion andC := {k : [0,1] �→R

continuous,k0 = 0}. We denote by� the law of B on C: then (C,�) is the classical
Wiener space. We introduceL :=L2(0,1) with scalar product:

〈h, k〉 :=
∫ 1

0
k� h� d�, ‖h‖2 := 〈h, h〉, h, k ∈ L.

We consider the following function space onL: the set Lipe(L) of F : L �→R such
that

∃ c > 0 : |F(h)− F(k)| � ec‖h‖ ‖h− k‖, h, k ∈ L.

Notice that all functions in Lipe(L) are Lipschitz on balls ofL, with constant growing
at most exponentially with the radius.

Let (��)�>0 be a family of smooth symmetric mollifiers onR, i.e.

�� :=
1

�
�
( ·
�

)
, � ∈ C∞c (−1,1), � � 0,

∫ 1

−1
� dx = 1, �(x) = �(−x).

We denote for� ∈ [0,1], � ∈ C:

��,� = (�� ∗ �)� =
∫ 1

0
��(�− �) �� d�,

.
��,� = �′�,� =

d

d�
��,� = (−�′� ∗ �)�.
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With this definition, we denote throughout the paper

: Ḃ2
�,� : def= (

Ḃ�,�
)2 − E

[(
Ḃ�,�

)2]
, � ∈ [0,1].

Here, we regularizeB, we differentiate the regularizationB�,·, we square the derivative
and finally we center this r.v. by subtracting the mean.

Let (La� : � ∈ [0,1]) denote the local time ofB at a ∈ R, defined by the occupation
times formula∫ �

0
	(s, Bs) ds =

∫
R

∫ �

0
	(s, a) dLas da, � ∈ [0,1] (2.1)

for all bounded Borel	 : [0,∞)×R �→R, see Chapter VI of[9]. Finally, let Cc(0,1)
denote the space of continuoush with compact support in(0,1) andC2

c (0,1) the set
of h ∈ Cc(0,1) with continuous second derivative.

Then we can state the first theorem:

Theorem 2.1. For all h ∈ Cc(0,1) and F ∈ Lipe(L), there exists the limit

lim
�→0

E

[
F(B)

∫ 1

0
h� : Ḃ2

�,� : dLa�
]

=: E

[
F(B)

∫ 1

0
h� : Ḃ2

� : dLa�
]
. (2.2)

In the r.h.s. of (2.2), : Ḃ2
� : is the renormalization of the square of the derivative of

B, i.e. Hida’s square of the white noise: sinceB is not differentiable, the expression
Ḃ2 is not well defined; nevertheless, subtracting toḂ2 a diverging constant, we obtain
convergence to a generalized functional on the Wiener space. This is made rigorous by
the white noise analysis, a generalization to infinite dimension of Schwartz’s Theory
of Distributions, see e.g.[5]. However, the convergence of the particular functional
defined by (2.2) does not seem to be covered by the existing theorems in the literature,
because of the integration w.r.t. the local time process.

Notice that Theorem2.1 defines the r.h.s. of (2.2) through the limit in the l.h.s.: this
can be unsatisfactory and it seems reasonable to look for a direct way of computing
the functional onF ∈ Lipe(L): this is done in the last result of the paper, Corollary6.1
below. We remark that it is crucial for the application to the RBM given in Theorem2.3
below that the limit in (2.2) exists for a large class of Lipschitz-continuous functions
on L, like Lipe(L).

Before stating the second theorem, we need a few more notations. We introduce
the Cameron–Martin spaceH 1 := {h ∈ C : h′ ∈ L, h(0) = 0}. We also consider a
second function space onL: the setC1

e (L) of all F ∈ Lipe(L) with continuous Fréchet
differential ∇F : L �→L. Notice that∇F satisfies

∃ c > 0 : ‖∇F(h)‖ � ec‖h‖, h ∈ L.
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For any 
 :R �→R with continuous derivative and any smooth deterministic
h : (0,1) �→R with compact support, we can define the following vector field
over C:

K :C �→C, K(�) :=h 
′(�).

Notice thatK does not take values in the Cameron–Martin spaceH 1, since in general
the regularity of
′(�) is not better than that of� ∈ C. Therefore the divergence of
K on the Wiener space cannot be computed with the classical theory of the Malli-
avin calculus, see[7]. One of the results of this paper, given in Theorem2.2, is the
computation of this non-classical divergence.

During the paper, we shall consider
 in the class

Conv(R) :=
{

1− 
2, 
i : R �→R convex,

∃ c > 0 : |
′i (x)| � ec|x|, ∀x ∈ R, i = 1,2
}
.

If F ∈ C1
e (L), h ∈ Cc(0,1) and 
 ∈ Conv(R), then we can define the directional

derivative ofF at � ∈ C along K(�)

�h
′(�)F (�) := lim
�→0

F(�+ �h
′(�))− F(�)
�

.

Theorem 2.2. For all 
 ∈ Conv(R), h ∈ C2
c (0,1) and F ∈ C1

e (L) the following
integration by parts formula holds

E
[
�h
′(B)F (B)

]=−E

[
F(B)

∫ 1

0
h′′� 
(B�) d�

]

+
∫

R
E

[
F(B)

∫ 1

0
h� : Ḃ2

� : dLa�
]


′′(da). (2.3)

We notice that an infinitesimal transformation alongK does not preserve the absolute-
continuity class of the Wiener measure. For instance, in the case
(r) = r2, the
infinitesimal transformation alongK is B �→B + �h
′(B) = B(1+ 2�h) and it is well
known that the laws ofB and B(1+ 2�h) are singular if�h �= 0. This explains why
the r.h.s. of (2.3) contains a term, the second one, which is not a measure but a
generalized functional overC. We treat the case
(r) = r2 and h ≡ 1 separately in
Section 7.

We can now turn to the reflecting Brownian motionX := |B − a|, for somea � 0.
For all smoothf : C �→R and h ∈ C2

c (0,1), by applying (2.3) to F(�) := f (|�− a|)
we obtain the following:
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Theorem 2.3.We setX := |B − a| and we denote by(�0
� : � ∈ [0,1]) the local time

of X at 0. Then for all h ∈ C2
c (R) and f ∈ C1

e (L):

E
[
�hf (X)

] = −E

[
f (X)

∫ 1

0
h′′�X� d�

]
+ E

[
f (X)

∫ 1

0
h� : Ḃ2

� : d�0
�

]
. (2.4)

By Tanaka’s formula�0 ≡ 2La , see Chapter VI of[9]. Moreoverf (X) = f (|B−a|).
Therefore the second term in the r.h.s. of (2.4) is defined by (2.2).

We give a heuristic argument motivating the result of Theorem2.2. If F ∈ C1
e (L),

then the classical integration by parts formula for the Wiener measure states:

E
[
�hF (B)

] = E

[
F(B)

∫ 1

0
h′� dB�

]

for all deterministich ∈ H 1, i.e. such thath′ ∈ L2(0,1) and h(0) = 0.
Consider now a process(K�(B) : � ∈ [0,1]) such that

1. K� =
∫ �

0 K̇s ds, with K̇(B) adapted and uniformly bounded.
2. There exists a continuous(Q�,�′(�) : �, �′ ∈ [0,1]) s.t. for all k ∈ H 1:

d

dε
K�(�+ εk)

∣∣∣∣
ε=0
=
∫ 1

0
Q�,�′(�) k�′ d�

′, � ∈ [0,1], � ∈ L.

