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1. Introduction

In this paper, we build on the work of Anderson [1] to give a direct bijection between dominant
regions in the “extended” m-Shi arrangement of type A,_; and partitions that are simultaneously n-
cores and (mn + 1)-cores.

Core partitions and regions in the Shi arrangement are both central objects in algebraic
combinatorics. Core partitions of integers (see Definition 5.1) are used in Nakayama’s Conjecture to
describe when two ordinary irreducible representations of the symmetric group belong to the same
block in positive characteristic [ 14]. They also arise in connection with g-series, for example in [9,8,6],
symmetric functions [17], and other areas.

The Shi arrangement (see Definition 2.1) has also been extensively studied. See, for exam-
ple, [20,23,5,4,2,3,19]. The Shi arrangement arose in Shi’s study of left cells in affine Weyl groups. The
Shi arrangement, and more generally hyperplane arrangements, have been studied extensively within
combinatorics, but also arise in many branches of mathematics such as algebraic topology, algebraic
geometry, and the theory of hypergeometric functions. The complement of a complexified arrange-
ment is a smooth manifold whose topological invariants, such as its cohomology ring, are of interest.
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The Shi arrangement can be seen as a deformation of the braid arrangement, whose complement’s
fundamental group is the pure braid group. One can also define multivariate hypergeometric inte-
grals on the complement, which in special cases satisfy the Kniznik-Zomolodchikov (KZ) equations,
and which are related to the representation theory of Lie algebras and quantum groups. Although it
can be defined in all types, in this paper we are only concerned with the (extended) Shi arrangement
of type A.

Anderson’s result, that i (Sft) counts the number of partitions which are both t-cores and s-cores
generalizes the well-known interpretation of Catalan numbers C, as counting n-cores that are also
(n 4+ 1)-cores. Catalan numbers are also known to count dominant regions in the Shi arrangement,
termed here the 1-Shi arrangement. (See [24,25].) Our main result provides a direct bijective proof
between two more general sets of combinatorial objects which are counted by the higher Catalan
numbers, called here the m-Catalan numbers. The bijection is interesting first in that it involves two
very interesting families of combinatorial objects, and second in that it is very natural. The bijection
highlights some extra structure the combinatorial objects carry, which is largely induced from the
action of a group, and our bijection commutes with that group action.

Let W be the affine symmetric group, defined in Section 2. Our bijection is W-equivariant in the
following sense. In each connected component of the m-Shi hyperplane arrangement of type A;_1,
there is exactly one “representative”, or m-minimal, alcove closest to the fundamental alcove .
Since the affine Weyl group W acts freely and transitively on the set of alcoves, there is a natural way
to associate an element w € W = &, to any alcove w~'Ag, and to this one in particular. There is
also a natural action of &, on partitions, whereby the orbit of the empty partition @ is precisely the
n-cores. We will show that wd is also an (mn + 1)-core and that all such (mn + 1)-cores that are also
n-cores can be obtained this way.

Roughly speaking, to each n-core A we can associate an integer vector 11(1) whose entries sum to
zero. When A is also an (mn + 1)-core, these entries satisfy certain inequalities. On the other hand,
these are precisely the inequalities that describe when a dominant alcove is m-minimal.

The article is organized as follows. In Section 2 we review facts about Coxeter groups and root
systems of type A. Sections 3 and 4 explain how the position of w~! ¢ relative to our system of affine
hyperplanes is captured by the action of w on affine roots and that m-minimality can be expressed by
certain inequalities on the entries of w(0, 0, .. ., 0). In Section 5 we review facts about core partitions
and in particular remind the reader how to associate an element of the root lattice to each core. Our
main theorem, the bijection between dominant regions of the m-Shi arrangement and special cores,
isin Section 6. Section 7 describes a related bijection on alcoves. In Section 8, we derive further results
refining our bijection between alcoves and cores that involve Narayana numbers. Narayana numbers
give a refinement of the Catalan numbers, and will be defined in Section 8.

