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a LaBRI, Université Bordeaux 1, 351 cours de la Libération, 33 400 Talence, France
b Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland
c Institute of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 August 2010
Available online 1 April 2011
Communicated by Jean-Yves Thibon

Keywords:
Zonal polynomials
Free cumulants
Symmetric functions
Algebraic combinatorics
Maps on non-oriented surfaces

We study zonal characters which are defined as suitably normal-
ized coefficients in the expansion of zonal polynomials in terms of
power-sum symmetric functions. We show that the zonal charac-
ters, just like the characters of the symmetric groups, admit a nice
combinatorial description in terms of Stanley’s multirectangular co-
ordinates of Young diagrams. We also study the analogue of Kerov
polynomials, namely we express the zonal characters as polyno-
mials in free cumulants and we give an explicit combinatorial in-
terpretation of their coefficients. In this way, we prove two recent
conjectures of Lassalle for Jack polynomials in the special case of
zonal polynomials.
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1. Introduction

1.1. Zonal polynomials

1.1.1. Background
Zonal polynomials were introduced by Hua [Hua63, Chapter VI] and later studied by James [Jam60,

Jam61] in order to solve some problems from statistics and multivariate analysis. They quickly became
a fundamental tool in this theory as well as in the random matrix theory (an overview can be found
in the book of Muirhead [Mui82] or also in the introduction to the monograph of Takemura [Tak84]).
They also appear in the representation theory of the Gelfand pairs (S2n, Hn) (where S2n and Hn are,
respectively, the symmetric and hyperoctahedral groups) and (GLd(R), O d). More precisely, when we
expand zonal polynomials in the power-sum basis of the symmetric function ring, the coefficients
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describe a canonical basis (i.e. the zonal spherical functions) of the algebra of left and right Hn-
invariant (respectively O d-invariant) functions on S2n (respectively GLd(R)).

This last property shows that zonal polynomials can be viewed as an analogue of Schur symmetric
functions: the latter appear when we look at left and right Sn (respectively Ud) invariant functions on
Sn × Sn (respectively GLd(C)), corresponding to the Gelfand pairs (Sn × Sn,Sn) and (GLd(C), Ud).
This is the underlying principle why many of the properties of Schur functions can be extended to
zonal polynomials and this article goes in this direction.

In this article we use a characterization of zonal polynomials due to James [Jam61] as their defini-
tion. The elements needed in our development (including the precise definition of zonal polynomials)
are given in Section 2.1. For a more complete introduction to the topic we refer to the Chapter VII of
Macdonald’s book [Mac95].

The main results of this article are new combinatorial formulas for zonal polynomials. Note that,
as they are a particular case of Jack symmetric functions, there exists already a combinatorial inter-
pretation for them in terms of ribbon tableaux (due to Stanley [Sta89]). But our formula is of different
type: it gives a combinatorial interpretation to the coefficients of the zonal polynomial Zλ expanded
in the power-sum basis as a function of λ. In more concrete words, the combinatorial objects de-
scribing the coefficient of pμ in Zλ depend on μ, whereas the statistics on them depend on λ (in
Stanley’s result it is roughly the opposite). This kind of dual approach makes appear shifted symmetric
functions [OO97] and is an analogue of recent developments concerning characters of the symmetric
group: more details will be given in Section 1.3.

1.1.2. Jack polynomials
Jack [Jac71] introduced a family of symmetric functions J (α)

λ depending on an additional parame-
ter α. These functions are now called Jack polynomials. For some special values of α they coincide with
some established families of symmetric functions. Namely, up to multiplicative constants, for α = 1
Jack polynomials coincide with Schur polynomials, for α = 2 they coincide with zonal polynomials,
for α = 1/2 they coincide with symplectic zonal polynomials, for α = 0 we recover the elementary
symmetric functions and finally their highest degree component in α are the monomial symmetric
functions. Moreover, some other specializations appear in different contexts: the case α = 1/k, where
k is an integer, has been considered by Kadell in relation with generalizations of Selberg’s integral
[Kad97]. In addition, Jack polynomials for α = −(k + 1)/(r + 1) verify some interesting annihilation
conditions [FJMM02].

Jack polynomials for a generic value of the parameter α do not seem to have a direct interpre-
tation, for example in the context of the representation theory or in the theory of zonal spherical
functions of some Gelfand pairs. Nevertheless, over the time it has been shown that several results
concerning Schur and zonal polynomials can be generalized in a rather natural way to Jack polyno-
mials (see, for example, the work of Stanley [Sta89]), therefore Jack polynomials can be viewed as a
natural interpolation between several interesting families of symmetric functions at the same time.

An extensive numerical exploration and conjectures done by Lassalle [Las08,Las09] suggest that
the kind of combinatorial formulas we establish in this paper has generalizations for any value of the
parameter α. Unfortunately, we are not yet able to achieve this goal.

1.2. The main result 1: a new formula for zonal polynomials

1.2.1. Pair-partitions
The central combinatorial objects in this paper are pair-partitions:

Definition 1.1. A pair-partition P of [2n] = {1, . . . ,2n} is a set of pairwise disjoint two-element sets,
such that their (disjoint) union is equal to [2n]. A pair-partition can be seen as an involution of [2n]
without fixpoints, which associates to each element its partner from the pair.

The simplest example is the first pair-partition, which will play a particular role in our article:

S = {{1,2}, {3,4}, . . . , {2n − 1,2n}}. (1)
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1.2.2. Couple of pair-partitions
Let us consider two pair-partitions S1, S2 of the same set [2n]. We consider the following bipartite

edge-labeled graph L(S1, S2):

• it has n black vertices indexed by the two-element sets of S1 and n white vertices indexed by
the two-element sets S2;

• its edges are labeled with integers from [2n]. The extremities of the edge-labeled i are the two-
element sets of S1 and S2 containing i.

Note that each vertex has degree 2 and each edge has one white and one black extremity. Besides, if
we erase the indices of the vertices, it is easy to recover them from the labels of the edges (the index
of a vertex is the set of the two labels of the edges leaving this vertex). Thus, we forget the indices
of the vertices and view L(S1, S2) as an edge-labeled graph.

As every vertex has degree 2, the graph L(S1, S2) is a collection of loops. Moreover, because of
the proper bicoloration of the vertices, all loops have even length. Let 2�1 � 2�2 � · · · be the ordered
lengths of these loops. The partition (�1, �2, . . .) is called the type of L(S1, S2) or the type of the
couple (S1, S2). Its length, i.e. the number of connected components of the graph L(S1, S2), will be
denoted by |L(S1, S2)| (we like to see L(S1, S2) as a set of loops). We define the sign of a couple of
pair-partitions as follows:

(−1)L(S1,S2) = (−1)(�1−1)+(�2−1)+··· = (−1)n−|L(S1,S2)|

and the power-sum symmetric function

pL(S1,S2)(z1, z2, . . .) = p�1,�2,...(z1, z2, . . .) =
∏

i

∑
j

z�i
j . (2)

Example. We consider

S1 = {{1,2}, {3,4}, {5,6}},
S2 = {{1,3}, {2,4}, {5,6}}. Then L(S1, S2) = .

So, in this case, L(S1, S2) has type (2,1).

Another, more complicated, example is given in the beginning of Section 5.1.

1.2.3. Zonal polynomials and pair-partitions
For zonal and Jack polynomials we use in this article the notation from Macdonald’s book [Mac95].

In particular, the zonal polynomial Zλ associated to the partition λ is the symmetric function defined
by Eq. (2.13) of [Mac95, VII.2]. For the reader not accustomed with zonal polynomials, their property
given in Section 2.1 entirely determines them and is the only one used in this paper.

Let λ = (λ1, λ2, . . .) be a partition of n; we consider the Young tableau T of shape 2λ =
(2λ1,2λ2, . . .) in which the boxes are numbered consecutively along the rows. Permutations of [2n]
can be viewed as permutations of the boxes of T . Then a pair (S1, S2) is called T -admissible if S1, S2
are pair-partitions of [2n] such that S ◦ S1 preserves each column of T and S2 preserves each row.

Theorem 1.2. With the definitions above, the zonal polynomial is given by

Zλ =
∑

(S1,S2) T -admissible

(−1)L(S,S1)pL(S1,S2).

This result will be proved in Section 2.7.
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Example. Let λ = (2,1) and T = 1 2 3 4
5 6 . Then (S1, S2) is T -admissible if and only if:

S1 ∈ {{{1,2}, {3,4}, {5,6}},{{1,6}, {3,4}, {2,5}}} and

S2 ∈ {{{1,2}, {3,4}, {5,6}},{{1,3}, {2,4}, {5,6}},{{1,4}, {2,3}, {5,6}}}.
The first possible value of S1 gives (−1)L(S,S1) = 1 and the corresponding types of L(S1, S2) for the
three possible values of S2 are, respectively, (1,1,1), (2,1) and (2,1). For the second value of S1,
the sign is given by (−1)L(S,S1) = −1 and the types of the corresponding set-partitions L(S1, S2) are,
respectively, (2,1), (3) and (3).

Finally, one obtains Z(2,1) = p(1,1,1) + p(2,1) − 2p(3) .

Remark 1.3. This theorem is an analogue of a known result on Schur symmetric functions:

n! · sλ

dim(λ)
=

∑
(−1)σ1 ptype(σ1◦σ2),

where the sum runs over pairs of permutations (σ1, σ2) of the boxes of the diagram λ such that σ1
(respectively σ2) preserves the columns (respectively the rows) of λ and type(σ1 ◦ σ2) denotes the
partition describing the lengths of the cycles of σ1 ◦ σ2. This formula is a consequence of the explicit
construction of the representation associated to λ via the Young symmetrizer. For a detailed proof, see
[FŚ11]. In [Han88], the author tries unsuccessfully to generalize it to Jack polynomials by introducing
some statistics on couples of permutations. Our result shows that, at least for α = 2, a natural way to
generalize is to use other combinatorial objects than permutations.

1.3. Zonal characters

The above formula expresses zonal polynomials in terms of power-sum symmetric functions. In
Section 3, we will extract the coefficient of a given power-sum. In this way we study an analogue of
the coordinates of Schur polynomials in the power-sum basis of the symmetric function ring. These
coordinates are known to be the irreducible characters of the symmetric group and have a plenty
of interesting properties. Some of them are (conjecturally) generalizable to the context where Schur
functions are replaced by Jack polynomials and our results in the case of zonal polynomials go in this
direction.

1.3.1. Characters of symmetric groups
For a Young diagram λ we denote by ρλ the corresponding irreducible representation of the

symmetric group Sn with n = |λ|. Any partition μ such that |μ| = n can be viewed as a con-
jugacy class in Sn . Let πμ ∈ Sn be any permutation from this conjugacy class; we will denote
by Trρλ(μ) := Trρλ(πμ) the corresponding irreducible character value. If m � n, any permutation
π ∈ Sm can be also viewed as an element of Sn , we just have to add n − m additional fixpoints to
π ; for this reason

Trρλ(μ) := Trρλ
(
μ 1|λ|−|μ|)

makes sense also when |μ| � |λ|.
Normalized characters of the symmetric group were defined by Ivanov and Kerov [IK99] as follows:

Σ
(1)
μ (λ) = n(n − 1) · · · (n − |μ| + 1

)
︸ ︷︷ ︸

|μ| factors

Trρλ(μ)

dimension of ρλ
(3)
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(the meaning of the superscript in the notation Σ
(1)
μ (λ) will become clear later on). The novelty

of the idea was to view the character as a function λ �→ Σ
(1)
μ (λ) on the set of Young diagrams (of

any size) and to keep the conjugacy class fixed. The normalization constants in (3) were chosen in
such a way that the normalized characters λ �→ Σ

(1)
μ (λ) form a linear basis (when μ runs over the

set of all partitions) of the algebra Λ
 of shifted symmetric functions introduced by Okounkov and
Olshanski [OO97], which is very rich in structure (this property is, for example, the key point in a
recent approach to study asymptotics of random Young diagrams under Plancherel measure [IO02]).
In addition, recently a combinatorial description of the quantity (3) has been given [Sta06,Fér10],
which is particularly suitable for study of asymptotics of character values [FŚ11].