Then the integration by parts formula becomes

E
[
�K(B) F (B)

] = E

[(∫ 1

0
K̇�(B) dB� −

∫ 1

0
Q�,�(B) d�

)
F(B)

]
.

We set nowK�(�) :=h� 
′(��), whereh ∈ C2
c (0,1) and 
 : R �→R is twice contin-

uously differentiable with bounded derivatives. In this caseK· is adapted but not a.s.
in H 1, since
′(B·) has a non-trivial martingale part. Moreover for allk ∈ H 1

d

dε
K�(�+ εk)

∣∣∣∣
ε=0
= h� 
′′(��) k�, � ∈ [0,1]

so that Q�,�′ = h� 
′′(��) �(� − �′), where � is the Dirac function. In particular
Q�,� = h� 
′′(��) �(0) is ill-defined, since�(0) = ∞. However, arguing formally, we
can write ∫ 1

0
Q�,�(B) d� =

∫ 1

0
h� 
′′(B�) �(0) d�.
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Moreover, pretending thatB is differentiable anddB� = Ḃ� d�, we obtain∫ 1

0
K̇�(B) dB� =

∫ 1

0

d

d�

[
h
′(B)

]
Ḃ d�

=
∫ 1

0
h′ 
′(B) Ḃ d� +

∫ 1

0
h
′′(B) Ḃ2 d�.

Since 
′(B�) Ḃ� = d
d�
(B�), integrating by parts over[0,1] in the first term of this

sum, we obtain ∫ 1

0
K̇�(B) dB� −

∫ 1

0
Q�,�(B) d�

= −
∫ 1

0
h′′ 
(B) d� +

∫ 1

0
h : Ḃ2 :
′′(B) d�,

where : Ḃ2 := Ḃ2 − �(0). In order to get (2.3) we apply the occupation times formula
(2.1) formally ∫ 1

0
h : Ḃ2 :
′′(B) d� =

∫
R

[∫ 1

0
h : Ḃ2 : dLa�

]

′′(da).

The paper is organized as follows. In Section 3, we prove that Theorems2.1 and
2.2 holds for allF in a suitable space of test functions. In Section 4, we introduce an
infinite-dimensional Sobolev space onC and several related functional analytical tools.
We prove Theorems2.1–2.3 in Section 5, postponing the proof of the main estimate,
given in Lemma5.3, to Section 6. Finally, in Section 7 we discuss the particular case
of quadratic
.

We denote byCb(R) the space of bounded continuous real functions onR and by
Ckb(R) the set off ∈ Cb(R) such theith derivative of f belongs toCb(R) for all
i = 1, . . . , k.

We will use the letter� to denote positive finite constants whose exact value may
change from line to line.

3. White noise calculus

In this section, we prove that formulae (2.2) and (2.3) hold for all F in the following
space of test functions overC:

Exp(C) :=Span{exp(〈·, k〉) : k ∈ C},

i.e. we prove the following:
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Proposition 3.1. Let h ∈ Cc(0,1), and a ∈ R. Then for all F ∈ Exp(C) the limit in
(2.2) exists.

Proposition 3.2. Let h ∈ C2
c (0,1) and
 ∈ Conv(R). Then for allF ∈ Exp(C) formula

(2.3) holds.

Propositions3.1 and3.2 show that Theorems2.1 and2.2 hold for all F in a suitable
space of test functions. The proof of this result is elementary and based only on the
Cameron–Martin theorem and on Itô’s formula.

We introduce the operator

Q : L �→L, Qk� :=
∫ 1

0
� ∧ � k� d�, � ∈ [0,1].

For all h ∈ L we haveQh ∈ H 1 and for all k ∈ H 1:

〈Q(h′), k′〉 = 〈h, k〉. (3.1)

Moreover, the law ofB in L is the Gaussian measure with mean 0 and covariance
operatorQ, i.e.

E
[
e〈B,k〉

]
= e 1

2 〈Qk,k〉, k ∈ L.

By the uniqueness of the Laplace transform, we obtain the following version of the
Cameron–Martin formula: for all bounded Borel
 : C �→R

E
[

(B) e〈B,k〉

]
= e 1

2 〈Qk,k〉 E[
(B +Qk)], k ∈ C. (3.2)

This simple formula is crucial in white noise analysis, in particular in the definition of
the so-calledS-transform: see e.g. Chapter 2 of[5].

We set for� < min{�,1− �}

c�,� :=E
[
Ḃ2

�,�

]
= 〈Q�′�(· − �),�′�(· − �)〉 = ‖��(· − �)‖2 = ‖�‖

2

�
, (3.3)

where in the third equality we use (3.1). We also define

�(�, x, y) := x2+ x y

�
+ y2− �

4�2 , � ∈ (0,1), x, y ∈ R. (3.4)

The proof of Proposition3.1 is based on the following:
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Lemma 3.3. For all 	 ∈ Cb(R), k ∈ C, K :=Qk, � ∈ [�,1− �] ⊂ (0,1)

E
[
	(B�) : Ḃ2

�,� : e〈B,k〉
]
= e 1

2 〈Qk,k〉 E
[
	(B� +K�) �(�,K ′�,�, B�)

]
. (3.5)

Proof. We fix � ∈ (0,1) and set

�� :=1[0,�](�)
�
�
+ 1(�,1](�), �� :=B� − B� l�, � ∈ [0,1].

Then � andB� are independent, i.e. for all
 : C �→R bounded Borel

E[	(B�)
(B)] =
∫

R
N (0, �)(dy) 	(y)E

[


(
�+ y �)] .

Then by (3.2)

E
[
	(B�) : Ḃ2

�,� : e〈B,k〉
]

= e 1
2 〈Qk,k〉E

[
	(B� +K�)

[(
(B +K)′�,�

)2− c�,�
]]

= e 1
2 〈Qk,k〉

∫
R

N (0, �)(dy) 	(y +K�)

[
E

[(
(�+ y �+K)′�,�

)2
]
− c�,�

]
.

Since� ∈ [�,1− �], we have

�′�,� = (�� ∗ �′)� =
∫

��(�− �)
1

�
1[0,�](�) d� = 1

2�
.

Then easy computations yield

E

[(
(�+ y �+K)′�,�

)2
]
− c�,�

=
(
K ′�,�

)2 + 2y K ′�,��
′
�,� + y2

(
�′�,�

)2 + E

[(
�′�,�

)2
]
− c�,�

=
(
K ′�,�

)2 + y

�
K ′�,� +

1

4�2 (y
2− �).

This yields the thesis. �
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Proof of Proposition 3.1. Let h ∈ Cc(0,1). Multiplying (3.5) by h� and integrating
in � we have

E

[
e〈B,k〉

∫ 1

0
h� : Ḃ2

�,� :	(B�) d�
]

= E

[
e〈B,k〉

∫ 1

0
h� �(�,K ′�,�, B� −K�)	(B�) d�

]
.

By the occupation times formula (2.1), this implies for alla ∈ R

E

[
e〈B,k〉

∫ 1

0
h� : Ḃ2

�,� : dLa�
]
= E

[
e〈B,k〉

∫ 1

0
h� �(�,K ′�,�, a −K�) dL

a
�

]
.