2. The type A root system, Shi arrangement, and Weyl group
Our main result is a bijection between two sets of objects. In this section, we define one of these

sets: dominant regions in the m-Shi arrangement. We define the affine symmetric group as well and
review the properties we will need.

2.1. The type A root system

Let {e1, ..., &y} be the standard basis of R" and (|) be the bilinear form for which this is an
orthonormal basis. Let a; = &; — €;41. Then IT = {4, ..., op—1} is a basis of

n
V= (al,...,an)eR"|Zai=0 .
i=1

WeletQ = @?:_11 Za; be identified with the root lattice of type A,_;. The elements of A = {g; — ¢j |
i # j} are called roots and we say a root « is positive, written o > 0,ife € AT = {&; — & | i < j}. We
let A== —ATandsaya < 0ifa € A™. Then IT is the set of simple roots.
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2.2. Extended Shi arrangements

A (real) hyperplane arrangement is a discrete set of hyperplanes, possibly affine hyperplanes, in R".
We first define a system of affine hyperplanes

Hor={veV|(v|a)=k

giveno € A and k € Z. Note H_, _x = H, . S0 we usually take k € Z.

Definition 2.1. The (type A) extended Shi arrangement 4], here called the m-Shi arrangement, is the
collection of hyperplanes

Hn = {Hy | € AT, —m < k < m}.

This arrangement can be defined for root systems of all finite types; here we are concerned with
type A.

The extended Shi arrangement was defined by Stanley in [23]. The arrangement /Sg is known as the
Shi arrangement and was first considered by Shi [20,22] and later by Headley [11,12]. The extended
Shi arrangement was further studied in, for example, [5,4,2,3,19]. In [3], Athanasiades gave formulas
for the number of dominant regions of the m-Shi arrangement 4] in any type. We recommend the
reader sees [3, Section 5.1] for an excellent discussion of the m-Shi arrangement in type A.

In this paper, we are primarily concerned with the connected components of the hyperplane
arrangement complement V \ (. s, H- For ease of notation we will refer to these as regions of the
m-Shi arrangement.

Each connected component of V \ | J,ea+ Ha k is called an alcove.

keZ

We denote the (closed) half-spaces Hy ;)" = {v € V | (v | o) > k}and Hyy~ ={v € V | (v |
o) < k}.

Definition 2.2. The dominant chamber of Vis V N ﬂ'l.:]l Hy, 0" (also referred to as the fundamental
chamber in the literature).

A dominant region of the m-Shi arrangement is a region that is contained in the dominant chamber.
A dominant alcove is one contained in the dominant chamber.

Definition 2.3. The fundamental alcove is denoted sy, and is the interior of V N Hy 1~ N ﬂ?j Hyoh
where = o1 +---+ap_1 = &1 — &p.

Definition 2.4. An alcove is m-minimal if it is the unique alcove of all those contained in one region
of the m-Shi arrangement that is separated by the fewest number of affine hyperplanes in #, from
Ag.

A wall of a region or alcove is a hyperplane in #,, which supports a facet of that region or alcove.

2.3. The affine symmetric group

Definition 2.5. The affine symmetric group, denoted @n, is defined as

Gy = (S1,..-, 501,50 | 7 = 1,85 = s;5; if i # j = 1 mod n,
sisjsi = sjsisj if i = j &= 1 mod n)

forn > 2, but &, = (s1, S | s2 =1).

The affine symmetric group contains the symmetric group &, as a subgroup. &, is the subgroup
generated by the s;, 0 < i < n. We identify &, as permutations of {1, ..., n} by identifying s; with
the simple transposition (i, i + 1).

The affine symmetric group &, acts on V (preserving Q) via affine linear transformations, and acts
freely and transitively on the set of alcoves. We thus identify each alcove 4 with the unique w € &,
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such that 4 = wwg. Each simple generator s;, i > 0 acts by reflection with respect to the simple root
«;. In other words, it acts by reflection over the hyperplane Hai,0+. Whereas the element sq acts as
reflection with respect to the affine hyperplane Hy ;™.