Thanks to Frobenius’ formula for characters of the symmetric groups [Fro00], definition (3) can be
rephrased using Schur functions. We expand the Schur polynomial sλ in the base of the power-sum
symmetric functions (pρ) as follows:

n!sλ

dim(λ)
=

∑
ρ:

|ρ|=|λ|

θ
(1)
ρ (λ)pρ (4)

for some numbers θ
(1)
ρ (λ). Then

Σ
(1)
μ (λ) =

(|λ| − |μ| + m1(μ)

m1(μ)

)
zμθ

(1)

μ,1|λ|−|μ|(λ), (5)

where

zμ = μ1μ2 · · ·m1(μ)!m2(μ)! · · ·

and mi(μ) denotes the multiplicity of i in the partition μ.

1.3.2. Zonal and Jack characters
In this paragraph we will define analogues of the quantity Σ

(1)
μ (λ) via Jack polynomials. First of

all, as there are several of them, we have to fix a normalization for Jack polynomials. In our context,
the best is to use the functions denoted by J in the book of Macdonald [Mac95, VI, (10.22)]. With
this normalization, one has

J (1)
λ = n!sλ

dim(λ)
,

J (2)
λ = Zλ.

If in (4), we replace the left-hand side by Jack polynomials:

J (α)
λ =

∑
ρ:

|ρ|=|λ|

θ
(α)
ρ (λ)pρ (6)

then in analogy to (5), we define

Σ
(α)
μ (λ) =

(|λ| − |μ| + m1(μ)

m1(μ)

)
zμθ

(α)

μ,1|λ|−|μ|(λ).
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These quantities are called Jack characters. Notice that for α = 1 we recover the usual normalized
character values of the symmetric groups. The case α = 2 is of central interest in this article, since
then the left-hand side of (6) is equal to the zonal polynomial; for this reason Σ

(2)
μ (λ) will be called

zonal character.
Study of Jack characters has been initiated by Lassalle [Las08,Las09]. Just like the usual normalized

characters Σ
(1)
μ , they are (α-)shifted symmetric functions [Las08, Proposition 2] as well, which is a

good hint that they might be an interesting generalization of the characters. The names zonal char-
acters and Jack characters are new; we decided to introduce them because quantities Σ

(α)
μ (λ) are so

interesting that they deserve a separate name. One could argue that this name is not perfect since
Jack characters are not sensu stricto characters in the sense of the representation theory (as opposed
to, say, zonal characters which are closely related to the zonal spherical functions and therefore are
a natural extension of the characters in the context of Gelfand pairs). On the other hand, as we shall
see, Jack characters conjecturally share many interesting properties with the usual and zonal char-
acters of symmetric groups, therefore the former can be viewed as interpolation of the latter which
justifies to some extent their new name.

1.4. The main result 2: combinatorial formulas for zonal characters

1.4.1. Zonal characters in terms of numbers of colorings functions
Let S0, S1, S2 be three pair-partitions of the set [2k]. We consider the following function on the

set of Young diagrams:

Definition 1.4. Let λ be a partition of any size. We define N(1)
S0,S1,S2

(λ) as the number of functions f
from [2k] to the boxes of the Young diagram λ such that for every l ∈ [2k]:

(Q0) f (l) = f (S0(l)), in other words f can be viewed as a function on the set of pairs constituting S0;
(Q1) f (l) and f (S1(l)) are in the same column;
(Q2) f (l) and f (S2(l)) are in the same row.

Note that λ �→ N(1)
S0,S1,S2

(λ) is, in general, not a shifted symmetric function, so it cannot be ex-
pressed in terms of zonal characters. On the other hand, the zonal characters have a very nice
expression in terms of the N functions:

Theorem 1.5. Let μ be a partition of the integer k and (S1, S2) be a fixed couple of pair-partitions of the set
[2k] of type μ. Then one has the following equality between functions on the set of Young diagrams:

Σ
(2)
μ = 1

2�(μ)

∑
S0

(−1)L(S0,S1)2|L(S0,S1)|N(1)
S0,S1,S2

, (7)

where the sum runs over pair-partitions of [2k] and �(μ) denotes the number of parts of partition μ.

We postpone the proof to Sections 3.1–3.4. This formula is an intermediate step towards The-
orem 1.6, but we wanted to state it as an independent result because its analogue for the usual
characters [FŚ11, Theorem 2] has been quite useful in some contexts (see [FŚ11,Fér09]).

Example. Let us consider the case μ = (2). We fix S1 = {{1,2}, {3,4}} and S2 = {{1,4}, {2,3}}. Then
S0 can take three possible values: S1, S2 and S3 := {{1,3}, {2,4}}.

If S0 = S1, condition (Q0) implies condition (Q1). Moreover, conditions (Q0) and (Q2) imply that
the images of all elements are in the same row. Therefore N(1)

S ,S ,S (λ) is equal to the number of ways

1 1 2
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to choose two boxes in the same row of λ: one is the image of 1 and 2 and the other the image of 3
and 4. It follows that

N(1)
S1,S1,S2

(λ) =
∑

i

λ2
i .

In a similar way, N(1)
S2,S1,S2

(λ) is the number of ways to choose two boxes in the same column of λ:
one is the image of 1 and 4 and the other the image of 2 and 3. It follows that

N(1)
S2,S1,S2

(λ) =
∑

i

(
λ′

i

)2
,

where λ′ is the conjugate partition of λ.
Consider the last case S0 = S3. Conditions (Q0) and (Q2) imply that the images of all elements

are in the same row. Besides, conditions (Q0) and (Q1) imply that the images of all elements are in
the same column. So all elements must be matched to the same box and the number of functions
fulfilling the three properties is simply the number of boxes of λ.

Finally,

Σ
(2)
(2)

(λ) = 2

(∑
i

λ2
i

)
−

(∑
i

(
λ′

i

)2
)

− |λ|. (8)

If we denote n(λ) = ∑
i

(λ′
i

2

)
[Mac95, I, Eq. (1.6)], this can be rewritten as:

Σ
(2)
(2)

(λ) = 2
(
2n

(
λ′) + |λ|) − (

2n(λ) + |λ|) − |λ| = 4n
(
λ′) − 2n(λ).

The last equation corresponds to the case α = 2 of Example 1b of paragraph VI.10 of Macdonald’s
book [Mac95].

1.4.2. Zonal characters in terms of Stanley’s coordinates
The notion of Stanley’s coordinates was introduced by Stanley [Sta04] who found a nice formula for

normalized irreducible character values of the symmetric group corresponding to rectangular Young
diagrams. In order to generalize this result, he defined, given two sequences p and q of positive
integers of same size (q being non-increasing), the partition:

p × q = (q1, . . . ,q1︸ ︷︷ ︸
p1 times

, . . . ,ql, . . . ,ql︸ ︷︷ ︸
pl times

).

Then he suggested to consider the quantity Σ
(1)
μ (p × q) as a polynomial in p and q. An explicit

combinatorial interpretation of the coefficients was conjectured in [Sta06] and proved in [Fér10].
It is easy to deduce from the expansion of Σ

(2)
μ in terms of the N functions a combinatorial

description of the polynomial Σ
(2)
μ (p × q).

Theorem 1.6. Let μ be a partition of the integer k and (S1, S2) be a fixed couple of pair-partitions of [2k] of
type μ. Then:

Σ
(2)
μ (p × q) = (−1)k

2�(μ)

∑
S

[ ∑
φ:L(S ,S )→N


∏
l∈L(S ,S )

(pϕ(l)) ·
∏

l′∈L(S ,S )

(−2qψ(l′))

]
, (9)
0 0 2 0 2 0 1
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where ψ(l′) := maxl ϕ(w) with l running over the loops of L(S0, S1) having at least one element in common
with l′ .

We postpone the proof until Section 3.5.

Example. We continue the previous example in the case μ = (2).
When S0 = S1, the graph L(S0, S2) has only one loop, thus we sum over index i ∈ N


 . The graph
L(S0, S1) has two loops in this case, whose images by ψ are both i. So the expression in the square
brackets for S0 = S1 is equal to:

4
∑

i

piq
2
i .

When S0 = S2, the graph L(S0, S2) has two loops, thus we sum over couples (i, j) in (N
)2. The
graph L(S0, S1) has only one loop, which has elements in common with both loops of L(S0, S2) and
thus its image by ψ is max(i, j). Therefore, the expression in the brackets can be written in this case
as:

−2
∑
i, j

pi p jqmax(i, j).

When S0 = S3, both graphs L(S0, S2) and L(S0, S1) have only one loop. Thus we sum over one
index i ∈ N


 which is the image by ϕ and ψ of these loops. In this case the expression in the brackets
is simply equal to:

−2
∑
i, j

piqi .

Finally, in this case, Eq. (9) becomes:

Σ
(2)
(2) (p × q) = 2

∑
i

piq
2
i −

∑
i, j

pi p jqmax(i, j) −
∑

i

piqi .

It matches the numerical data given by M. Lassalle in [Las08, top of page 3] (one has to change the
signs and substitute β = 1 in his formula).

1.5. Kerov polynomials

1.5.1. Free cumulants
For a Young diagram λ = (λ1, λ2, . . .) and an integer s � 1 we consider the dilated Young diagram

Dsλ = (sλ1, . . . , sλ1︸ ︷︷ ︸
s times

, sλ2, . . . , sλ2︸ ︷︷ ︸
s times

, . . .).

If we interpret the Young diagrams geometrically as collections of boxes then the dilated diagram Dsλ

is just the image of λ under scaling by factor s.
This should not be confused with

αλ = (αλ1,αλ2, . . .)

which is the Young diagram stretched anisotropically only along the O X axis.
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Note that, as Jack characters are polynomial functions on Young diagrams, they can be defined
on non-integer dilatation or anisotropical stretching of Young diagrams (in fact, they can be defined
on any generalized Young diagrams, see [DFŚ10] for details). In the case of zonal characters, this
corresponds to writing Theorem 1.6 for sequences p and q with non-integer terms.

Following Biane [Bia98] (who used a different, but equivalent definition), for a Young diagram λ

we define its free cumulants R2(λ), R3(λ), . . . by the formula

Rk(λ) = lim
s→∞

1

sk
Σ

(1)

k−1(Dsλ).

In other words, each free cumulant Rk(λ) is asymptotically the dominant term of the character on a
cycle of length k − 1 in the limit when the Young diagram tends to infinity. It is natural to generalize
this definition using Jack characters:

R(α)

k (λ) = lim
s→∞

α

(αs)k
Σ

(α)

k−1(Dsλ).

In fact, the general α case can be expressed simply in terms of the usual free cumulant thanks to
[Las09, Theorem 7]:

R(α)

k (λ) = 1

αk
Rk(αλ).

The quantities R(α)

k (λ) are called α-anisotropic free cumulants of the Young diagram λ.
With this definition free cumulants might seem to be rather abstract quantities, but in fact they

could be equivalently defined in a very explicit way using the shape of the diagram and linked to
free probability, whence their name, see [Bia98]. The equivalence of these two descriptions makes
them very useful parameters for describing Young diagrams. Moreover, Proposition 2 and Theorem
of Section 3 in [Las08] imply that they form a homogeneous algebraic basis of the ring of shifted
symmetric functions. Therefore many interesting functions can be written in terms of free cumulants.
These features make free cumulants a perfect tool in the study of asymptotic problems in representa-
tion theory, see for example [Bia98,Śni06].

1.5.2. Kerov polynomials for Jack characters
The following observation is due to Lassalle [Las09]. Let k � 1 be a fixed integer and let α be fixed.

Since Σ
(α)

k is an α-shifted symmetric function and the anisotropic free cumulants (R(α)

l )l�2 form an

algebraic basis of the ring of α-shifted symmetric functions, there exists a polynomial K (α)

k such that,
for any Young diagram λ,

Σ
(α)

k (λ) = K (α)

k

(
R(α)

2 (λ), R(α)
3 (λ), . . .

)
.

This polynomial is called Kerov polynomial for Jack character.
Thus Kerov polynomials for Jack characters express Jack characters on cycles in terms of free cu-

mulants. For more complicated conjugacy classes it turns out to be more convenient to express not
directly the characters Σ

(α)

(k1,...,k�)
but rather cumulant

(−1)�−1κ id(
Σ

(α)

k1
, . . . ,Σ

(α)

k�

)
.