Since for allk ∈ C we haveK ′�,� → K ′� as �→ 0, we obtain

E

[
e〈B,k〉

∫ 1

0
h� : Ḃ2

� : dLa�
]
:= lim

�→0
E

[
e〈B,k〉

∫ 1

0
h� : Ḃ2

�,� : dLa�
]

= E

[
e〈B,k〉

∫ 1

0
h� �(�,K ′�, a −K�) dL

a
�

]
. � (3.6)

In Lemma 3.3, we have in fact computed the Laplace transform of the distribution
on the Wiener space defined by (2.2).

Corollary 3.4. For all a ∈ R, h ∈ Cc(0,1) and k ∈ C

E

[
e〈B,k〉

∫ 1

0
h� : Ḃ2

� : dLa�
]

= e 1
2 〈Qk,k〉

∫ 1

0
h�
e−(a−K�)

2/2�
√

2��
�(�,K ′�, a −K�) d�,

where� is defined in(3.4).

We turn now to the proof of Proposition3.2. For �k := exp(〈·, k〉), k ∈ C, we have

�h
′(�)�k(�) = lim
�→0

�k(�+ �h
′(�))−�k(�)
�

= �k(�)
∫ 1

0
k�h� 
′(��) d�.
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Therefore, by (3.2), the l.h.s. of (2.3) with F = �k is equal to

E
[
�h
′(B)�k(B)

]= E

[
�k(B)

∫ 1

0
k� h� 
′(B�) d�

]

= e 1
2 〈Qk,k〉

∫ 1

0
h� k� E

[

′(B� +K�)

]
d�. (3.7)

The proof of Proposition3.2 is based on the following easy application of Itô’s formula.

Lemma 3.5. For all 
 ∈ C2
b (R), k ∈ C, K :=Qk and � ∈ (0,1) we have

k� E
[

′(B� +K�)

]
= − d2

d�2 E
[

(B� +K�)

]+ E
[

′′(B� +K�) �(�,K ′�, B�)

]
. (3.8)

Proof. By approximation, it is enough to consider the case
 ∈ C4
b(R). By Itô’s

formula


(B� +K�)=
(0) +
∫ �

0

′(B� +K�) (dB� + K ′� d�)

+ 1

2

∫ �

0

′′(B� +K�) d�.

Taking expectation and differentiating in� we obtain

d

d�
E
[

(B� +K�)

] = K ′� E
[

′(B� +K�)

] + 1

2
E
[

′′(B� +K�)

]
.

By iteration of this formula we obtain

d2

d�2 E
[

(B� +K�)

]=− k� E
[

′(B� +K�)

]+ (
K ′�
)2

E
[

′′(B� +K�)

]
+K ′� E

[

′′′(B� +K�)

]+ 1

4
E
[

′′′′(B� +K�)

]
.

Applying the integration by parts formulae

�
∫

R
	′(y +K�)N (0, �)(dy) =

∫
R
y 	(y +K�)N (0, �)(dy),

�2
∫

R
	′′(y +K�)N (0, �)(dy) =

∫
R
(y2− �)	(y +K�)N (0, �)(dy)

to 	 = 
′′, we obtain (3.8). �
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Proof of Proposition 3.2. Let h ∈ C2
c (0,1). By a density argument we can reduce to

the case
 ∈ C2
b (R). Multiplying (3.8) by h� and integrating in� we have, recalling

(3.4) ∫ 1

0
h� k� E

[

′(B� +K�)

]
d�=−

∫ 1

0
h′′� E

[

(B� +K�)

]
d�

+E

[∫ 1

0
h� �(�,K ′�, B�)


′′(B� +K�) d�
]
,

(3.9)

where� is defined by (3.4). By (3.2), (3.7) and the occupation times formula (2.1) this
yields

E
[
�h
′(B)�k(B)

]
= −

∫ 1

0
h′′� E

[

(B�)�k(B)

]
d�

+
∫

R
E

[
�k(B)

∫ 1

0
h� �(�,K ′�, a −K�) dL

a
�

]

′′(a) da. (3.10)

Therefore, we conclude by (3.6). �

4. Dirichlet forms on the Wiener space

In this section, we introduce infinite-dimensional Sobolev spaces which we need as
spaces of test functions. Since, we consider vector fieldsK taking values inC or L
rather than in the Cameron–Martin spaceH 1, then the Malliavin derivative is not the
correct notion of gradient and we must introduce a different differential calculus onL.

For F ∈ Exp(C), the usual derivative operator in the Malliavin calculus is
DF : C �→L, defined as follows:

〈DF(�), �′〉 := d

d�
F(�+ ��)

∣∣∣∣
�=0
, � ∈ H 1,

see e.g. Section 1.2 of[8]. Moreover we have closability inL2(�) of

D(F, F ) := 1

2
E
[
‖DF(B)‖2

]
, F ∈ Dom(D) = Dom(D),

and D is a Dirichlet form on the Wiener space. Then all functions in Dom(D) are
differentiable in a weak sense alongH 1-valued vector fields.
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On the other hand we want to study�h
′(�)F (�), see the l.h.s. of (2.3), and in
general, the regularity of� �→h� 
′(��) is not better than that of� ∈ C. In particular,
the vector fieldK(�) :=h
′(�) is not H 1-valued and a generalF ∈ Dom(D) cannot
be differentiated alongK.

For this reason, we must consider here a different gradient∇F : C �→L = L2(0,1)
of F ∈ Exp(C), defined by

〈∇F(�), �〉 := d

d�
F(�+ ��)

∣∣∣∣
�=0
, � ∈ L,

i.e. ∇F is the Fréchet differential ofF in L. Also in this case we have closability in
L2(�) of

E(F, F ) := 1

2
E
[
‖∇F(B)‖2

]
, F ∈ Dom(∇) = Dom(E)

and E is a Dirichlet form on the Wiener space. Comparing the definitions ofDF and
∇F we obtainD = P∇ for all F ∈ Exp(C), where

P : L �→L, P�� :=
∫ 1

�
�� d�, � ∈ [0,1].

In particular, for some constant� > 0

E(F, F ) � �D(F, F ) ∀F ∈ Dom(E) ⊂ Dom(D).

For a discussion of these infinite-dimensional Sobolev spaces, we refer to Section 9.2.1
for Dom(E) and to Section 9.3 for Dom(D) in [3]. We recall, in particular, that Dom(E)
also admits a description in term of the Itô–Wiener decomposition: see e.g. Theorem
9.2.12 in [3].

Now all functions in Dom(E) can be differentiated, at least in a weak sense, along
vector fields taking values inL or C, in particular alongK(�) = h
′(�). Moreover
for h ∈ C and 
 ∈ Conv(R), setting


h,
 = 
 : C �→R, 
(�) := 〈h,
(�)〉 =
∫ 1

0
h� 
(��) d�,

then 
 ∈ Dom(E) and∇
(�) = h
′(�), i.e. for all � ∈ C

〈∇
(�), �〉 =
∫ 1

0
h� 
′(��) �� d�.
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Then for allF ∈ C1
e (L) the l.h.s. of (2.3) is

E
[
�h
′(B)F (B)

] = E
[〈∇F(B), h
′(B)〉] = 2E(F,
h,
). (4.1)

We recall now that the semigroup(PD
t : t � 0) in L2(�) associated withD is given

by the Mehler formula

PD
t F (z) =

∫
F(y) N

(
e−t/2 z, (1− e−t )Q

)
(dy), z ∈ C, F ∈ L2(�),

whereN (a,Q) denotes the Gaussian measure overL with meana ∈ L and covariance
operatorQ : L �→L. This semigroup is a basic tool in the Malliavin calculus: see e.g.
Chapters 1–2 in[7] and Section 1.4–1.5 in[8].