More specifically, the action on V is given by

si(ay, ..., @i, Qiy1, ..., 0y) = (A1, ..., iy1, G, ..., 0y) fori#0, and
so(@1, ... 00) = (@n+ 1,02, ..., 801,01 — 1).
Note &, preserves { | ), but @n does not.

__ We note that &, contains a normal subgroup consisting of translations by elements of Q and that
S, = 6, x Q is their semidirect product, i.e.
1—-Q— gn — 6, —> 1

is exact. We denote by t, translation by the vector y, and in terms of the coordinates above, if
Yy =W....,v) € Q C Vthent,(ay,...,a,) = (ay + i1, ..., a; + ys). Consequently, we may
expressany w € S,asw = ut, foruniqueu € &,, y € Q,orequivalently w = t,,uwherey’ = u(y).
Note that ' = w(0, ..., 0).

We let § denote the null root. It is the unique (up to scalar) root that corresponds to the null space

of the Cartan matrix of type A,(, )1, also known as affine type A. More precisely, its coordinate vector

with respect to the basis {&; | 0 < i < n} spans the null space. Hence for type An 1,8 =Y ;a; Note
oy = § — 0. The finite root system above extends to an affine root system
A={k§+a|keZaecAl=A"UA"
where
At ={k§+ o |keZog o € ATYUKS + o | k€ Zog,a € A7),
A = —Z;, and the simple roots are now 1~1= IT U {ag}. See [15, Chapters 5, 6] for details. Again

we writea > O0ifo € AT anda < Oifa € 4™, .

We can picture V sitting in the span of IT as an affine subspace; whereas &,;, acts on the larger
space linearly, it acts on V by affine linear transformations. In most of this paper, we found it more
useful to work with V, its coordinate system, and affine hyperplanes. However, we could have chosen
to express everything in terms of the span of 77, as we found useful to do in Section 3. In terms of
affine roots, the action of the simple reflection s; € &,, 0 <i < n, is given by

siy) =y — (v | ai)a, (2.1)

where y € span 17 and we have extended (|) as appropriate (given by the Cartan matrix of type A,(:_)l ).
In this setting, we see sq is a reflection with respect to the simple root «g. We can also re-express the
action of translations as

ty(a) =a —(y |a)é (2.2)
fora € A, y in the integer span of 1T or indeed y in the affine weight lattice. See [15]. Note, in the

casey € Q,x € A,u € G, expressions like (y | u(x)) are unambiguous as they agree in either
setting.

3. Inversion sets

This section reminds the reader of the exact correspondence between the inversions of w and the
affine hyperplanes that separate the fundamental alcove g from w~"4¢. The inversions of w € 6n
are defined to be

Inv(w) = {a > 0| w(x) < 0}.

The length of w is defined to be £(w) = |Inv(w)]|, and this quantity counts the number of affine
hyperplanes H, j separating #q from w™!A.

While we could have defined Inv(w) in terms of the Gn action on V, it is more conventional to
define it in terms of the action on A.
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H(IQ,Q

Hag.l

Hag,U

Hgy Hpo Hps Hpy

Fig. 1. When w™'A¢ C Hy t fora € A*,

Example 3.1. For example, note for y € Q that

lnv(ty)={a+l<8|oeeA+,O§k§(y|o¢)}U{—oe+k5|oteA+,O<k<—(y|oe)}.

Proposition 3.2. Let w € &, and a + k§ € At ie. eitherk > Oanda € Aork = Oand o € A™,
Then o + k& € Inv(w) iff w™lA¢ S H 4 .

Proof. We first write w = t,ufory € Q,u € &,. Note, in terms of affine roots, w(a + ké) =
u(a) + (k — (y | u(a)))d. Assume « + k& € Inv(w) which implies either k — (y | u(«)) = 0 and
u(e) € A~ orthatk — (y | u(e)) < 0.