This gives rise to generalized Kerov polynomials for Jack characters, denoted K (α)

(k1,...,k�)
. In the classical

context α = 1 these quantities have been introduced by one of us and Rattan [RŚ08]; in the Jack case
they have been studied by Lassalle [Las09]. We skip the definitions and refer to the above papers for
details since generalized Kerov polynomials are not of central interest for this paper.
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1.5.3. Classical Kerov polynomials
For α = 1 these polynomials are called simply Kerov polynomials. This case has a much longer

history and it was initiated by Kerov [Ker00] and Biane [Bia03] who proved that in this case the coef-
ficients are in fact integers and conjectured their non-negativity. This conjecture has been proved by
the first-named author [Fér09], also for generalized Kerov polynomials. Then, an explicit combinato-
rial interpretation has been given by the authors, together with Dołęga, in [DFŚ10], using a different
method.

These polynomials have a deep structure, from a combinatorial and analytic point of view, and
there are still open problems concerning them. For a quite comprehensive bibliography on this subject
we refer to [DFŚ10].

Most of properties of Kerov polynomials seem to be generalizable in the case of a general value of
the parameter α, although not much has been proved for the moment (see [Las09]).

1.6. The main result 3: Kerov’s polynomials for zonal characters

As in the classical setting, the coefficients of zonal Kerov polynomials have a nice combinatorial
interpretation, analogous to the one from [DFŚ10]. Namely, if we denote [xv1

1 · · · xvt
t ]P the coefficient

of xv1
1 · · · xvt

t in P , we show the following result.

Theorem 1.7. Let μ be a partition of the integer k and (S1, S2) be a fixed couple of pair-partitions of [2k] of
type μ. Let s2, s3, . . . be a sequence of non-negative integers with only finitely many non-zero elements.

Then the rescaled coefficient

(−1)|μ|+�(μ)+2s2+3s3+···2�(μ)−(2s2+3s3+···)[(R(2)
2

)s2(R(2)
3

)s3 · · ·]K (2)
μ

of the (generalized) zonal Kerov polynomial is equal to the number of pairs (S0,q) with the following proper-
ties:

(a) S0 is a pair-partition of [2k] such that the three involutions corresponding to S0 , S1 and S2 generate a
transitive subgroup of S2k;

(b) the number of loops in L(S0, S1) is equal to s2 + s3 + · · · ;
(c) the number of loops in L(S0, S2) is equal to s2 + 2s3 + 3s4 + · · · ;
(d) q is a function from the set L(S0, S1) to the set {2,3, . . .}; we require that each number i ∈ {2,3, . . .} is

used exactly si times;
(e) for every subset A ⊂ L(S0, S1) which is nontrivial (i.e., A 
= ∅ and A 
= L(S0, S1)), there are more than∑

v∈A(q(v) − 1) loops in L(S0, S2) which have a non-empty intersection with at least one loop from A.

Condition (e) can be reformulated in a number of equivalent ways [DFŚ10]. This result will be
proved in Section 4.

Example. We continue the previous example: μ = (2), S1 = {{1,2}, {3,4}} and S2 = {{1,4}, {2,3}}.
Recall that S0 can take three values (S1, S2 and another value S3 = {{1,3}, {2,4}}). In each case,
condition (a) is fulfilled. The number of loops in L(S0, S1) and L(S0, S2) in each case was already
calculated in Example on page 345; from the discussion there it follows as well that any � ∈ L(S0, S1)

and any �′ ∈ L(S0, S2) have a non-empty intersection.

• If S0 = S2 (respectively S0 = S3), conditions (b), (c), (d) and (e) are fulfilled for (s2, s3, . . .) =
(0,1,0,0, . . .) (respectively, (s2, s3, . . .) = (1,0,0, . . .)) and q associating 3 (respectively 2) to the
unique loop of L(S0, S1).

• If S0 = S1, conditions (b) and (c) cannot be fulfilled at the same time for any sequence (si)

because this would imply

2 = ∣∣L(S0, S1)
∣∣ �

∣∣L(S0, S2)
∣∣ = 1.
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Finally, all coefficients of K (2)
(2) are equal to 0, except for:

−1

2

[
R(2)

2

]
K (2)

(2) = 1,

1

4

[
R(2)

3

]
K (2)

(2) = 1.

In other terms,

K (2)
(2)

= 4R(2)
3 − 2R(2)

2 .

This fits with Lassalle’s data [Las09, top of page 2230].

1.7. Symplectic zonal polynomials

As mentioned above, the case α = 1
2 is also special for Jack polynomials, as we recover the so-

called symplectic zonal polynomials. These polynomials appear in a quaternionic analogue of James’
theory, see [Mac95, VII.6].

The symplectic zonal and zonal cases are linked by the duality formula for Jack characters (see
[Mac95, Chapter VI, Eq. (10.30)]):

θ
(α)
ρ (λ) = (−α)|ρ|−�(ρ)θ

(α−1)
ρ

(
λ′), (10)

where λ′ is conjugate of the partition λ.
Using the definition of Jack characters, this equality becomes:

Σ
(α)
μ (λ) = (−α)|μ|−�(μ)Σ

(α−1)
μ

(
λ′). (11)

Therefore the combinatorial interpretation of Stanley’s and Kerov’s polynomials for zonal characters
have analogues in the symplectic zonal case. As it will be useful in the next section, let us state the
one for Kerov’s polynomials.

Theorem 1.8. Let μ be a partition of the integer k and (S1, S2) be a fixed couple of pair-partitions of [2k] of
type μ. Let s2, s3, . . . be a sequence of non-negative integers with only finitely many non-zero elements.

Then the rescaled coefficient

2|μ|[(R(1/2)

2

)s2(R(1/2)

3

)s3 · · ·]K (1/2)
μ

of the (generalized) symplectic zonal Kerov polynomial is equal to the number of pairs (S0,q) with properties
(a), (b), (c), (d) and (e) of Theorem 1.7.

Proof. This comes from Eq. (11), Theorem 1.7 and the fact that:

R(1/2)

k (λ) = 2k Rk(1/2λ) = 2k Rk
[

D(1/2)

((
2λ′)′)] = Rk

[(
2λ′)′]

= (−1)k Rk
(
2λ′) = (−2)k R(2)

k

(
λ′). �
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1.8. Lassalle’s conjectures

In a series of two papers [Las08,Las09] Lassalle proposed some conjectures on the expansion of
Jack characters in terms of Stanley’s coordinates and free cumulants. These conjectures suggest the
existence of a combinatorial description of Jack characters. Our results give such a combinatorial
description in the case of zonal characters. Moreover, we can prove a few statements which are corol-
laries of Lassalle’s conjectures.

Let us begin by recalling the latter ([Las08, Conjecture 1] and [Las09, Conjecture 2]).

Conjecture 1.9. Let μ be a partition of k.

• (−1)kΣ
(α)
μ (p,−q) is a polynomial in variables p, q and α − 1 with non-negative integer coefficients;

• there is a “natural” way to write the quantity

κ id(
Σ

(α)

k1
, . . . ,Σ

(α)

k�

)
as a polynomial in the variables R(α)

i , α and 1 − α with non-negative integer coefficients.

In fact, Lassalle conjectured this in the case where μ has no part equal to 1, but it is quite easy to
see that if it is true for some partition μ, it is also true for μ ∪ 1.

Having formulas only in the cases α = 1/2 and α = 2, we cannot prove this conjecture. In the
following we will present a few corollaries of Conjecture 1.9 in the special cases α = 2 and α = 1/2
and we shall prove them. This gives an indirect evidence supporting Conjecture 1.9.

Proposition 1.10. Let μ be a partition of k. Then (−1)kΣ
(2)
μ (p,−q) is a polynomial in variables p, q with

non-negative integer coefficients.

If we look at the expansion of symplectic zonal polynomials in Stanley’s coordinates, Lassalle’s
conjecture does not imply neither integrity nor positivity of the coefficients as we specialize the
variable α − 1 to a non-integer negative value.

Proposition 1.11. Let μ be a partition of k. Then K (2)
μ has integer coefficients.

In this case there is no positivity result, because one of the variables of the polynomial, namely
1 − α, is specialized to a negative value.

Proposition 1.12. Let μ be a partition of k. Then K (1/2)
μ has non-negative rational coefficients.

Proof. It is a direct consequence of Theorem 1.8. �
In this case there is no integrality result, because the variables α and 1 − α are specialized to

non-integer values.
Propositions 1.10 and 1.11 are proved in Sections 3.6 and 4.4.

1.9. Pair-partitions and zonal characters: the dual picture

It should be stressed that there was another result linking triplets of pair-partitions and zonal
characters; it can be found in the work of Goulden and Jackson [GJ96]. But their result goes in the
reverse direction than ours: they count triplets of pair partitions with some properties using zonal
characters, while we express zonal characters using triplets of pair-partitions. An analogous picture
exists for pairs of permutations and the usual characters of symmetric groups. It would be nice to
understand the link between these two dual approaches.
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1.10. Maps on possibly non-orientable surfaces

Most of our theorems involve triplets of pair-partitions. This combinatorial structure is in fact
much more natural than it might seem at first glance, as they are in correspondence with graphs
drawn on (possibly non-orientable and non-connected) surfaces. In Section 5, we explain this relation
and give combinatorial reformulations of our main results.

1.11. Overview of the paper

Sections 2, 3 and 4 are respectively devoted to the proofs of the main results 1, 2 and 3. Section 5
is devoted to the link with maps.

2. Formulas for zonal polynomials

The main result of this section is Theorem 1.2, which gives a combinatorial formula for zonal
polynomials.

2.1. Preliminaries

In this paragraph we give the characterization of zonal polynomials, which is the starting point of
our proof of Theorem 1.2. This characterization is due to James [Jam61]. However, we will rather base
our presentation on Section VII.3 of Macdonald’s book [Mac95], because the link with more usual
definitions of zonal polynomials (as particular case of Jack symmetric functions, Eq. (VII, 2.23) or via
zonal spherical functions (VII, 2.13)) is explicit there.

Consider the space P (G) of polynomial functions on the set G = GLd(R), i.e. functions which are
polynomial in the entries of the matrices. The group G acts canonically on this space as follows: for
L, X ∈ G and f ∈ P (G), we define

(L f )(X) = f
(
LT X

)
.

As a representation of G , the space P (G) decomposes as P (G) = ⊕
μ Pμ , where the sum runs over

partitions of length at most d and where Pμ is a sum of representations of type μ [Mac95, VII,
Eq. (3.2)].

Let us denote K = O (d). We will look particularly at the subspace P (G, K ) of functions f ∈ P (G)

which are left- and right-invariant under the action of the orthogonal group, that is such that, for any
k,k′ ∈ K and g ∈ G ,

f
(
kgk′) = f (g).

The intersection Pμ ∩ P (G, K ) has dimension 1 if μ = 2λ for some partition λ and 0 otherwise

[Mac95, VII, Eq. (3.15)]. Thus there is a unique function Ω
(d)
λ such that:

(a) Ω
(d)
λ (1G) = 1,

(b) Ω
(d)
λ is invariant under the left action of the orthogonal group O d(R),

(c) Ω
(d)
λ belongs to P2λ .

This function Ω
(d)
λ is linked to zonal polynomials by the following equation [Mac95, Eq. (3.24)]:

Ω
(d)
λ (X) = Zλ(Sp(X X T ))

d
,

Zλ(1 )
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where Sp(X X T ) is the multiset of eigenvalues of X X T . Therefore if we find functions Ω
(d)
λ with the

properties above, we will be able to compute zonal polynomials up to a multiplicative constant.
We will look for such functions in a specific form. For Z = v1 ⊗ · · · ⊗ v2n ∈ (Rd)⊗2n we define a

homogeneous polynomial function of degree 2n on G ,

φZ (X) = 〈
X T v1, X T v2

〉 · · · 〈X T v2n−1, X T v2n
〉

for X ∈ Md(R)

and for general tensors Z ∈ (Rd)⊗2n by linearity. Clearly,

φZ (X O ) = φZ (X) for any O ∈ O d(R);

in other words φZ is invariant under the right action of the orthogonal group O d(R).
Besides, GLd(R) acts on (Rd)⊗2n: this action is defined on elementary tensors by

L(v1 ⊗ · · · ⊗ v2n) = Lv1 ⊗ · · · ⊗ Lv2n. (12)

Lemma 2.1. The linear map φ : (Rd)⊗2n → P (G) is an intertwiner of G-representation, i.e. for all g ∈ G and
Z ∈ (Rd)⊗2n one has:

gφZ = φg Z .