Since in this paper, we work with∇ rather than withD, a crucial role is played by
the transition semigroup(Pt : t � 0) in L2(�) associated withE , given by

PtF (z) =
∫
F(y) N

(
etA z, Qt

)
(dy), z ∈ C, F ∈ L2(�),

where (etA : t � 0) is the semigroup inL generated by the operator

D(A) := {h ∈ C : h′′ ∈ L, h(0) = h′(1) = 0}, Ah := 1

2
h′′

and we set

Qt :=
∫ t

0
e2sA ds = I − e2tA

−2A
, t ∈ [0,∞]. (4.2)

Notice, in particular, that

Q∞ = (−2A)−1 = Q. (4.3)

The second equality of (4.3) says thatQ and−2A are inverse of one another and can
be verified by an explicit computation.

The operators(PD
t : t � 0) and (Pt : t � 0) are two different examples of Ornstein–

Uhlenbeck semigroups: we refer to Chapters 6 and 10 in[3]. For a more detailed
description of(Pt : t � 0) see Section 6.

Two important properties of Dom(E) are stated in the following:

Lemma 4.1. The spaceLipe(L) is contained inDom(E). The spaceExp(C) is dense
in Dom(E).
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Proof. We recall thatF ∈ Dom(E) if and only if supt>0 E(PtF, PtF ) <∞. Now

|PtF (z1)− PtF (z2)|

�
∫
|F(y + etAz1)− F(y + etAz2)|N (0,Qt )(dy)

�
∫
ec(‖y‖+‖z1‖) ‖z1− z2‖N (0,Qt )(dy) � � ec‖z1‖ ‖z1− z2‖

so that‖∇PtF (z)‖ � ec‖z‖ for all z ∈ C and we obtain the first claim. For the second
one, we refer to Section 9.2.1 of[3]. �

5. Proof of the main results

We want to use the tools introduced in the previous section to prove Theorems
2.1–2.3.

In Propositions3.1 and 3.2 we have proved that (2.2) and (2.3) hold for all F ∈
Exp(C). This space is dense in the topology of the Sobolev space Dom(E), introduced
in the previous section. An a priori estimate, given in Lemma5.3, and a density
argument allow to extend (2.2) and (2.3) to much larger spaces of test functions and
to prove Theorems2.1 and 2.2 and also Theorem2.3 as a corollary. In particular, in
this section we prove

Proposition 5.1. Let h ∈ Cc(0,1) and a ∈ R. Then the limit in(2.2) exists for all
F ∈ Lipe(L).

Proposition 5.2. For all h ∈ h2
c(0,1), 
 ∈ Conv(R) and F ∈ Lipe(L)

E
[〈∇F(B), h
′(B)〉]=−E

[
F(B)

∫ 1

0
h′′� 
(B�) d�

]

+
∫

R
E

[
F(B)

∫ 1

0
h� : Ḃ2

� : dLa�
]


′′(da). (5.1)

Proposition5.1 proves Theorem2.1. Theorem2.2 follows by Proposition5.2 and
formula (4.1), recalling thatC1

e (L) ⊂ Lipe(L). At the end of the section, we derive
Theorem2.3 from Proposition5.2. We also recall that∇F is well defined, since by
Lemma4.1: F ∈ Lipe(L) ⊂ Dom(E) = Dom(∇).

We recall that� denotes the Wiener measure, law ofB, i.e. for all bounded Borel
F : C �→R

�(F ) =
∫
F d� = E[F(B)].
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By Proposition 10.5.2 of[3], E satisfies the Poincaré inequality∫
(F − �(F ))2 d� � 1

�1
E(F, F ), F ∈ Dom(E),

where �1 = �2/4, see (6.7) below. Since(Pt : t � 0) is the semigroup inL2(�)
associated withE , the Poincaré inequality implies the exponential convergence ofPtF

to �(F ) in L2(�)

‖PtF − �(F )‖2
L2(�) � e−2t/�1 ‖F‖2

L2(�), t � 0, F ∈ L2(�). (5.2)

In particular, for allG ∈ L2(�)

RG :=
∫ ∞

0
(PtG− �(G)) dt ∈ Dom(E)

and for allF ∈ Dom(E)

E[F(B)G(B)] = E[F(B)]E[G(B)] + E(F,RG).

Let now h ∈ Cc(0,1) and a ∈ R. For all � > 0 we defineG�,a ∈ L2(�)

G�,a(B) :=
∫ 1

0
h� : Ḃ2

�,� : dLa�, G� :=G�,0. (5.3)

Then (2.2) is equivalent to the existence of the limit as�→ 0 of

E
[
F(B)G�,a(B)

] = E[F(B)]E[G�,a(B)] + E(F,RG�,a) (5.4)

for all F ∈ Lipe(L). The main tool in the proof of Propositions5.1 and 5.2 is the
following estimate:

Lemma 5.3. If h ∈ Cc(0,1) then there exists a constant� > 0 such that

‖PtG�‖2L2(�) � �
1+ | ln t |6
t3/4

, t ∈ (0,1], � > 0. (5.5)

The proof of Lemma5.3 is postponed to Section 6. As a consequence of Lemma
5.3 we have the following:

Proposition 5.4. Let h ∈ Cc(0,1) and a=0. Then the limit in (5.4) exists for all
F ∈ Dom(E).
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Proof. By Lemma3.3 for k = 0 and	 ∈ Cb(R) we have

E

[∫ 1

0
h� : Ḃ2

�,� :	(B�) d�
]
= E

[∫ 1

0
h�
B2

� − �

4�2 	(B�) d�

]
.

By the occupation times formula (2.1) we obtain for all	 ∈ Cb(R)

∫
R

E[G�,a(B)]	(a) da =
∫ 1

0
h�

∫
R

a2− �

4�2

e−a2/2�
√

2��
	(a) da d�.

In particular

E[G�,a(B)] =
∫ 1

0
h�
a2− �

4�2

e−a2/2�
√

2��
d�,

which does not depend on�. Therefore, by (5.4) the existence of the limit in (2.2) with
a = 0 for all F ∈ Dom(E) is equivalent to the weak convergence ofRG� in Dom(E).
Now, by Proposition3.1, the limit in (2.2) with a = 0 exists for allF ∈ Exp(C),
which is dense in Dom(E). Therefore, if we can prove that

sup
�>0

E(RG�,RG�) < ∞ (5.6)

then we conclude. Indeed, for anyF ∈ Dom(E) we can find a sequence(Fn)n ⊂ Exp(C)
converging toF in Dom(E). Write

|E(F,G� −G�)| � |E(Fn,G� −G�)| + |E(F − Fn,G� −G�)|.