Consider v € w™'4g, so that w(v) € 4. Then

0<(w@)|n) <1 forallype A*

and so translating by —y we obtain —(y | n) < (u(v) | n) <1—(y | n).
First suppose u(«) € A~ and consider n = —u(w) for k and « as above. Then in particular

k=(ylu@)=—(ylu(-o) =< @) |u-a) = (v|-a

sov e H ., .
If instead u(a) € A+, we must have k — (y | u(a)) < —1. Therefore, taking n = u(a),

k=—=1+(y lu(@) = —(u@) | u@) = (v|—a)

soagainv € H ;"
The converse is straightforward. O

Similar methods show that if w(« + k8) € A+ then w4 C H gk .

Example 3.3. Consider w = 5155051525150, and let 4 = w4, which is pictured in Fig. 1. Observe
w = Sat(—2,0,2) andsow™ ! = t2,0,-2)S2- Then

A C Hyy 3~ NHpam NHy, o™,

and the three hyperplanes that bound these half-spaces describe the walls of 4. Note how the half-
spaces above correspond to the action of w™~! on the simple roots: w™!(cg) = —at; + 38, w1 () =
6 — 48, w™(ay) = —ap + 28. (This phenomenon is explained in Proposition 4.1.)

The information in the following chart exhibits the correspondence between Inv(w) and the half-
spaces H_, ,* containing w=! .
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o w N (w) Inv(w) wlAg C Hypt

g —o1+38  {—aq+68, —aq + 26, Hyy1 " Hay2Ts

oy 6 —48 —0+68,—0+25,—60+35,—0+45, Hp1",Hpo" Hos™ Hoa™,
a —ay+28 —on 48} Hyynt

Remark 3.4. Let w be a minimal length left coset representative for &, /&n, and write w = t,u"!

where y € Q,u € &,. This means wAy is the alcove separated by the fewest number of affine
hyperplanes from +, among all alcoves whose closure contains y. It is well-known (and not hard to
show) that ' = —u(y) is in the dominant chamber. See [13] for details. Hence the minimal length
right coset representative w™! = t,su. In particular, w4y is in the dominant chamber.

Corollary 3.5. Suppose w is a minimal length left coset representative for Gn /Gy. Then Inv(w) consists
only of roots of the form —a + k8, k € Z-g, o € A™T. Further, if —a + k8 € Inv(w) and k > 1 then
—a + (k—1)6 € Inv(w).

Proof. By Remark 3.4 w~ !4 is in the dominant chamber, and so in Hy ot forany o € AT, and in
particular never in H_, ;" for k > 0. For the second statement, note H, ;™ € H, 1T ifk > 0. O

4. m-minimal alcoves

In this section, we characterize the m-minimal alcoves, which we will use to define our bijection.

We can identify each connected component of the complement of the m-Shi arrangement with it
unique m-minimal alcove. Recall an alcove wq is m-minimal if it is the unique alcove in its region
such that £(w) is smallest (since £(w) = |Inv(w)|). Such alcoves are termed “representative alcoves”
by Athanasiades.

The following proposition is useful. For a given alcove, it characterizes the affine hyperplanes
containing its walls and which simple reflections flip it over those walls (by the right action). It can
be found in [21] in slightly different notation.

Proposition 4.1. Suppose wAy S Hy " but wsijsg C Hy ™
(1) Then w(ay) = a — k6.
(2) Let B =w~1(0,...,0) € V.Then (B | a;) = —k.
Proof. We first note that for i > 0 Hy, ¢ is the unique hyperplane such that Aq C Hai,()*, but
iAo € Hg, 0™ . In the case i = 0 we rewrite this condition as #4¢ C H_p1T, sog C H_op1™.
Because w is an isometry, w(H,; ¢) must be the unique hyperplane separating w.4q from ws; Ao,
and by hypothesis, this hyperplane is H . Then w(H%Oi) = H,,,ki which implies w(«;) = o — k8.
For the second statement, note that we can uniquely write w = t,u withu € &,,y € Qas &, =
Qx&p.Thenf =w='(0,...,0) =u""(—y)and (u™'(—y) | &) = (—y | u(w)) = —(y | @) = —k
since w(a;) = t, () = u(e) — (¥ lu(@))d =a —ks. O

In terms of the coordinates of y € V with u € &, as above, we note k = yy4) — Vu(i+1)-

Remark 4.2. Note, if wsg is m-minimal, then whenever k € Zso and wAy € Hy ™ but ws;jg €
H, .~ then we must have k < minthe case @ > Oand k < m — 1inthe case @ < 0.