Proof. Straightforward from the definition of the actions. �
Thanks to this lemma, φ

z(d)
λ

will be left-invariant by multiplication by the orthogonal group if and

only if z(d)
λ is invariant by the action of the orthogonal group. Besides, φ

z(d)
λ

is in Pμ if z(d)
λ itself in

the isotypic component of type μ in the representation (Rd)⊗2n .
Finally, we are looking for an element z(d)

λ ∈ (Rd)⊗2n such that:

(a) φ
z(d)
λ

is non-zero,

(b) z(d)
λ is invariant under the left action of O d(R) ⊂ GLd(R),

(c) z(d)
λ belongs to the isotypic component of type 2λ in the representation (Rd)⊗2n (in particular n

has to be the size of λ).

In the following paragraphs we exhibit an element z(d)
λ ∈ (Rd)⊗2n with these properties and use it

to compute the zonal polynomial Zλ .

2.2. A few lemmas on pair-partitions

Lemma 2.2. Let (S1, S2) be a couple of pair-partitions of [2n] of type μ. Then if we see S1 and S2 as involutions
of [2n], their composition S1 ◦ S2 has cycle-type μ ∪ μ.

Proof. Let (i1, i2, . . . , i2�) be a loop of length 2� in the graph L(S1, S2). This means that, up to a
relabeling, S1 (respectively S2) contains the pairs {i2 j, i2 j+1} (respectively {i2 j−1, i2 j}) for 1 � j � �

(with the convention i2�+1 = i1). Then the restriction of S1 ◦ S2 to {i1, . . . , i2�},

(S1 ◦ S2)|{i1,...,i2�} = (i1i3 · · · i2� − 1)(i2i4 · · · i2�)

is a disjoint product of two cycles of length �. The same is true for the restriction to the support of
each loop, therefore S1 ◦ S2 has cycle-type μ1,μ1,μ2,μ2, . . . . �
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The symmetric group S2n acts on the set of pair-partitions of [2n]: if σ is a permutation in S2n

and T a pair-partition of [2n], we denote by σ · T the pair partition such that {σ(i),σ ( j)} is a part of
σ · T if and only if {i, j} is a part of T .

Lemma 2.3. Let σ be a permutation of the boxes of 2λ which preserves each column. Then

(−1)σ = (−1)L(σ ·S,S).

Proof. Young diagram 2λ can be viewed as a concatenation of rectangular Young diagrams of size i×2
(i parts, all of them equal to 2); for this reason it is enough to prove the lemma for the case when
2λ = i × 2. Permutation σ can be viewed as a pair (σ (1), σ (2)) where σ ( j) ∈ Si is the permutation of
j-th column. Then

(−1)σ = (−1)σ
(1)

(−1)σ
(2) = (−1)σ

(1)(σ (2))−1 = (−1)(�1−1)+(�2−1)+···,

where �1, �2, . . . are the lengths of the cycles of the permutation σ (1)(σ (2))−1.
Let (�[c, r]) denote the box of the Young diagram in the column c and the row r. Then

σ Sσ−1 S
(�[1, i]) = σ Sσ−1(�[2, i]) = σ S

(�[
2,

(
σ (2)

)−1
(i)

])
= σ

(�[
1,

(
σ (2)

)−1
(i)

]) = �[
1,σ (1)

(
σ (2)

)−1
(i)

]
.

So σ Sσ−1 S = (σ · S)S permutes the first column and its restriction to the first column has cycles of
length �1, �2, . . . . The same is true for the second column. It follows that (σ · S)S has cycles of length
�1, �1, �2, �2, . . . or, equivalently, the lengths of the loops of L(σ · S, S) are equal to 2�1,2�2, . . . which
finishes the proof. �

The last lemma of this paragraph concerns the structure of the set of couples of pair-partitions
of [2n] endowed with the diagonal action of the symmetric group. From the definition of the graph
L(S1, S2) it is clear that L(σ S1, σ S2) and L(S1, S2) are isomorphic as bipartite graphs, thus they
have the same type. Conversely:

Lemma 2.4. The set of couples (S1, S2) of type μ forms exactly one orbit under the diagonal action of the
symmetric group S2n. Moreover, there are exactly (2n)!

zν2�(ν) of them.

Proof. Let us consider two couples (S1, S2) and (S ′
1, S ′

2) of type μ such that both graphs G :=
L(S1, S2) and G ′ := L(S ′

1, S ′
2) are collections of loops of lengths 2μ1,2μ2 . . . . These two graphs are

isomorphic as vertex-bicolored graphs. Let ϕ be any isomorphism of them. As it sends the edges
of G to the edges of G ′ , it can be seen as a permutation in S2n . As it sends the black (respec-
tively white) vertices of G to the black (respectively white) vertices of G ′ , one has: ϕ(S1) = S ′

1
(respectively ϕ(S2) = S ′

2). Thus all couples of pair-partitions of type μ are in the same orbit.
Fix a couple (S1, S2) of type μ and denote by L1, . . . , L�(μ) the loops of the graph L(S1, S2).

Moreover we fix arbitrarily one edge ei in each loop Li . Let σ belong to the stabilizer of the action of
S2n on a (S1, S2); in other words σ commutes with S1 and S2. Such a σ induces a permutation τ of
the loops (Li) respecting their sizes; there are

∏
i mi(μ)! such permutations. Besides, once τ is fixed,

there are 2μi possible images for ei (it can be any element of the loop τ (Li), which has the same
size as Li which is equal to 2μi ). As σ(S j(i)) = S j(σ (i)) for j = 1,2, the permutation σ is entirely
determined by the values of σ(ei). Conversely, if we fix τ and some compatible values for σ(ei),
there is one permutation σ in the centralizer of S1 and S2 corresponding to these values. Finally, the
cardinality of this centralizer is equal to zμ2�(μ) = ∏

i mi(μ)!(2i)mi (μ) . �
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2.3. Pair-partitions and tensors

If P is a pair-partition of the ground set [2n], we will associate to it the tensor

ΨP =
∑

1�i1,...,i2n�d

δP (i1, . . . , i2n)ei1 ⊗ · · · ⊗ ei2n ∈ (
R

d)⊗2n
,

where δP (i1, . . . , i2n) is equal to 1 if ik = il for all {k, l} ∈ P and is equal to zero otherwise. The
symmetric group S2n acts on the set of pair-partitions and on the set of tensors (Rd)⊗2n and it is
straightforward that P �→ ΨP is an intertwiner with respect to these two actions.

Lemma 2.5. Let Z ∈ (Rd)⊗2n. Then

φZ (X) = 〈
Z , X⊗2nΨS

〉
with respect to the standard scalar product in (Rd)⊗2n, where S, given by (1), is the first pair-partition.

Proof. We can assume by linearity that Z = v1 ⊗ · · · ⊗ v2n . The right-hand side becomes:

〈
Z , X⊗2nΨS

〉 = ∑
i1,...,in

〈v1 ⊗ · · · ⊗ v2n, Xei1 ⊗ Xei1 ⊗ · · · ⊗ Xein ⊗ Xein 〉

=
∑

1�i1,...,in�d

n∏
j=1

〈v2 j−1, Xei j 〉 · 〈v2 j, Xei j 〉

=
n∏

j=1

[ ∑
1�i�d

〈
X T v2 j−1, ei

〉 · 〈X T v2 j, ei
〉]

=
n∏

j=1

〈
X T v2 j−1, X T v2 j

〉
. �

Lemma 2.6. Let P be a pair-partition of [2n] and S, as before, the pair-partition of the same set given by (1).
Then

φΨP (X) = 〈
ΨP , X⊗2nΨS

〉
= Tr

[(
X X T )�1] Tr

[(
X X T )�2] · · ·

= pL(P ,S)

(
Sp

(
X X T ))

,

where 2�1,2�2, . . . are the lengths of the loops of L(P , S).

Proof. Let us consider the case where L(P , S) has only one loop of length 2�. Define P ′ =
{{2,3}, {4,5}, . . . , {2� − 2,2� − 1}, {2�,1}} Then the couples (P , S) and (P ′, S) have the same type
and thus, by Lemma 2.4, there exists a permutation σ such that σ · P ′ = P and σ · S = S . Then

〈
ΨP , X⊗2nΨS

〉 = 〈
σΨP ′ , X⊗2nσΨS

〉 = 〈
σΨP ′ ,σ X⊗2nΨS

〉 = 〈
ΨP ′ , X⊗2nΨS

〉
.
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We used the facts that P �→ ΨP is an intertwiner for the symmetric group action, that this action
commutes with X⊗2n and that it is a unitary action. Therefore, it is enough to consider the case
P = P ′ . In this case,

ΨP =
∑

1� j1,..., j��d

e j� ⊗ e j1 ⊗ e j1 ⊗ · · · ⊗ e j�−1 ⊗ e j�−1 ⊗ e j� .

Therefore one has:

φΨP (X) =
∑

1� j1,..., j��d

〈
X T e j� , X T e j1

〉 · 〈X T e j1 , X T e j2

〉 · · · 〈X T e j�−1 , X T e j�

〉

=
∑

1� j1,..., j��d

〈
X X T e j� , e j1

〉 · 〈X X T e j1 , e j2

〉 · · · 〈X X T e j�−1 , e j�

〉

=
∑

1� j1,..., j��d

(
X X T )

j1, j�
· (X X T )

j2, j1
· · · (X X T )

j�, j�−1

= Tr
(

X X T )�
.

The general case is simply obtained by multiplication of the above one-loop case. �
It follows that X �→ φΨP (X) is invariant under the left action of the orthogonal group O d(R). The

above discussion shows that if P is a pair-partition (or, more generally, a formal linear combination of
pair-partitions) then condition (b) is fulfilled for zλ = ΨP . For this reason we will look for candidates
for zλ corresponding to zonal polynomials in this particular form.

2.4. Young symmetrizer

Let a partition λ be fixed; we denote n = |λ|. We consider the Young tableau T of shape 2λ in
which boxes are numbered consecutively along the rows. This tableau was chosen in such a way that
if we interpret the pair-partition S as a pairing of the appropriate boxes of T then a box in the column
2i − 1 is paired with the box in the column 2i in the same row, where i is a positive integer (these
two boxes will be called neighbors in the Young diagram 2λ).

Tableau T allows us to identify boxes of the Young diagram 2λ with the elements of the set [2n]. In
particular, permutations from S2n can be interpreted as permutations of the boxes of 2λ. We denote

P2λ = {σ ∈ S2n: σ preserves each row of 2λ},
Q 2λ = {σ ∈ S2n: σ preserves each column of 2λ}

and define

a2λ =
∑

σ∈P2λ

σ ∈ C[S2n],

b2λ =
∑

σ∈Q 2λ

(−1)|σ |σ ∈ C[S2n],

c2λ = b2λa2λ.
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The element c2λ is called Young symmetrizer. There exists some non-zero scalar α2λ such that
α2λc2λ is a projection. Its image C[S2n]α2λc2λ under multiplication from the right on the left-regular
representation gives an irreducible representation ρ2λ of the symmetric group (where the symmet-
ric group acts by left multiplication) associated to the Young diagram 2λ (see [FH91, Theorem 4.3,
p. 46]).

Recall (see [CSST10, Corollary 1.3.14]) that there is also a central projection in C[S2n], denoted
p2λ , whose image C[S2n]p2λ under multiplication from the right (or, equivalently, from the left) on
the left-regular representation is the sum of all irreducible representations of type ρ2λ contributing
to C[S2n]. It follows that C[S2n]c2λ is a subspace of C[S2n]p2λ . It follows that there is an inequality

α2λc2λ � p2λ (13)

between projections in C[S2n], i.e.

α2λc2λp2λ = p2λα2λc2λ = α2λc2λ.