By (5.6) we can make the second term arbitrarily small for somen big enough but
fixed, uniformly in �, � > 0. Then by Proposition3.1 we can make the first term
arbitrarily small as�, �→ 0.

For the proof of (5.6), we recall the following formula:

E(RG�,RG�)=
∫

RG� (G� − �(G�)) d�

=
∫ ∞

0

∫
(PtG� − �(G�)) (G� − �(G�)) d� dt

=
∫ ∞

0
‖Pt/2G� − �(G�)‖2L2(�) dt.
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Moreover by (5.2) and (5.5), sinceP1+t = PtP1, t � 0

‖P1+tG� − �(G�)‖2L2(�) � e−2t/�1 ‖P1G�‖2L2(�) � � e−2t/�1.

Therefore (5.6) follows from:

E(RG�,RG�) �
∫ 1

0
‖Pt/2G�‖2L2(�) dt +

∫ ∞
1
‖Pt/2G� − �(G�)‖2L2(�) dt

� �
∫ 1

0

1+ | ln t |6
t3/4

dt + �
∫ ∞

1
e−2t/�1 dt < ∞. �

We can now apply the results of Propositions3.1, 3.2 and 5.4 to prove Propositions
5.1 and 5.2.

Proof of Proposition 5.1. We fix � ∈ (0, 1
2) such that supp(h) ⊂ [�,1− �] and we

consider� ∈ (0, �/2). By Proposition5.4, (2.2) holds fora = 0 and for allF ∈ Dom(E).
Let � : [0,1] �→R be of classC2 such that�0 = 0 and�� = 1 for all � ∈ [�/2,1].

By the Cameron–Martin theorem we have the following formula:

E [F(B)] = E
[
F(B + a�) exp

(
a〈�′′, B〉 − c(�, a))] , (5.7)

wherec(�, a) := a2‖�′‖2/2. If G�,a is defined as in (5.3), then almost surely

G�,a(B + a�) = G�,a(B + a) = G�,0(B) = G�(B),

where the first equality holds becauseh vanishes where� �= 1 and the second one
because the local time ofB + a at a is equal to the local time ofB at 0. Let nowF
be in Lipe(L). Then by (5.7)

E
[
F(B)G�,a(B)

] = E [Fa(B)G�(B)] , (5.8)

where: Fa(z) :=F(z+ a�) exp(a〈�′′, z〉 − c(�, a)), z ∈ C.

Now, Fa ∈ Dom(E), so that, by Proposition5.4, E[F(B)G�,a(B)] converges as�→ 0
and (2.2) is proven for alla ∈ R. �

Proof of Proposition 5.2. We consider first the case


(x) := |x − a| �⇒ 
′(x) = sign(x − a), 
′′(dx) = 2�a(dx)



L. Zambotti / Journal of Functional Analysis 223 (2005) 147–178 165

for somea ∈ R, where�a is the Dirac mass ata and

sign : R �→ {0,1}, sign(x) :=1(0,∞)(x) − 1(−∞,0](x).

In this case, (5.1) becomes

E
[〈∇F(B), h sign(B − a)〉]=−E

[
F(B)

∫ 1

0
h′′� |B� − a| d�

]

+2E

[
F(B)

∫ 1

0
h� : Ḃ2

� : dLa�
]
. (5.9)

Consider first the casea = 0. By Proposition5.4, the r.h.s. of (5.9) defines a
bounded linear functional on Dom(E). Moreover, by Proposition3.1, (5.9) holds for
all F ∈ Exp(C). Since both sides of (5.9) are bounded linear functionals on Dom(E),
coinciding on the dense subset Exp(C), they coincide on Dom(E). Therefore (5.9)
is proven fora = 0.

Let � and Fa be the functions introduced in the proof of Proposition5.1. By (5.8)
and by (5.9) with a = 0 we obtain

lim
�→0

2E
[
F(B)G�,a(B)

]
= lim

�→0
2E [Fa(B)G�(B)]

= E
[〈∇Fa(B), h sign(B)〉]+ E

[
Fa(B)

∫ 1

0
h′′� |B�| d�

]

= E
[〈∇F(B), h sign(B − a)〉]+ E

[
F(B)

∫ 1

0
h′′� |B� − a| d�

]
.

Therefore (5.9) is proven for all a ∈ R and F ∈ Lipe(L). Let now 
 ∈ C2
c (R).

Multiplying (5.9) by 
′′(a) and integrating inda we obtain (5.1) and∣∣∣∣∫
R

E

[
F(B)

∫ 1

0
h� : Ḃ2

� : dLa�
]


′′(a) da
∣∣∣∣

� �
∫ 1

0
E
[
ec‖B‖

(|
(B�)| + |
′(B�)|
)]
d�.

Therefore, by a density argument (5.1) holds for all 
 ∈ Conv(R). �

Proof of Theorem 2.3. We start by recalling that, by Tanaka’s formula,�0 ≡ 2La ,
where�0 is the local time process ofX = |B−a| at 0 andLa is the local time process
of B at a.
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Fix h ∈ C2
c (0,1) and f ∈ C1

e (L). SettingF(z) := f (|z − a|), z ∈ L, then clearly
F ∈ Lipe(L). By Lemma4.1, F ∈ Dom(E) and by the chain rule

〈∇F(z), h〉 = 〈∇f (|z− a|), h sign(z− a)〉, �-a.e. z.

In particular, for�-a.e.z:

〈∇F(z), h sign(z− a)〉 = 〈∇f (|z− a|), h〉

since [sign(z − a)]2 ≡ 1. Therefore, formula (5.9) applied toF(z) := f (|z − a|) and

(x) = |x − a|, z ∈ L, x ∈ R, yields (2.4). �

6. The main estimate

In this section, we prove Lemma5.3. We recall thatG� is the sum of two diverging
terms. ApplyingPt to G� we have a regularization effect: indeed, we writePtG�
as a sum of terms, which after some cancellations converge as� tends to 0. This
compensation of infinities requires a careful study of each term.

We start with a more detailed description of the semigroup(Pt : t � 0) of the
Dirichlet FormE in L2(�), defined in Section 4. We introduce first the Green function
(gt (�, �

′) : t > 0, �, �′ ∈ [0,1]) of the heat equation associated withA, i.e. solution of

�g
�t
= 1

2

�2
g

��2

with boundary and initial conditions

gt (0, �
′) = �gt

��
(1, �′) = 0, g0(�, �

′) = ��(d�
′),

where�� is the Dirac mass at�. Then we set for allz ∈ C

z(t, �) :=
∫ 1

0
gt (�, �

′) z�′ d�
′, v(t, �) :=

∫ t

0

∫ 1

0
gt−s(�, �′)W(d�′, ds), (6.1)

u(t, �) := z(t, �) + v(t, �), Ut (z) := u(t, ·) ∈ C, (6.2)

where (W(�′, s) : �′ ∈ [0,1], s � 0) is a Brownian sheet. Then

PtF (z) = E [F(Ut (z))] , t � 0, z ∈ C, F ∈ L2(�).
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Although this is not needed in this paper, we remark that(u(t, �) : t � 0, � ∈ [0,1]) is
the unique solution of the stochastic partial differential equation driven by space–time
white noise: 