It is easy to see that this condition is not only necessary but sufficient to describe when w#y is
m-minimal. Together with Propositions 3.2 and 4.1 says that when ¢; € Inv(w) and w(e;) = o — k§
thenk < m,and for 8 = w=1(0, ..., 0) that (8 | o) > —m.

Applying Remark 4.2 to positive « and alcoves in the dominant chamber, we get the following
corollary.

Corollary 4.3. Suppose w Ay is in the dominant chamber and m-minimal.

(1) If wog € Hy ™ but wsishg C Hy ™ for somea € AT, k € Zsg, thenk < m.
(2) Let B = w~ (0, ...,0). Then (B | o;) > —m, for all i, and in particular (8 | 8) < m + 1.
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[ 1

(5,2,1,1,1) .
@1 is 5.

Fig. 2. The hook length h
Proof. The first statement follows directly from Proposition 4.1 and Remark 4.2. To conclude that the
second statement holds for all i, note that if k < 0 then automatically k <m. 0O

5. Core partitions and their abacus diagrams

Here we define n-cores, review some well-known facts about them, and review the abacus
construction, which will be a useful tool for us. Details can be found in [14].

5.1. Core partitions and residues

We identify an integer partition A = (A1, ..., A;), Wwhere Ay > A, > ... > A, > 0, with its Young
diagram, the array of boxes centered at coordinates {(k, ) | 1 <[ < A¢}.

We do not fix |[A| = D", A to be a set integer. Indeed, we are interested in partitions of all sizes
throughout the paper, and so will rarely state that A is a partition of |A|.

The (k, I)-hook of A consists of the (k, [)-box of A, all the boxes to the right of it in row k together
with all the nodes below it and in column I The hook length h?,d) of the box (k, I) is the number of
boxes in the (k, I)-hook. '

Definition 5.1. Let n be a positive integer. An n-core is a partition A such thatn ¢ h%k’ D forall (k, 1) € A.

Example 5.2. Fig. 2 illustrates the (2, 1)-hook for the partition A = (5,2, 1, 1, 1). The hooklengths
of all of its boxes are listed in Example 5.9, so one can immediately see that A is a 4-core, a 6-core, a
7-core, an 8-core, and a n-core for n > 10 and it is not a 1-, 2-, 3-, 5-, or 9-core.

There is a well-known bijection € : {n-cores} — Q described below in Section 5.2, that commutes
with the action of &,,. One can use the G,-action to define the bijection, or describe it directly from
the combinatorics of partitions via Garvan-Kim-Stanton’s fi-vectors [9] or as described in terms of
balanced abaci as in [7]. R

Here, we will recall the description from [7] as well as remind the reader of the G,-action on
n-cores.

Definition 5.3. We say the (k, [)-box in the partition A has residue equal to [ — kmod n, and letting
i = | — kmod n, we refer to it as an i-box.

Note that the definition of residue depends on n, but by convention and as n is fixed throughout
the paper, we make that dependence implicit.

We say a box is removable from A if its removal results in a partition. Equivalently its hook length
is 1. Abox not in A is addable if its union with A results in a partition.

Lemma 5.4. Let A be an n-core. Suppose A has a removable i-box. Then it has no addable i-boxes. Likewise,
if A has an addable i-box it has no removable i-boxes.

Proof. If A had both a removable i-box (x, y) and an addable i-box (X, Y), then A also contains exactly
one of (x,Y) or (X,y) and this box has hook length |[X — x + y — Y| which is divisible by n, as
y—x=Y—-X=imodn. O
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@n acts transitively on the set of n-cores as follows. Let A be an n-core. Then

A U {all addable i-boxes} if there is an addable i-box
siA = { A\ {all removable i-boxes} if there is a removable i-box
A otherwise.