2.5. Schur–Weyl duality

The symmetric group S2n acts on the vector space (Rd)⊗2n by permuting the factors and the linear
group GLd(R) acts on the same space by the diagonal action (12). These two actions commute and
Schur–Weyl duality (see [Mac95, paragraph A.8]) asserts that, as a representation of S2n × GLd(R),
one has: (

R
d)⊗2n �

⊕
μ�2n

Vμ × Uμ,

where Vμ (respectively Uμ) is the irreducible representation of S2n (respectively GLd(R)) indexed
by μ (as we assumed in Section 2.1 that d � 2n, the representation Uμ does always exist). But
p2λ(Vμ) = δμ,2λVμ , therefore the image p2λ((R

d)⊗2n) of the projection p2λ is, as representation of
GLd(R), a sum of some number of copies of the irreducible representation of GLd(R) associated to the
highest weight 2λ. Using inequality (13), we know that α2λc2λ((R

d)⊗2n) is a subspace of p2λ((R
d)⊗2n).

In this way, we proved that α2λc2λ((R
d)⊗2n) is a representation of GLd(R) which is a sum of some

number of copies of the irreducible representation of GLd(R) associated with the highest weight 2λ.
Thus the element c2λ · ΨS of (Rd)⊗2n fulfills condition (c).

2.6. A tensor satisfying James’ conditions

Using the results of Sections 2.3 and 2.5, we know that

z(d)
λ := Ψc2λ·S = c2λΨS ∈ (

R
d)⊗2n

fulfills conditions (b) and (c).
Therefore, as explained in Section 2.1, if φ

z(d)
λ

is non-zero, there exists a constant Cλ such that:

φ
z(d)
λ

(X) = Cλ Zλ

(
Sp

(
X X T ))

.

Of course this is true also if the left-hand side is equal to zero. Besides, using Lemma 2.6, one gets:

φc2λΨS (X) =
∑

σ1∈Q 2λ

∑
σ2∈P2λ

(−1)σ1
〈
Ψσ1σ2·S , X⊗2nΨS

〉

=
∑

σ ∈Q

∑
σ ∈P

(−1)σ1 pL(σ1σ2·S,S)

(
Sp

(
X X T ))

,

1 2λ 2 2λ
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where the power-sum symmetric functions p should be understood as in (2). Finally, we have shown
that

Yλ :=
∑

σ1∈Q 2λ

∑
σ2∈P2λ

(−1)σ1 pL(σ1σ2·S,S)

and Cλ Zλ have the same evaluation on Sp(X X T ). As this is true for all X ∈ GLd and all d � 2|λ|, the
two symmetric function Yλ and Cλ Zλ are equal. We will use this fact in the following.

2.7. End of proof of Theorem 1.2

Proof. We know that

Cλ Zλ =
∑

σ1∈Q 2λ

∑
σ2∈P2λ

(−1)σ1 pL(σ1σ2·S,S)

=
∑

σ1∈Q 2λ

∑
σ2∈P2λ

(−1)σ1 pL(σ2·S,σ−1
1 ·S)

. (14)

The set of pair-partitions which can be written as σ2 · S with σ2 ∈ P2λ is the set of pair-partitions
of the boxes of the Young diagram such that each pair of connected boxes lies in the same row of
the Young diagram (we fixed the Young tableau T , so pair-partitions of the set [2n] can be viewed as
pair-partitions of the boxes of the Young diagram). As P2λ is a group, each pair-partition in the orbit
of S can be written as σ2 · S with σ2 ∈ P2λ in the same number of ways (say C2). Therefore, for any
σ1 ∈ Q 2λ ,

∑
σ2∈P2λ

(−1)σ1 pL(σ2·S,σ−1·S) = C2

∑
S2

(−1)σ1 pL(S2,σ−1·S),

where the sum runs over pair-partitions connecting boxes in the same row of T .
Analogously, the set of pair-partitions which can be written as σ−1

1 · S for some σ1 ∈ Q 2λ is the
set of pair-partitions S1 which match the elements of the 2 j − 1 column of T with the elements
of the 2 j-th column of T for 1 � j � λ1 (it is equivalent to ask that the boxes belonging to each
cycle of S1 ◦ S are in one column). As before, such pair-partitions can all be written as σ−1

1 · S in
the same number of ways (say C1). Besides, Lemma 2.3 shows that the sign (−1)σ1 depends only on
S1 = σ−1

1 · S and is equal to (−1)L(S,S1) .
Therefore, for any pair-partition S2,

∑
σ1∈Q 2λ

(−1)σ1 pL(S2,σ−1·S) = C1

∑
S1

(−1)L(S,S1)pL(S2,S1),

where the sum runs over pair-partitions S1 such that S ◦ S1 preserves each column of T .
Finally, Eq. (14) becomes

Cλ Zλ = C1C2

∑
S1

∑
S2

(−1)L(S,S1) pL(S1,S2), (15)

where the sum runs over T -admissible (S1, S2). Recall that T -admissible means that S2 preserves
each row of T and S ◦ S1 preserves each column.
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To get rid of the numerical factors, we use the coefficient of pn
1 in the power-sum expansion of

zonal polynomials (given by VI, Eq. (10.29) in [Mac95], see also VI, Eq. (10.27) and VII, Eq. (2.23)):

[
pn

1

]
Zλ = 1.

But the only pair of T -admissible pair-partitions (S1, S2) such that L(S1, S2) is a union of n loops
(the latter implies automatically that S1 = S2) is (S, S). Therefore the coefficient of pn

1 in the double
sum of the right-hand side of (15) is equal to 1 and finally:

Zλ =
∑

S1

∑
S2

(−1)L(S,S1)pL(S1,S2). �

3. Formulas for zonal characters

This section is devoted to formulas for zonal characters; in particular, the first goal is to prove
Theorem 1.5.

3.1. Reformulation of Theorem 1.5

Let S0, S1, S2 be three pair-partitions of the set [2k]. We consider the following function on the
set of Young diagrams:

Definition 3.1. Let λ be a partition of any size. We define N(2)
S0,S1,S2

(λ) as the number of functions f
from [2k] to the boxes of the Young diagram 2λ such that for any l ∈ [2k]:

(P0) f (l) and f (S0(l)) are neighbors in the Young diagram 2λ, i.e., if f (l) is in the 2i + 1-th column
(respectively 2i + 2-th column), then f (S0(l)) is the box in the same row but in the 2i + 2-th
column (respectively 2i + 1-th column);

(P1) f (l) and f (S0 ◦ S1(l)) are in the same column;
(P2) f (l) and f (S2(l)) are in the same row.

We also define N̂(2)
S0,S1,S2

(λ) as the number of injective functions fulfilling the above conditions.

Lemma 3.2. Let S0 , S1 , S2 be pair-partitions. Then

N(2)
S0,S1,S2

= 2|L(S0,S1)|N(1)
S0,S1,S2

.

Proof. Let λ be a Young diagram and let f be a function f : [2k] → 2λ verifying properties (P0), (P1)
and (P2). We consider the projection p : 2λ → λ, which consists of forgetting the separations between
the neighbors in 2λ. More precisely, the boxes (2i − 1, j) and (2i, j) of 2λ are both sent to the box
(i, j) of λ. It is easy to check that the composition f = p ◦ f fulfills (Q0), (Q1), (Q2).

Consider a function g : [2k] → λ verifying (Q0), (Q1) and (Q2). We want to determine functions
f verifying (P0), (P1) and (P2) such that f = g . If g(k) (which is equal to g(S0(k)) by condition
(Q0)) is equal to a box (i, j) of λ, then f (k) and f (S0(k)) belong to {(2i − 1, j), (2i, j)}. Therefore,
f is determined by the parity of the column of f (k) for each k. Besides, if f (k) is in an even-
numbered (respectively odd-numbered) column, then f (S0(k)) and f (S1(k)) are in an odd-numbered
(respectively even-numbered) column (by conditions (P0) and (P1)). Therefore, if we fix the parity of
the column of f (k) for some k, it is also fixed for f (k′), for all k′ in the same loop of L(S0, S1).
Conversely, choose for one number i in each loop of L(S0, S1), which of the two possible values
should be assigned to f (i). Then there is exactly one function respecting these values and verifying
condition (P0), (P1) and (P2) (condition (P2) is fulfilled for each function f such that f verifies (Q2)).
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Thus, to each function g with properties (Q0), (Q1) and (Q2) correspond exactly 2|L(S0,S1)| functions
f with properties (P0), (P1) and (P2). �

The above lemma shows that in order to show Theorem 1.5 it is enough to prove the following
equivalent statement:

Theorem 3.3. Let μ be a partition of the integer k and (S1, S2) be a fixed couple of pair-partitions of the set
[2k] of type μ. Then one has the following equality between functions on the set of Young diagrams:

Σ
(2)
μ = 1

2�(μ)

∑
S0

(−1)L(S0,S1)N(2)
S0,S1,S2

,

where the sum runs over pair-partitions of [2k].

We will prove it in Sections 3.2–3.4.

3.2. Extraction of the coefficients

Let μ and λ be two partitions. In this paragraph we consider the case where |μ| = |λ|. If
we look at the coefficients of a given power-sum function pμ in Zλ , using Theorem 1.2, one
has:

[pμ]Zλ =
∑

(S1,S2) T -admissible
typeL(S1,S2)=μ

(−1)L(S,S1).

This equation has been proved in the case where T and S are, respectively, the canonical Young
tableaux and the first pair-partition, but the same proof works for any filling T of 2λ by the elements
of [2|λ|] and any pair-partition S as long as S matches the labels of the pairs of neighbors of 2λ

in T . As there are (2|λ|)! fillings T and one corresponding pair-partition S = S(T ) per filling, one
has:

[pμ]Zλ = 1

(2|λ|)!
∑

T

∑
(S1,S2) T -admissible

typeL(S1,S2)=μ

(−1)L(S(T ),S1),

where the first sum runs over all bijective fillings of the diagram 2λ. We can change the order of
summation and obtain:

[pμ]Zλ = 1

(2|λ|)!
∑
S1,S2

type(S1,S2)=μ

(∑
T

(−1)L(S(T ),S1)
[
(S1, S2) is T -admissible

])
, (16)

where we use the convention that [condition] is equal to 1 if the condition is true and is equal to zero
otherwise. Note that S2n acts on bijective fillings of 2λ by acting on each box. It is straightforward to
check that this action fulfills:

• S(σ · T ) = σ · S(T );
• (σ · S1, σ · S2) is σ · T admissible if and only if (S1, S2) is T -admissible.

Lemma 3.4. The expression in the parenthesis in the right-hand side of Eq. (16) does not depend on (S1, S2).
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Proof. Consider two couples (S1, S2) and (S ′
1, S ′

2), both of type μ. By Lemma 2.4, there exists a
permutation σ in S2n such that S ′

1 = σ · S1 and S ′
2 = σ · S2. Then

(∑
T

(−1)L(S(T ),S ′
1)

[(
S ′

1, S ′
2

)
is T -admissible

])

=
(∑

T

(−1)L(S(T ),σ ·S1)
[
(σ · S1,σ · S2) is T -admissible

])

=
(∑

T

(−1)L(S(σ−1·T ),S1)
[
(S1, S2) is σ−1 · T -admissible

])

=
(∑

T ′
(−1)L(S(T ′),S1)

[
(S1, S2) is T ′-admissible

])
,

where all sums run over bijective fillings of 2λ. We used the fact that T �→ σ · T is a bijection of this
set. �

Fix a couple of pair-partitions (S1, S2) of type μ. As there are (2|μ|)!
zμ2�(μ) couples of pair-partitions of

type μ (see Lemma 2.4), Eq. (16) becomes:

[pμ]Zλ = 1

zμ2�(μ)

(∑
T ′

(−1)L(S(T ′),S1)
[
(S1, S2) is T ′-admissible

])
.

As |μ| = |λ|, one has:

Σ
(2)
μ (λ) = zμ[pμ]Zλ = 1

2�(μ)

∑
T

(−1)L(S(T ),S1)
[
(S1, S2) is T -admissible

]

= 1

2�(μ)

∑
S0

(−1)L(S0,S1)

( ∑
T such that

S(T )=S0

[
(S1, S2) is T -admissible

])
.