�u
�t
= 1

2

�2
u

��2 +
�2
W

�t��
,

u(t,0) = �u
��
(t,1) = 0,

u(0, �) = z�,

see[11].
Notice that (z(t, �) : t � 0, � ∈ [0,1]) is a deterministic continuous function and

(v(t, �) : t � 0, � ∈ [0,1]) is a centered continuous Gaussian process. A crucial role is
played by the function

qt (�, �
′) :=E

[
v(t, �) v(t, �′)

] = ∫ t

0
g2s(�, �

′) ds, qt (�) := qt (�, �) (6.3)

for �, �′ ∈ [0,1], t � 0. Notice that for all� ∈ L∫ 1

0
qt (�, �

′) ��′ d�
′ =

∫ t

0
e2sA�� ds = Qt��,

whereQt is defined in (4.2). By (4.3) above,Q∞ = Q, i.e.

q∞(�, �′) := lim
t↗∞ qt (�, �

′) = � ∧ �′, q∞(�) := q∞(�, �) = �. (6.4)

We also set

qt (�, �′) := [q∞ − qt ](�, �′) =
∫ ∞
t

g2s(�, �
′) ds, qt (�) := qt (�, �). (6.5)

We denote by�t (� − �′) the density of the Gaussian measureN (�, t)(d�′) over R

with mean� and variancet. Then g − � is smooth over[0,∞) × (0,1) × (0,1). In
particular, for all� ∈ (0, 1

2) there exists a constant�� > 0 such that for allt ∈ [0,1],
� ∈ [�,1− �]:

qt (�) =
∫ t

0

ds√
4�s

+
∫ t

0
(g2s(�, �)− �2s(0)) ds � �� t

1/2. (6.6)

Finally, we introduce the complete orthonormal system ofL:

ei(�) :=21/2 sin
(√

�i �
)
, � ∈ [0,1], �i := �2

4
(2i − 1)2,
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i = 1,2, . . . . Then (ei)i is a system of eigenvectors ofQ, A and etA:

Qei = 1

�i
ei , A ei = − �i

2
ei, etA ei = e−t�i /2 ei . (6.7)

In particular

qt (�, �
′) =

∞∑
i=1

1− e−�i t

�i
ei(�) ei(�

′), t ∈ [0,∞], �, �′ ∈ [0,1]. (6.8)

Proof of Lemma 5.3. We fix � ∈ (0, 1
2) such that supp(h) ⊆ [�,1−�] and we consider

� ∈ (0, �). Recalling (6.1) and (6.2), we set

v�(t, ·) :=�� ∗ v(t, ·), z�(t, ·) :=�� ∗ z(t, ·), u� := z� + v�.

We denote the partial derivative w.r.t.� by ��.

An explicit formula forPtG�. By definition (5.3) of G�,a and by the occupation
times formula, for�-a.e.�

∫
R
G�,a(�)	(a) da =

∫ 1

0
h�

(
(�′�,�)

2− c�,�
)

	(��) d�

for any 	 ∈ Cb(R). By Fubini’s theorem∫
R
PtG�,a(z)	(a) da = Pt

[∫
R
G�,a 	(a) da

]
(z)

=
∫ 1

0
h� E

[
	(u(t, �))

(
(��u�(t, �))2− c�,�

)]
d�. (6.9)

As in the proof of Lemma3.3 we set for fixedt > 0 and� ∈ (0,1)

�� := qt (�, �)
qt (�)

, v̂(t,�) := v(t,�)− v(t, �) ��, � ∈ (0,1).

Then, the covariance between the two Gaussian variablesv̂(t, ·) and v(t, �) is zero, so
that v̂(t, ·) and v(t, �) are independent. Denotingz := z(t, �) and q := qt (�) we obtain

E
[
	(u(t, �))

[
(��u�(t, �))2− c�,�

]]
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=
∫

R
N (0, q)(dy) 	(y + z)E

[(
��u�(t, �)+ (y − v(t, �)) �′�,�

)2− c�,�
]

=
∫

R
N (0, q)(dy)	(y + z)

[(
��z�(t, �)+ y �′�,�

)2 − q
(
�′�,�

)2 − ct�,�
]
(6.10)

where, recalling (4.2) and settingQt := etAQetA = Q−Qt , by (3.3)

ct�,� := c�,� − E
[(

��v�(t, �)
)2] = 〈Qt�′�(· − �),�′�(· − �)〉. (6.11)

Therefore, by (6.9) and (6.10)∫
R
PtG�,a(z)	(a) da

=
∫ 1

0
d�h�

∫
R

N (0, qt (�))(dy)	(y + z(t, �))

×
[(

��z�(t, �)
)2− ct�,� + 2y �′�,� ��z�(t, �)+

(
y2− qt (�)

) (
�′�,�

)2
]
.

Therefore we obtain

PtG�(z)=
∫ 1

0
h�
e−(z(t,�))2/2qt (�)√

2�qt (�)

[(
��z�(t, �)

)2− ct�,�
−2z(t, �) �′�,� ��z�(t, �)+

(
(z(t, �))2− qt (�)

) (
�′�,�

)2
]
d�,

and

‖Pt G�‖2 � 4
3∑
i=1

Ii(t, �), Ii(t, �) := ‖V i�,t‖2,

where

V 1
�,t (z) :=

∫ 1

0
h�
e−(z(t,�))2/2qt (�)√

2�qt (�)

[
(��z�(t, �))

2− ct�,�
]
d�,

V 2
�,t (z) := −

∫ 1

0
h�
e−(z(t,�))2/2qt (�)√

2�qt (�)
2z(t, �) �′�,� ��z�(t, �) d�,
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V 3
�,t (z) :=

∫ 1

0
h�
e−(z(t,�))2/2qt (�)√

2�qt (�)

[
(z(t, �))2− qt (�)

] (
�′�,�

)2
d�.

For F ∈ C1
e (L), k ∈ L and K :=Qk ∈ H 1 we have integrating by parts w.r.t. the

Wiener measure

E
[
�KF(B)

] = E

[
F(B)

∫ 1

0
K ′� dB�

]
.

On the other hand, integrating by parts on[0,1] we obtain

∫ 1

0
K ′� dB� = K ′1B1 − K ′0B0 −

∫ 1

0
K ′′� B� d� =

∫ 1

0
k� B� d�,

sinceK ′1 = B0 = 0. Therefore, we obtain the following formula:

E [F(B) 〈k, B〉] = E
[
�KF(B)

]
. (6.12)

Iterating (6.12) several times we obtain forF ∈ C4
b(L), k

i ∈ L andKi :=Qki :

E
[
F(B) 〈k1, B〉 〈k2, B〉

]
= 〈K1, k2〉E [F(B)] + E

[
�2
K1,K2 F(B)

]
, (6.13)

E
[
F(B) 〈k1, B〉2 〈k2, B〉2

]
=
(
〈K1, k1〉 〈K2, k2〉 + 2 〈K1, k2〉2

)
E [F(B)]

+
∑
i �=j
〈Ki, ki〉E

[
�2
Kj ,Kj F (B)

]
+ 4 〈K2, k1〉E

[
�2
K1,K2 F(B)

]

+ E
[
�4
K1,K1,K2,K2 F(B)

]
. (6.14)

Estimate ofI1. We set for the rest of the proof

k1 := − etA �′�(· − �), k2 := − etA �′�(· − �′), Ki :=Qki, (6.15)
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Fa,b(z) := e
−(z(t,�)−a)2/2qt (�)√

2�qt (�)
· e
−(z(t,�′)−b)2/2qt (�′)√

2�qt (�
′)

, F :=F 0,0

for z ∈ L and a, b ∈ R. Then we have

I1(t, �)=
∫

�(dz)

[∫ 1

0
h�
e−(z(t,�))2/2qt (�)√

2�qt (�)

[
(��z�(t, �))

2− ct�,�
]
d�

]2

=
∫
[0,1]2

d� d�′ h� h�′

× E[F(B) (〈k1, B〉2 〈k2, B〉2 − 〈k1, B〉2 ct�,�′
− ct�,� 〈k2, B〉2 + ct�,� ct�,�′)].