By Lemma 5.4 s;A is well-defined and it is easy to check s;\ is an n-core.

Remark 5.5. In fact @n acts on the set of all partitions, but this action is slightly more complicated
to describe (see [18] and Section 11 of [16]), and involves the combinatorics of Kleshchev’s “good”
boxes. For those readers familiar with the realization of the basic crystal B(Ag) of s, sl as having nodes
parameterlzed by n-regular partitions,

; §_<hl wt()n»()\) <h1, Wt()t)> <0

where

wt(d) = Ap — Z Oy_x mod n>» (5.1)
(xy)er

and h; is the co-root corresponding to «;. We again refer the reader to [15] for a discussion of the 0-th
fundamental weight Ag. (Since we need not make a distinction between roots and co-roots in type A,
we could have simply substituted «; for h; in the expressions above.) Then the n-cores are exactly the
Gn -orbit on the highest weight node, which is the empty partition .

5.2. Abacus diagrams

We can associate to each partition A its abacus diagram, which we define below. When A is an
n-core, its abacus has a particularly nice form, and can then be used to construct an element (1) of
Q. This gives us a bijection {n-cores} — Q which commutes with the action of G,. We follow [7] in
describing this bijection, which rests on the work of [14], and we note this bijection agrees with the
ni-vector construction of Garvan-Kim-Stanton [9],

Definition 5.6. The 8-numbers for a partition A = (A1, ..., A;) are the hook lengths from the boxes
in its first column:

1
B = h(k,l)'
Each partition is determined by its S-numbers.

Definition 5.7. An abacus diagram is a diagram, with integer entries arranged in n columns labeled
0,1,...,n — 1, called runners. The horizontal cross-sections or rows will be called levels and runner
k contains the integer entry rn + k on level r where —oo < r < oo. We draw the abacus so that each
runner is vertical, oriented with —oo at the top and oo at the bottom, and we always put runner 0 in the
leftmost position, increasing to runner n — 1 in the rightmost position. Entries in the abacus diagram
may be circled; such circled elements are called beads. The level of a bead labelled by rn + k is r and
its runner is k. Entries which are not circled will be called gaps. We shall say two abaci are equivalent
if they differ by adding a constant to all entries. (Note, in this case we must cyclically permute the
runners so that runner O is leftmost.) See Example 5.9.

Given a partition A its abacus is any abacus diagram equivalent to the one obtained by placing
beads at entries By = h?k.l) and all entries j € Z_.

Remark 5.8. Itis well-known that X is an n-core if and only if its abacus is flush, that is to say whenever
there is a bead at entry j there is also a bead at j — n.

We define the balance number of an abacus to be the sum over all runners of the largest level of a
bead in that runner. We say that an abacus is balanced if its balance number is zero. Note that there
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Fig. 3. Both abaci represent the 4-core A.

is a unique abacus which represents a given n-core A for each balance number. In particular, there is
a unique abacus of A with balance number 0. The balance number for a set of S-numbers of A will
increase by exactly 1 when we increase each f-number by 1. On the abacus picture, this corresponds
to shifting all of the beads forward one entry. (Equivalently, we could add 1 to each entry, leaving the
beads in place, after which we cyclically permute the runners so that runner 0 is leftmost.)

Example 5.9. Both abaci in Fig. 3 above represent the 4-core A = (5,2, 1, 1, 1). The first one is
balanced, but the second has balance number 1. The boxes of A have been filled with their hooklengths.

Definition 5.10. Given an n-core XA, we use the flush, balanced abacus associated to A to define the
integer vector 7i(1). The ith component of fi(1) is the largest level of a bead on runner i — 1 of the
abacus.

We will call this vector fi(1), in keeping with the notation of [9]. We note that the sum of the
components of 7i(A) is zero, by definition of balanced, so that i(A) € Q.

Example 5.11. For the 4-core A = (5, 2, 1, 1, 1) discussed above, i(1) = (2, 0, 0, —2), and the vector
for the unbalanced abacus is (—1, 2, 0, 0).