Bijective fillings T of 2λ are exactly injective functions f : [2n] → 2λ (as the cardinality of two
sets are the same, such a function is automatically bijective). Moreover, the conditions S(T ) = S0 and
(S1, S2) being T -admissible correspond to conditions (P0), (P1) and (P2). Using Definition 3.1, the last
equality can be rewritten as follows: when |μ| = |λ|,

Σ
(2)
μ (λ) = 1

2�(μ)

∑
S0

(−1)L(S0,S1)N̂(2)
S0,S1,S2

(λ).

3.3. Extending the formula to any size

Let us now look at the case where |μ| = k � n = |λ|. We denote μ̃ = μ1n−k . Then, using the
formula above for zμ̃[pμ̃]Zλ , one has:

Σ
(2)
μ (λ) = zμ

(
n − k + m1(μ)

m1(μ)

)
[pμ̃]Zλ = 1

(n − k)! zμ̃[pμ̃]Zλ

= 1

2�(μ)+n−k(n − k)!
∑

S̃

(−1)L( S̃0, S̃1)N̂(2)

S̃0, S̃1, S̃2
(λ), (17)
0
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where ( S̃1, S̃2) is any fixed couple of pair-partitions of type μ̃. We can choose it in the following way.
Let (S1, S2) be a couple of pair-partitions of the set {1, . . . ,2k} of type μ and define S̃1 and S̃2 by,
for i = 1,2:

S̃ i = Si ∪ {{2k + 1,2k + 2}, . . . , {2n − 1,2n}}.
Lemma 3.5. With this choice of ( S̃1, S̃2), the quantity N̂(2)

S̃0, S̃1, S̃2
(λ) is equal to 0 unless

S̃0|{2k+1,...,2n} = {{2k + 1,2k + 2}, . . . , {2n − 1,2n}}. (18)

Proof. Let S̃0 be a pair-partition and f [2n] → 2λ be a bijection verifying conditions (P0), (P1) and (P2)
with respect to the triplet S̃0, S̃1, S̃2.

For any l � k, condition (P1) shows that f (2l + 1) and f ( S̃0(2l + 2)) are in the same column.
In addition, condition (P0) shows that f (2l + 2) and f ( S̃0(2l + 2)) are neighbors and hence are in
the same row. Besides, condition (P2) shows that f (2l + 1) and f (2l + 2) are in the same row.
In this way we proved that f (2l + 1) and f ( S̃0(2l + 2)) are in the same row and column, hence
f (2l + 1) = f ( S̃0(2l + 2)). As f is one-to-one, one has 2l + 1 = S̃0(2l + 2). In this way we proved that
the existence of an injective function f satisfying (P0), (P1) and (P2) implies that 2l + 1 = S̃0(2l + 2)

for all l � k. �
We need now to evaluate N̂(2)

S̃0, S̃1, S̃2
(λ) when (18) is fulfilled.

Lemma 3.6. Let us suppose that S̃0 fulfills Eq. (18). Then denote S0 = S̃0|{1,...,2k} . One has:

N̂(2)

S̃0, S̃1, S̃2
(λ) = 2n−k(n − k)! N̂(2)

S0,S1,S2
(λ).

Proof. Let f̃ : [2n] → 2λ be a function counted in N̂(2)

S̃0, S̃1, S̃2
(λ). Then it is straightforward to see

that its restriction f̃ |[2k] is counted in N̂(2)
S0,S1,S2

(λ). Conversely, in how many ways can we extent

an injective function f : [2k] ↪→ 2λ counted in N̂(2)
S0,S1,S2

(λ) into a function f̃ : [2n] → 2λ counted in

N̂(2)

S̃0, S̃1, S̃2
(λ)? One has to place the integers from {2k + 1, . . . ,2n} in the 2(n − k) boxes of the set

2λ \ f ([2k]) such that numbers 2i − 1 and 2i (for k < i � n) are in neighboring boxes. There are
2n−k(n − k)! ways to place these number with this condition. If we obey this condition, then f̃ veri-
fies (P0), (P1) and (P2) with respect to ( S̃0, S̃1, S̃2). Therefore, any function f counted in N̂(2)

S0,S1,S2
(λ)

is obtained as the restriction as exactly 2n−k(n − k)! functions f̃ counted in N̂(2)

S̃0, S̃1, S̃2
(λ). �

With Eq. (17), Lemma 3.5 and Lemma 3.6 it follows that the following equation holds true for any
partitions λ and μ with |λ| � |μ| (notice also that it is also obviously true for |λ| < |μ|):

Σ
(2)
μ = 1

2�(μ)

∑
S0 pair-partition

of {1,...,2|μ|}

(−1)L(S0,S1) N̂(2)
S0,S1,S2

, (19)

where (S1, S2) is any couple of pair-partitions of type μ.

3.4. Forgetting injectivity

In this section we will prove Theorem 3.3 (and thus finish the proof of Theorem 1.5). In other
terms, we prove that Eq. (19) is still true if we replace in each term of the sum N̂(2)

S ,S ,S by N(2)
S ,S ,S .
0 1 2 0 1 2



V. Féray, P. Śniady / Journal of Algebra 334 (2011) 338–373 361
In order to do this we have to check that, for any non-injective function f : [2|μ|] → 2λ, the total
contribution

∑
S0 pair-partition

of [2|μ|]

(−1)L(S0,S1)
[

f fulfills (P0), (P1) and (P2)
]

(20)

of f to the right-hand side of Eq. (19) is equal to zero.
Let us fix a couple (S1, S2) of pair-partitions of type μ. We begin by a small lemma:

Lemma 3.7. Let f : [2k] → 2λ be a function with f (i) = f ( j) for some i and j. Let us suppose that f fulfills
condition (P0) and (P1) with respect to some pair-partitions S0 and S1 . Then, if i and j are the labels of edges
in the same loop of L(S0, S1) then there is an even distance between these two edges.

Proof. If two edges, labeled by k and l, are adjacent, this means that either j = S0(k) or j = S1(k).
In both cases, as f fulfills condition (P0) and (P1), the indices of the columns containing boxes f ( j)
and f (k) have different parities. Hence, the same is true if edges, labeled by j and k, are in an odd
distance from each other. As f (i) = f ( j), in particular they are in the same column and thus, the
edges, labeled by i and j, cannot be in the same loop with an odd distance between them. �
Lemma 3.8. Let f : [2|μ|] → 2λ with f (i) = f ( j). Then

(a) conditions (P0), (P1) and (P2) are fulfilled for S0 if and only if they are fulfilled for S ′
0 = (i j) · S0;

(b) if these conditions are fulfilled, then

(−1)L(S0,S1) + (−1)L(S ′
0,S1) = 0.

Proof. Recall that S ′
0 is exactly the same pairing as S0 except that i and j have been interchanged.

Thus the part (a) is obvious from the definitions.
Besides, the graph L(S ′

0, S1) is obtained from L(S0, S1) by taking the edges with labels i and j
and interchanging their black extremities. We consider two different cases.

• If i and j are in different loops Li and L j of the graph L(S0, S1), then, when we erase the
edges i and j we still have the same connected components. To obtain L(S ′

0, S1), one has to
draw an edge between the white extremity of j and the black extremity of i. These two vertices
were in different connected components Li and L j of L(S0, S1), therefore these two components
are now connected and we have one less connected component. We also have to add another
edge between the black extremity of j and the white extremity of j but they are now in the
same connected component so this last operation does not change the number of connected
components.
Finally, the graph L(S ′

0, S1) has one less connected component than L(S0, S1) and the part (b)
of the lemma is true in this case.
This case is illustrated on Fig. 1.

• Otherwise i and j are in the same loop L of the graph L(S0, S1). When we erase the edges i and
j in this graph, the loop L is split into two components L1 and L2. Let us say that L1 contains
the black extremity of i. By Lemma 3.7, there is an even distance between i and j. This implies
that the white extremity of j is also in L1, while its black extremity and the white extremity of i
are both in L2. Therefore, when we add edges to obtain L(S ′

0, S1), we do not change the number
of connected components.
Finally, the graph L(S ′

0, S1) has one more connected component than L(S0, S1) and the part (b)
of the lemma is also true in this case.
This case is illustrated on Fig. 2. �
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Fig. 1. L(S0, S1) and L(S ′
0, S1) in the first case of proof of Lemma 3.8.

Fig. 2. L(S0, S1) and L(S ′
0, S1) in the first case of proof of Lemma 3.8.

From the discussion above it is clear that the lemma allows us to group the terms in (20) into
canceling pairs. Thus (20) is equal to 0 for any non-injective function f , which implies that

1

2�(μ)

∑
S0 pair-partition

of {1,...,2|μ|}

(−1)L(S0,S1) N̂(2)
S0,S1,S2

= 1

2�(μ)

∑
S0 pair-partition

of {1,...,2|μ|}

(−1)L(S0,S1)N(2)
S0,S1,S2

.

Using Eq. (19), this proves Theorem 3.3, which is equivalent to Theorem 1.5.

3.5. Number of functions and Stanley’s coordinates

In this paragraph we express the N functions in terms of Stanley’s coordinates p and q. This is
quite easy and shows the equivalence between Theorems 1.5 and 1.6.

Lemma 3.9. Let (S0, S1, S2) be a triplet of pair-partitions. We will view the graphs L(S0, S1) and L(S0, S2)

as the sets of their connected components. One has:

N(1)
S0,S1,S2

(p × q) =
∑

ϕ:L(S0,S2)→N


∏
�∈L(S0,S2)

pϕ(�)

∏
m∈L(S0,S1)

qψ(m),

where ψ(m) = max� ϕ(�), with � running over loops in L(S0, S2), which have an edge with the same label as
some edge of m.
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Proof. Fix a triplet (S0, S1, S2) of pair-partitions and sequences p and q. We set λ = p × q as in
Section 1.4.2. Let g : [2k] → λ be a function verifying conditions (Q0), (Q1) and (Q2). As g fulfills (Q0)
and (Q2), all elements i in a given loop � ∈ L(S0, S2) have their image by g in the same row r� . We
define ϕ(�) as the integer i such that

p1 + · · · + pi−1 < r� � p1 + · · · + pi . (21)

This associates to g a function ϕ : L(S0, S2) → N

 .

Let us fix a function ϕ : L(S0, S2) → N

 . We want to find its pre-images g : [2k] → λ. We have the

following choices to make:

• We have to choose, for each loop � ∈ L(S0, S2), the value of r� . Due to inequality (21), one has
pϕ(�) choices for each loop �.

• Then we have to choose, for each loop m ∈ L(S0, S1), the value of cm , the index of the common
column of the images by g of elements in m (as we want g to fulfill conditions (Q0) and (Q1),
all images of elements in m must be in the same column). By definition of ψ(m), there is an
integer i ∈ m, which belongs to a loop � ∈ L(S0, S2) with ϕ(�) = ψm . The image of i by g is the
box (r�, cm). As the r�-th row of the diagram λ has qϕ(�) boxes, one has

cm � qϕ(�). (22)

Finally, for each loop m ∈ L(S0, S1), one has qψ(m) possible values of cm .
• A function g : [2k] → λ verifying (Q0), (Q1) and (Q2) is uniquely determined by the two collec-

tions of numbers (cm)m∈L(S0,S1) and (r�)�∈L(S0,S2) . Indeed, if i ∈ [2k], its image by g is the box
(r�, cm), where m and � are the loops of L(S0, S1) and L(S0, S2) containing i.

Conversely, if we choose two sequences of numbers (cm)m∈L(S0,S1) and (r�)�∈L(S0,S2) fulfilling inequal-
ities (21) and (22), this defines a unique function g fulfilling (Q0), (Q1) and (Q2) associated to ϕ . It
follows that each function ϕ : L(S0, S2) → N


 has exactly

∏
�∈L(S0,S2)

pϕ(�)

∏
m∈L(S0,S1)

qψ(m),

pre-images and the lemma holds. �
The above lemma shows that Theorem 1.5 implies Theorem 1.6.

Proof of Theorem 1.6. It is a direct application of Theorem 1.5 and of the expression of N(1)
S0,S1,S2

in
terms of Stanley’s coordinates that we establish in Lemma 3.9. �
3.6. Action of the axial symmetry group

The purpose of this paragraph is to prove Proposition 1.10.
Theorem 1.6 implies that the coefficients of (−1)kΣ

(2)
μ (p,−q) are non-negative. But it is not obvi-

ous from this formula that the coefficients are integers. We will prove it in this paragraph by grouping
some identical terms in Theorem 1.5 before applying Lemma 3.9.