Moreover by (3.3) and (6.11)

〈K1, k1〉 = 〈Qt�′(· − �),�′(· − �)〉 = ct�,�, 〈K2, k2〉 = ct�,�′ ,

〈K1, k2〉 = 〈Qt�′(· − �),�′(· − �′)〉 =: ct�,�,�′ .

Using (6.13) and (6.14), several terms cancel and what remains is

I1(t, �)=
∫
[0,1]2

d� d�′ h� h�′

× E[F(B)2 〈K1, k2〉2+ 4 〈K1, k2〉 �2
K1,K2 F(B)

+ �4
K1,K1,K2,K2 F(B)].

Notice that the function� : R2 �→R+

�(a, b) :=E
[
Fa,b(B)

]
= E

exp
(
− (〈B,etA��〉−a)2

2qt (�)
− (〈B,etA��′ 〉−b)2

2qt (�
′
)

)
2�
√
qt (�) qt (�

′)


is the density of the convolution betweenN (0, qt (�)) ⊗ N (0, qt (�′)) and the law of
(〈B, etA��〉, 〈B, etA��′ 〉). Therefore� is the density of the Gaussian measure onR2

with zero mean and covariance matrix(
qt (�) 0

0 qt (�
′)

)
+
(
qt (�) qt (�, �′)
qt (�, �′) qt (�′)

)
=
(
q∞(�) qt (�, �′)
qt (�, �′) q∞(�′)

)
=: ��,�′ .
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Moreover

(qt (�, �′))2 =
(

E
[
〈B, etA��〉 〈B, etA��′ 〉

])2

� E
[
〈B, etA��〉2

]
E
[
〈B, etA��′ 〉2

]
= qt (�) qt (�′) � qt (�) q∞(�′).

Using this inequality and recalling thatq∞ − qt = qt we have

det ��,�′ = q∞(�) q∞(�′)− (qt (�, �′))2 � qt (�) q∞(�′).

Therefore by (6.6), for �, �′ ∈ [�,1− �]

E [F(B)] = �(0,0) = 1

2�(det ��,�′)
1/2 �

�−1/2
�

t1/4
.

Now, by (6.8)

ct�,�,�′ = 〈Qt�′�(· − �),�′�(· − �′)〉 =
∞∑
i=1

e−�i t

�i
(�� ∗ e′i )� (�� ∗ e′i )�′ .

Setting�i := �1/2
i ei we have that(�i )i∈N is a c.o.s. inL. We obtain

∫
[0,1]2

d� d�′ h� h�′ E [F(B)]
(
ct�,�,�′

)2

� �
t1/4

∫
[0,1]2

d� d�′ h� h�′
(
ct�,�,�′

)2

= �
t1/4

∞∑
i,j=1

e−(�i+�j )t
[∫ 1

0
(�� ∗ �i )� (�� ∗ �j )� h� d�

]2

.

Now, since�� is a symmetric convolution kernel

∫ 1

0
(�� ∗ �i )� (�� ∗ �j )� h� d� = 〈�j ,�� ∗ [h(�� ∗ �i )]〉
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�⇒
∞∑
j=1

[∫ 1

0
(�� ∗ �i )� (�� ∗ �j )� h� d�

]2

= ‖�� ∗ [h(�� ∗ �i )]‖2 � ‖h‖2

so that

∫
[0,1]2

d� d�′ h� h�′ E [F(B)]
(
ct�,�,�′

)2
� � ‖h‖2

t1/4

∞∑
i=1

e−�i t � � ‖h‖2
t3/4

.

Now for all � ∈ L we have

F(z+ s �) = F−s etA��,−s etA��′ (z) = F s etA��, s etA��′ (z)

so that, settingHi := etAQki :

E
[
�2
K1,K2 F(B)

]
= �2

�r �s
E
[
F(B + rK1+ sK2)

]∣∣∣∣∣
r=s=0

= �2

�r �s
�(rH 1

� + sH 2
� , rH

1
�′ + sH 2

�′)

∣∣∣∣∣
r=s=0

=−
vT

1 �−1
�,�′ v2

2�
√

det��,�′
(6.16)

where vi = (H i�, H
i

�′) ∈ R2. Since the entries of��,�′ are bounded uniformly in

�, �′ ∈ [0,1] and for all �, �′ ∈ [0,1]

|Hj� | �
∞∑
i=1

e−�i t

�i
‖�� ∗ e′i‖∞ ‖ei‖∞ �

∞∑
i=1

e−�i t

�1/2
i

� �(1+ | ln t |) (6.17)

then we obtain

∣∣∣E [�2
K1,K2 F(B)

]∣∣∣ � �(1+ | ln t |)2
(det��,�′)

3/2

and therefore∫
[0,1]2

d� d�′ h� h�′ 〈K1, k2〉E
[
�2
K1,K2 F(B)

]
� �(1+ | ln t |)2

t3/4
.
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Analogously

E
[
�4
K1,K1,K1,K2 F(B)

]
= �4

�2
r �2

s
�(rH 1

� + sH 2
� , rH

1
�′ + sH 2

�′)

∣∣∣∣∣
r=s=0

= 1

(det��,�′)
3/2 R�,�′(H

1
� , H

2
� , H

1
�′ , H

2
�′),

whereR�,�′ is a multi-linear form onR4 with uniformly bounded coefficients w.r.t.
�, �′ ∈ [0,1]. Therefore

∫
[0,1]2

d� d�′ h� h�′ E
[
�4
K1,K1,K1,K2 F(B)

]
� �(1+ | ln t |)4

t3/4
.

Estimate ofI2. Continuing with the notations introduced in the previous step, we
notice now that

e−(z(t,�))2/2qt (�)√
2�qt (�)

· z(t, �)
qt (�)

· e
−(z(t,�))2/2qt (�)√

2�qt (�)
· z(t, �)
qt (�)

= �2

�a �b
Fa,b(z)

∣∣∣∣∣
a=b=0

.

Then, setting��,� := (�� ∗ qt (·, �))′�, we have

I2(t, �)=
∫

�(dz)

[∫ 1

0
h�
e−(z(t,�))2/2qt (�)√

2�qt (�)
2
z(t, �)
qt (�)

��,� ��z�(t, �) d�

]2

= 4
∫
[0,1]2

d� d�′ h� h�′ ��,� ��,�′

× E

[
〈B, k1〉 〈B, k2〉 �2

�a �b
Fa,b(B)

∣∣∣∣∣
a=b=0

]
.