The following lemma will be useful to find some identical terms.

Lemma 3.10. Let (S0, S1, S2) be a triplet of pair-partitions of [2k] and σ be a permutation in S2k. Then

N(1)
(σ ·S0,σ ·S1,σ ·S2) = N(1)

(S0,S1,S2).
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Proof. Map f : [2k] → 2λ satisfies conditions (Q0), (Q1) and (Q2) with respect to (σ · S0, σ · S1, σ · S2)

if and only if f ◦ σ satisfies conditions (Q0), (Q1) and (Q2) with respect to (S0, S1, S2). �
From now on, we fix a partition μ of k and a couple (S1, S2) of pair-partitions of [2k] of type μ.
Choose arbitrarily an edge ji,1 in each loop Li (which is of length 2μi ). Denote ji,2 = S2( ji,1),

ji,3 = S1( ji,2) and so on until ji,2μi = S2( ji,2μi−1), which fulfills S1( ji,2μi ) = ji,1. We consider the
permutation ri in S2k which sends ji,m to ji,2μi+1−m for any m ∈ [2μi] and fixes all other integers.
Geometrically, the sequence ( ji,m)m∈[2μi ] is obtained by reading the labels of the edges along the loop
Li and ri is an axial symmetry of the loop Li .

• ri permutes the black vertices of the graph L(S1, S2) (it is an axial symmetry of Li and fixes the
elements of the other connected components). It means that ri · S1 = S1.
In the same way, it permutes the white vertices therefore ri · S2 = S2.

• Permutations ri are of order 2 and they clearly commute with each other (their supports are
pairwise disjoint); therefore, they generate a subgroup G of order 2�(μ) of S2|μ| . Moreover, for a
fixed integer j, the orbit {g( j): g ∈ G} contains exactly two elements: j and ri( j), where i is the
index of the loop of L(S1, S2) containing i.

Using Lemma 3.10, for any pair-partition S0, one has

N(1)
g·S0,S1,S2

= N(1)
g·S0,g·S1,g·S2

= N(1)
S0,S1,S2

,

where g is equal to any one of the ri . It immediately extends to any g in G . In the same way, we
have

(−1)L(g·S0,S1) = (−1)L(g·S0,g·S1) = (−1)L(S0,S1).

Therefore Theorem 1.5 can be restated as:

Σ
(2)
μ =

∑
Ω orbits
under G

(−1)L(S0(Ω),S1) 2|L(S0(Ω),S1)|

2�(μ)
|Ω|N(1)

S0(Ω),S1,S2
, (23)

where the sum runs over the orbits Ω of the set of all pair-partitions of [2k] under the action of G
and where S0(Ω) is any element of the orbit Ω .

Lemma 3.11. For each orbit Ω of the set of pair-partitions of [2k] under the action of G, the quantity

2|L(S0(Ω),S1)|

2�(μ)
|Ω|

is an integer.

This lemma and Eq. (23) imply Proposition 1.10 (because the N functions are polynomials with
integer coefficients in variables p and q, see Lemma 3.9).

Proof. Let us fix an element S0 = S0(Ω) in the orbit Ω . The quotient 2�(μ)

|Ω| is the cardinality of the

stabilizer Stab(S0) ⊂ G of S0. Therefore it divides the cardinality of G , which is 2�(μ) , and, hence
is a power of 2. Besides, any permutation π ∈ Stab(S0) ⊂ G leaves S0 and S1 invariant hence π
is entirely determined by the its values on {eL: L ∈ L(S0, S1)}, where eL is an arbitrary element
in the loop L (the argument is the same as in the proof of Lemma 2.4). As each integer, and in
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particular each eL , has only two possible images by the elements of G , this implies that the cardi-

nality of Stab(S0) is smaller or equal to 2|L(S0,S1)| . But it is power of 2 so |Stab(S0)| = 2�(μ)

|Ω| divides

2|L(S0,S1)| . �
We will give now an alternative way to end the proof, which is less natural but more meaningful

from the combinatorial point of view. As before, the partition μ � k is fixed, as well as a couple
(S1, S2) of pair-partitions of [2k] of type μ. We call an orientation φ of the elements in [2k], the
choice, for each number in [2k], of a color (red or green).

If S0 is a pair-partition, we say that an orientation φ is compatible with the loops L(S0, S1) if
each pair of S0 and each pair of S1 contains one red and one green element. We denote by P o the
set of couples (S0, φ) such that φ is compatible with L(S0, S1).

In such an orientation, the color of an element eL in a loop L ∈ L(S0, S1) determines the colors of
all elements in this loop. Nevertheless, the colors of the {eL, L ∈ L(S1, S2)}, where eL is an arbitrary
element of L, can be chosen idependently. Therefore, for a given pair-partition S0, there are exactly
2|L(S0,S1)| orientations compatible with L(S0, S1). Hence, Theorem 1.5 can be rewritten as:

Σ
(2)
μ = 1

2�(μ)

∑
(S0,φ)

(−1)L(S0,S1)N(1)
S0,S1,S2

, (24)

where the sum runs over P o .
Of course, the group S2k , and hence its subgroup G , acts on the set of orientations of [2k]. By

definition, if φ is an orientation and σ a permutation, the color given to σ(i) in the orientation σ · φ
is the color given to i in φ.

We will consider the diagonal action of G on couples (S0, φ). It is immediate that this action
preserves P o .

Lemma 3.12. The diagonal action of G on P o is faithful.

Proof. Let us suppose that g · (S0, φ) = (S0, φ). We use the definition of the integers ji,m given at
the beginning of the paragraph to define the group G . Recall that S1 contains, for each i, the pair
{ ji,1, ji,2μi }. Hence, as φ is compatible with L(S0, S1), the integers ji,1 and ji,2μi have different colors
in φ. But φ is fixed by g , so g( ji,1) cannot be equal to ji,2μi . This means that g does not act like the
mirror symmetry ri on the loop Li ; hence g acts on the loop Li like the identity. As this is true for
all loops in L(S1, S2), the permutation g is equal to the identity. �

Finally, as N(1)
g·S0,S1,S2

= N(1)
S0,S1,S2

, we can group together in Eq. (24) the terms corresponding to the

2�(μ) couples (S0, φ) in the same orbit. We obtain the following result.

Theorem 3.13. Let μ be a partition of the integer k and (S1, S2) be a fixed couple of pair-partitions of [2k] of
type μ. Then,

Σ
(2)
μ =

∑
Ω

(−1)L(S0(Ω),S1)N(1)
S0(Ω),S1,S2

, (25)

where the sum runs over orbits Ω of P o under the action of G (for such an orbit, S0(Ω) is the first element of
an arbitrary couple in Ω).

Using Lemma 3.9, this formula gives an alternative proof of Proposition 1.10. From a combinatorial
point of view, it is more satisfying than the one above because we are unable to interpret the number
2|L(S0(Ω),S1)|

�(μ) |Ω| in Eq (23). More details are given in Section 5.4.

2
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Remark 3.14. Let us consider orientations φ compatible with L(S0, S1) and L(S0, S2). Each such an
orientation can be viewed as a partition of [2k] into two sets of size k, such that each pair in S0,
S1 or S2 contains an element of each set. If such a partition is given, the pair-partitions S0, S1 and
S2 can be interpreted as permutations and the Schur case can be formulated in these terms (see
Remark 1.3).

4. Kerov polynomials

4.1. Graph associated to a triplet of pair-partitions

Let (S0, S1, S2) be a triplet of pair partitions of [2k]. We define the bipartite graph G(S0, S1, S2)

in the following way.

• Its set of black vertices is L(S0, S1).
• Its set of white vertices is L(S0, S2).
• There is an edge between a black vertex � ∈ L(S0, S1) and a white vertex �′ ∈ L(S0, S2) if (and

only if) the corresponding subsets of [2k] have a non-empty intersection.

Note that the connectivity of G(S0, S1, S2) corresponds exactly to condition (a) of Theorem 1.7.
This definition is relevant because the function N(1)

S0,S1,S2
depends only on the graph G(S0, S1, S2).

Indeed, let us define, for any bipartite graph G , a function N(1)
G on Young diagram as follows:

Definition 4.1. Let G be a bipartite graph and λ a Young diagram. We denote N(1)
G (λ) the number of

functions f

• sending black vertices of G to the set of column indices of λ;
• sending white vertices of G to the set of row indices of λ;
• such that, for each edge of G between a black vertex b and a white vertex w , the box

( f (w), f (b)) belongs to the Young diagram λ (i.e. 1 � f (b) � λ f (w)).

Then, using the arguments of the proof of Lemma 3.9, one has:

N(1)
S0,S1,S2

= N(1)
G(S0,S1,S2).

As characters and cumulants, N(1)
G can be defined on non-integer stretching of Young diagrams using

Lemma 3.9.

4.2. General formula for Kerov polynomials

Our analysis of zonal Kerov polynomials will be based on the following general result.

Lemma 4.2. Let G be a finite collection of connected bipartite graphs and let G � G �→ mG be a scalar-valued
function on it. We assume that

F (λ) =
∑
G∈G

mG N(1)
G (λ)

is a polynomial function on the set of Young diagrams; in other words F can be expressed as a polynomial in
free cumulants.
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Let s2, s3, . . . be a sequence of non-negative integers with only finitely many non-zero elements. Then

[
Rs2

2 Rs3
3 · · ·]F = (−1)s2+2s3+3s4+···+1

∑
G∈G

∑
q

mG ,

where the sums runs over G ∈ G and q such that:

(a) the number of the black vertices of G is equal to s2 + s3 + · · · ;
(b) the total number of vertices of G is equal to 2s2 + 3s3 + 4s4 + · · · ;
(c) q is a function from the set of the black vertices to the set {2,3, . . .}; we require that each number i ∈

{2,3, . . .} is used exactly si times;
(d) for every subset A ⊂ V◦(G) of black vertices of G which is nontrivial (i.e., A 
= ∅ and A 
= V◦(G)) there

are more than
∑

v∈A(q(v) − 1) white vertices which are connected to at least one vertex from A.

This result was proved in our previous paper with Dołȩga [DFŚ10] in the special case when F =
Σ

(1)
n and G is the (signed) collection of bipartite maps corresponding to all factorizations of a cycle,

however it is not difficult to verify that the proof presented there works without any modifications
also in this more general setup.

4.3. Proof of Theorem 1.7

Proof of Theorem 1.7. We consider for simplicity the case when μ = (k) has only one part. By defi-
nition, it is obvious that, for any G and λ,

N(1)
G (αλ) = α|V•(G)|N(1)

G (λ),

where |V•(G)| is the number of black vertices of G . Hence, Theorem 1.5 can be rewritten in the form

F (λ) := Σ
(2)

k

(
1

2
λ

)
= 1

2

∑
S0

(−1)k+|L(S0,S1)|N(1)
S0,S1,S2

(λ).

Function F is a polynomial function on the set of Young diagrams [Las08, Proposition 2]. As the
involutions corresponding to S1 and S2 span a transitive subgroup of S2k (because the couple (S1, S2)

has type (k)), the graph corresponding to S0, S1, S2 is connected and Lemma 4.2 can be applied.

[
Rs2

2 Rs3
3 · · ·]F = 1

2
(−1)1+k+|L(S0,S1)|+s2+2s3+3s4+··· ∑

S0

∑
q

1,

where the sum runs over S0 and q such that the graph G(S0, S1, S2) and q fulfill the assumptions
of Lemma 4.2. Notice that, for such a S0, the number |L(S0, S1)| of black vertices of G(S0, S1, S2) is
s2 + s3 + s4. Under a change of variables λ̃ = 1

2 λ we have Σ
(2)

k (̃λ) = F (λ) and Ri = Ri(λ) = 2i R(2)
i (̃λ)

and thus

[(
R(2)

2

)s2
(

R(2)
3

)s3 · · ·]Σ(2)

k = 22s2+3s3+···[Rs2
2 Rs3

3 · · ·]F

= (−1)1+k+2s2+3s3+···2−1+2s2+3s3+···N ,

where N is the number of couples (S0,q) as above. This ends the proof in the case μ = (k).
Consider now the general case μ = (k1, . . . ,k�). In an analogous way as in [DFŚ10, Theorem 4.7]

one can show that κ id(Σ
(α)

k , . . . ,Σ
(α)

k ) is equal to the right-hand side of (7), where S1, S2 are chosen

1 �
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so that type(S1, S2) = μ and the summation runs over S0 with the property that the corresponding
graph G(S0, S1, S2) is connected. Therefore

F (λ) := (−1)�−1κ id(
Σ

(α)

k1
, . . . ,Σ

(α)

k�

)(1

2
λ

)

= 1

2�(μ)
(−1)�−1

∑
S0

(−1)|μ|+|L(S0,S1)|N(1)
S0,S1,S2

(λ).

The remaining part of the proof follows in an analogous way. �
4.4. Particular case of Lassalle conjecture for Kerov polynomials

The purpose of this paragraph is to prove Proposition 1.11, which states that the coefficients

[(
R(2)

2

)s2
(

R(2)
3

)s3 · · ·]K (2)
μ

are integers.
This does not follow directly from Theorem 1.7 because of the factor 2�(μ) . As in Section 3.6 we will

use Theorem 3.13. With the same argument as in the previous paragraph, one obtains the following
result:

Theorem 4.3. Let μ be a partition of the integer k and (S1, S2) be a fixed couple of pair-partitions of [2k] of
type μ. Let s2, s3, . . . be a sequence of non-negative integers with only finitely many non-zero elements.

Then the rescaled coefficient

(−1)|μ|+�(μ)+2s2+3s3+···2−(s2+2s3+3s4+···)[(R(2)
2

)s2(R(2)
3

)s3 · · ·]K (2)
μ

is equal to the number of orbits Ω of couples (S0, φ) in P o under the action of G, such that any element S0(Ω)

of this orbit fulfills conditions (a), (b), (c), (d) and (e) of Theorem 1.7.

This implies immediately Proposition 1.11. In fact, one shows a stronger result, which fits with
Lassalle’s data: the coefficient of (R(2)

2 )s2 (R(2)
3 )s3 · · · in K (2)

μ is a multiple of 2s2+2s3+3s4+··· .

5. Maps on possibly non-orientable surfaces

The purpose of this section is to emphasize the fact that triplets of pair-partitions are in fact a
much more natural combinatorial object than it may seem at the first glance: each such a triple can
be seen as a graph drawn on a (non-oriented) surface.

5.1. Gluings of bipartite polygons

It has been explained in Section 1.2.2 how a couple of pair-partitions (S1, S2) of the same set
[2k] can be represented by the collection L(S1, S2) of edge-labeled polygons: the white (respec-
tively black) vertices correspond to the pairs of S1 (respectively S2). For instance, let us consider the
couple

S1 = {{1,15}, {2,3}, {4,14}, {13,16}, {5,7}, {6,10}, {8,11}, {9,12}},
S2 = {{1,10}, {2,7}, {8,13}, {9,14}, {3,5}, {4,12}, {6,15}, {11,16}}.

The corresponding polygons are drawn on Fig. 3.
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Fig. 3. Polygons associated to the couple (S1, S2).

Fig. 4. Example of a labeled map on Klein bottle.

With this in mind, one can see the third pair-partition S0 as a set of instructions to glue the edges
of our collection of polygons. If i and j are partners in S0, we glue the edges, labeled by i and j,
together in such a way that their black (respectively, white) extremities are glued together. When
doing this, the union the polygons becomes a (non-oriented, possibly non-connected) surface, which
is well defined up to continuous deformation of the surface. The border of the polygons becomes a
bipartite graph drawn on this surface (when it is connected, this object is usually called map). We
denote M(S0, S1, S2) the union of maps obtained in this way. An edge of M(S0, S1, S2) is formed by
two edge-sides, each one of them corresponding to an edge of a polygon.

For instance, we continue the previous example by choosing

S0 = {{1,2}, {3,4}, {5,6}, {7,8}, {9,10}, {11,12}, {13,14}, {15,16}}.
We obtain a graph drawn on a Klein bottle, represented on the left-hand side of Fig. 4 (the Klein
bottle can be viewed as the square with some identification of its edges). A planar representation of
this map, involving artificial crossings and twists of edges, is given on the right-hand side of the same
figure.

5.2. The underlying graph of a gluing of polygons

By definition, the black vertices of L(S1, S2) correspond to the pairs in S1. If {i, j} is a pair in S0,
when we glue the edges i and j together, we also glue the black vertex containing i with the black
vertex containing j. Hence, when all pairs of edges have been glued, we have one black vertex per
loop in L(S0, S1).

In the same way, the white vertices of the union of maps M(S0, S1, S2) correspond to the loops in
L(S0, S2).

The edges of the union of maps correspond to pairs in S0, therefore a black vertex � ∈ L(S0, S1)

is linked to a white vertex �′ ∈ L(S0, S2) if there is a pair of S0 which is included in both � and �′ .
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As � and �′ are unions of pairs of S0, this is equivalent to the fact that they have a non-empty
intersection.

Hence the underlying graph of M(S0, S1, S2) (i.e. the graph obtained by forgetting the surface, the
edge labels and the multiple edges) is exactly the graph G(S0, S1, S2) defined in Section 4.1.

It is also interesting to notice (even if it will not be useful in this paper) that the faces of the
union of maps M(S0, S1, S2) (which are, by definition, the connected components of the surface after
removing the graph) correspond by construction to the loops in L(S1, S2).

Remark 5.1. The related combinatorics of maps which are not bipartite has been studied by Goulden
and Jackson [GJ96].

5.3. Reformulation of Theorems 1.5 and 1.7

In some of our theorems, we fix a partition μ � k and a couple of pair-partitions (S1, S2) of
type μ. Using the graphical representation of Section 1.2.2, it is the same as fixing μ and a collection
of edge-labeled polygons of lengths 2μ1,2μ2, . . . .

In this context, the set of pair-partitions is the set of maps obtained by gluing by pair the edges
of these polygons (see Section 5.1).

Then the different quantities involved in our theorems have a combinatorial translation:
G(S0, S1, S2) is the underlying graph of the map (Section 5.2), L(S0, S1) the set of its black ver-
tices and L(S0, S2) the set of its white vertices.

One can now give combinatorial formulations for two of our theorems.

Theorem 5.2. Let μ be a partition of the integer k. Consider a collection of edge-labeled polygons of lengths
2μ1,2μ2, . . . . Then one has the following equality between functions on the set of Young diagrams:

Σ
(2)
μ = (−1)k

2�(μ)

∑
M

(−2)|V•(M)|N(1)
G(M), (26)

where the sum runs over unions of maps obtained by gluing by pair the edges of our collection of polygons in
all possible ways; |V•(M)| is the number of black vertices of M and G(M) the underlying graph.

Proof. Reformulation of Theorem 1.5. �
Theorem 5.3. Let μ be a partition of the integer k. Consider a collection of edge-labeled polygons of lengths
2μ1,2μ2, . . . .

Let s2, s3, . . . be a sequence of non-negative integers with only finitely many non-zero elements.
The rescaled coefficient

(−1)|μ|+�(μ)+2s2+3s3+···(2)�(μ)−(2s2+3s3+···)[(R(2)
2

)s2(R(2)
3

)s3 · · ·]K (2)
μ

of the (generalized) zonal Kerov polynomial is equal to the number of pairs (M,q) such that

• M is a connected map obtained by gluing edges of our polygons by pair;
• the pair (G(M),q), where G(M) is the underlying graph of M, fulfill conditions (a), (b), (c) and (d) of

Lemma 4.2.

Proof. Reformulation of Theorem 1.7. �
Remark 5.4. As G(M) is an unlabeled graph, the edge-labeling of the polygons is not important. But
we still have to consider a family of polygons without automorphism. So, instead of edge-labeled
polygons, we could consider a family of distinguishable edge-rooted polygons (which means that each
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Fig. 5. A black vertex after a black-compatible orientation and gluing.

polygon has a marked edge and that we can distinguish the polygons, even the ones with the same
size).

Remark 5.5. These results are analogues to results for characters of the symmetric groups. The latter
are the same (up to normalizing factors), except that one has to consider a family of oriented poly-
gons and consider only gluings which respect this orientation (hence the resulting surface has also a
natural orientation). These results can be found in papers [FŚ11] and [DFŚ10], but, unfortunately, not
under this formulation.

5.4. Orientations around black vertices

The purpose of this section is to give a combinatorial interpretation of Theorem 3.13 and Theo-
rem 4.3.

As before, S0 is interpreted as a map obtained by gluing by pair the edges of a collection of
distinguishable edge-rooted polygons.

An orientation φ consists in orienting each edge of this collection of polygons (i.e. each edge-side
of the map). It is compatible with L(S0, S1) if, around each black vertex, outgoing and incoming
edge-sides alternate (see Fig. 5).

To make short, we will say in this case, that the orientation and the gluing are black-compatible.
So P o is the set of black-compatible orientations and gluings of our family of polygons.

In our formulas we consider orbits of P o under the action of G . Recall that G is the group gener-
ated by the rL , for L ∈ L(S1, S2) where rL is an axial symmetry of the loop L (and its axis of symmetry
goes through a black vertex).

Notice that, in general, combinatorial objects with unlabeled components are, strictly speaking,
equivalence classes of the combinatorial objects of the same type with labeled components; the
equivalence classes are the orbits of the action of some group which describes the symmetry of the
unlabeled version.

In our case, a (bipartite) polygon with a marked edge has no symmetry. But, if we consider a poly-
gon with a marked black vertex, its automorphism group is exactly the two-element group generated
by the axial symmetry going though this vertex.

Therefore, the orbits of P o under the action of G can be interpreted as the black-compatible ori-
entations and gluing of a collection of distinguishable vertex-rooted polygons.

We can now reformulate Theorems 3.13 and 4.3.

Theorem 5.6. Let μ be a partition of the integer k. Consider a collection of unlabeled polygons of lengths
2μ1,2μ2, . . . with one marked black vertex per polygon. Then one has the following equality between func-
tions on the set of Young diagrams:

Σ
(2)
μ = (−1)k

∑
�M

(−1)|V•(M)|N(1)
G(M),

where the sum runs over all unions of maps with oriented edge-sides obtained by a black-compatible orienta-
tion and gluing of the edges of our collection of polygons; M is the map obtained by forgetting the orientations
of the edge-sides, |V•(M)| is the number of black vertices of M and G(M) the underlying bipartite graph.
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Theorem 5.7. Let μ be a partition of the integer k. Consider a collection of unlabeled polygons of lengths
2μ1,2μ2, . . . with one marked black vertex per polygon. Let s2, s3, . . . be a sequence of non-negative integers
with only finitely many non-zero elements.

Then the rescaled coefficient

(−1)|μ|+�(μ)+2s2+3s3+···2−(s2+2s3+3s4+···)[(R(2)
2

)s2(R(2)
3

)s3 · · ·]K (2)
μ

of the (generalized) zonal Kerov polynomial is equal to the number of pairs ( �M,q) such that

• �M is a connected map with oriented edge-sides obtained by a black-compatible orientation and gluing of
the edges of our collection of polygons; denote M the map obtained by forgetting the orientations of the
edge-sides.

• The pair (G(M),q), where G(M) is the underlying graph of M, fulfills conditions (a), (b), (c) and (d) of
Lemma 4.2.

Remark 5.8. It is easy to see that a black- and white-compatible orientation and gluing of a collection
of polygons leads to a map on a oriented surface. Therefore the analogue results in the Schur case
can be interpreted in these terms.

This remark is the combinatorial version of Remark 3.14.
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[DFŚ10] Maciej Dołęga, Valentin Féray, Piotr Śniady, Explicit combinatorial interpretation of Kerov character polynomials as
numbers of permutation factorizations, Adv. Math. 225 (1) (2010) 81–120.

[FJMM02] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, A differential ideal of symmetric polynomials spanned by Jack polynomials
at β = −(r − 1)/(k + 1), Int. Math. Res. Not. IMRN 23 (2002) 1223–1237.

[Fér09] Valentin Féray, Combinatorial interpretation and positivity of Kerov’s character polynomials, J. Algebraic Com-
bin. 29 (4) (2009) 473–507.

[Fér10] V. Féray, Stanley’s formula for characters of the symmetric group, Ann. Comb. 13 (4) (2010) 453–461.
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