By (6.13) we have

E
[
〈B, k1〉 〈B, k2〉Fa,b(B)

]
= 〈K1, k2〉E

[
Fa,b(B)

]
+ E

[
�2
K1,K2 F

a,b(B)
]

= ct�,�,�′ �(a, b) +
�2

�r �s
�(a − rH 1

� − sH 2
� , b − rH 1

�′ − sH 2
�′)

∣∣∣∣∣
r=s=0

.
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Now, recalling that� is the density ofN (0,��,�′), we can compute

�2

�a �b
�(a, b)

∣∣∣∣∣
a=b=0

= qt (�, �′)
2�(det��,�′)

3/2 ,

�4

�a �b �r �s
�(a − rH 1

� − sH 2
� , b − rH 1

�′ − sH 2
�′)

∣∣∣∣∣
a=b=r=s=0

= 1

(det��,�′)
3/2 R̂�,�′(1,1, H

1
� , H

2
� , H

1
�′ , H

2
�′)

where R̂�,�′ is a multi-linear form onR6 with uniformly bounded coefficients w.r.t.
�, �′ ∈ [0,1]. By (6.8)

qt (�, �
′) = � ∧ �′ −

∞∑
i=1

e−�i t

�i
ei(�) ei(�

′).

Since (�� ∗ q∞(·, �))′� = (�� ∗ 1[0,�])� = 1/2, then

��,� = (�� ∗ qt (·, �))′� =
1

2
−
∞∑
i=1

e−�i t

�i
(�� ∗ e′i )� ei(�)

and therefore

|��,�| � �(1+ | ln t |).

Therefore we have proven that

I2(t, �) � �
∫
[0,1]2

d� d�′ h� h�′ ��,� ��,�′
1+ |R̂�,�′(1,1, H

1
� , H

2
� , H

1
�′ , H

2
�′)|

(det ��,�′)
3/2

� �(1+ | ln t |)6
t3/4

.

Estimate ofI3. Arguing like for I2 we obtain

I3(t, �) =
∫

�(dz)

[∫ 1

0
h�
e−(z(t,�))2/2qt (�)√

2�qt (�)

[
(z(t, �))2

(qt (�))2
− 1

qt (�)

]
�2
�,� d�

]2
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=
∫
[0,1]2

d� d�′ h� h�′ �
2
�,� �2

�,�′
�4

�2
a �2

b
�(a, b)

∣∣∣∣∣
a=b=0

� �(1+ | ln t |)6
t3/4

,

and the proof of Lemma5.3 is complete. �

Using the proofs of Proposition5.1 and Lemma5.3, we prove also the following:

Corollary 6.1. For all h ∈ Cc(0,1), RG� converges weakly inDom(E) to RG0 ∈
Dom(E), where for�-a.e. z ∈ C

RG0(z) :=
∫ ∞

0

∫ 1

0
h�
e−(z(t,�))2/2qt (�)√

2�qt (�)

[(
�z(t, �)

��

)2

− ct0,�

−2�0,�
z(t, �)
qt (�)

�z(t, �)
��

+ �2
0,�

([
z(t, �)
qt (�)

]2

− 1

qt (�)

)]
d� dt

for � ∈ (0,1), t ∈ (0,∞), z(t, �) is defined by(6.1) and

ct0,� :=
∞∑
i=1

e−�i t

�i

∣∣e′i (�)∣∣2 , �0,� := 1

2
−
∞∑
i=1

e−�i t

�i
e′i (�) ei(�).

Moreover for allF ∈ Lipe(L) and a ∈ R

E

[
F(B)

∫ 1

0
h� : Ḃ2

� : dLa�
]

= E[F(B)]
∫ 1

0
h�
a2− �

4�2

e−a2/2�
√

2��
d� + E

(
ea〈l′′,·〉 F, RG0

)
e−a2‖�′‖2/2,

(6.18)

where l ∈ C2([0,1]), l(0) = 0 and l(x) = 1 for all x such thath(x) �= 0.

Formula (6.18) allows to compute directly the value of the generalized functional
constructed in Theorem2.1 without using the limit in the l.h.s. of (2.2).

7. The case of quadratic� and constant h

We want to consider the divergence of a vector field of particular interest, namely
the identityK(�) = �. This case corresponds to
(r) = 1

2r
2 andh ≡ 1, and therefore
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it does not fit in the assumptions of Theorem2.2, sinceh has not compact support in
(0,1). Still, since
′′ ≡ 1, this case is simpler than the general one and can be treated
without the main estimate of Lemma5.3.

Let us go back to the result of Lemma3.5: formula (3.8) becomes

k� E[B� +K�] = − 1

2

d2

d�2 E
[
(B� +K�)

2
]
+ E

[
�(�,K ′�, B�)

]
,

i.e. k�K� = − 1

2

d2

d�2 (�+K2
� ) + (K ′�)2.

Integrating over[0,1] in d� we obtain

∫ 1

0
k�K� d� = −1

2

[
(K2

� )
′]1

0
+
∫ 1

0
(K ′�)

2 d� =
∫ 1

0
(K ′�)

2 d�,

sinceK0 = K ′1 = 0. By (3.2) this yields for�k := e〈k,·〉:

E
[
�B�k(B)

] = e
1
2 〈Qk,k〉

∫ 1

0
(K ′�)

2 d� = E

[
�k(B)

∫ 1

0
: Ḃ2

� : d�
]

:= lim
�→0

E

[
�k(B)

∫ 1

0
: Ḃ2

�,� : d�
]
.

In this case: Ḃ2
� : appears without integration w.r.t. the local time process and is

therefore defined in the classical way, see[5]. Arguing like in Sections 5 and 6, we
set now

G�(B) :=
∫ 1

0
: Ḃ2

�,� : d�

and we compute for allz ∈ C:

PtG�(z) =
∫ 1

0

[(
��z�(t, �)

)2− c�,�] d�.
Arguing like in the proof of Lemma5.3, see in particular the estimate ofI1, we
compute

‖PtG�‖2L2(�)

=
∫

�(dz)
[∫ 1

0

[
(��z�(t, �))

2− ct�,�
]
d�
]2

=
∫
[0,1]2

d� d�′
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×E
[
〈k1, B〉2 〈k2, B〉2 − 〈k1, B〉2 ct�,�′ − ct�,� 〈k2, B〉2 + ct�,� ct�,�′

]
=
∫
[0,1]2

d� d�′ 2 〈Qk1, k2〉2 = 2
∫
[0,1]2

d� d�′
[ ∞∑
i=1

e−�i t

�i
(�� ∗ e′i )� (�� ∗ e′i )�′

]2

= 2
∞∑
i,j=1

e−(�i+�j )t
[∫ 1

0
(�� ∗ �i )� (�� ∗ �j )� d�

]2

� 2
∞∑
i=1

e−�i t � �
t1/2

.

ThereforeRG� converges weakly in Dom(E) to RG0 ∈ Dom(E) and

E[〈∇F(B), B〉] = lim
�→0

E

[
F(B)

∫ 1

0
: Ḃ2

�,� : d�
]
= E(F,RG0),

for all F ∈ Dom(E), where

RG0(z) =
∫ ∞

0

[(
�z(t, �)

��

)2

− ct0,�
]
dt, �-a.e. z ∈ C,

see Corollary6.1 above.
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