We recall the following lemma, which can be found in [7].

Lemma 5.12. The map A — 1(1) is an @n -equivariant bijection

{n-cores} — Q.

We recall here results of [1], which describe the abacus of an n-core that is also a t-core, for t
relatively prime to n. When t = mn + 1, this takes a particularly nice form.

Proposition 5.13 (Anderson). Let A be an n-core. Suppose t is relatively prime ton. Let M = nt —n — t.
Consider the grid of points (x,y) € Z x Zwith0 < x < n— 1,0 < y labelled by M — xt — yn. Circle
a point in this grid if and only if its label is obtained from the first column hooklengths of A. Then X\ is a
t-core if and only if

(1) All beads in the abacus of A are at entries < M, in other words at (x,y) with0 <x<n—1,0 <y;

(2) The circled points in the grid are upwards flush, in other words if (x, y) is circled, sois (x,y — 1);

(3) The circled points in the grid are flush to the right, in other words if (x, y) is circled and x < n — 2, so
is(x+1,y).
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Note that the columns of this grid are exactly the runners of A’s abacus, written out of order, with
each runner shifted up or down relative to its new left neighbor. This shifting is performed exactly so
labels in the same row are congruent mod t. This explains why the circles must be flush to the right
as well as upwards flush.

Corollary 5.14. Let A be an n-core. Then X is an (mn + 1)-core if and only if (n(A) | o;) > —m for
0<i<nand(n(A)|60) <m+ 1.

Proof. In the notation of Proposition 5.13, in the special case t = mn + 1, the columns of the grid
are the runners of A's abacus, written in reverse order. Furthermore, each runner has been shifted m
units down relative to its new left neighbor. So the condition of being flush to the right on Anderson’s
grid is given by requiring on the abacus that if the largest circled entry on runner i + 1 is at level r
then runner i must have a circled entry at level r — m. In other words, if (ay, . . ., a,) = n(X), then we
require a;+m—ajyq > 0,ie. (M(A) | ;) > —mfor0 < i < n.Recall the Oth and (n— 1)st and runners
must also have this relationship (adding a constant to all entries in the abacus cyclically permutes the
runners). This condition becomes a, + 14+ m —a; > 0,ie. (1(A) |) <m+1. O

6. The bijection between cores and alcoves

In this section, we prove the main result, Theorem 6.1, of the paper. We describe a bijection
between the set of partitions that are both n-cores and (mn + 1)-cores and the connected
components of the m-Shi hyperplane arrangement complement in the subspace V of R" that lie in the
dominant chamber, or more specifically, the dominant m-minimal alcoves. Furthermore, this bijection
commutes with the action of &,,. (We note the minor technicality that the action on cores is a left
action, but we take the right action on alcoves when discussing the Shi arrangement.)

In particular, this map is just the restriction of the &,-equivariant map

{n-cores} — {alcoves in the dominant chamber}
wd > w LA,

Theorem 6.1. The map @ : w@ — w~'Ag for w a minimal length left coset representative of @n/Gn
induces a bijection between the set of n-cores that are also (mn + 1)-cores and the set of m-minimal
alcoves, which are in the dominant chamber of V.

Proof. Let A be an n-core and write A = w¢ forw € @n a minimal length left coset representative for
&,/6,. Recall that n(A) = w(0,0,...,0) € Q.By Remark 3.4, w™ !4 is in the dominant chamber.
Recall by Corollary 4.3 that in this case w4 is m-minimal ifand only if (8 | ;) > —mfor0 <i <n
and (B | 8) < m+ 1, where 8 = w(0, ..., 0) = 7(A).

In Corollary 5.14, we have A is an (mn + 1)-core iff the conditions above hold for 8 = ni(A). O

The bijection is pictured in Fig. 4.

7. Abijection on alcoves

Although it is not an ingredient in the main theorem of this paper, the following theorem builds
on the work of Sections 4 and 3, so is worth including here, but in a separate section. We thank Mark
Haiman for pointing it out to us.

Define 2, to be the m-dilation of +#y:

An={veV|@w|a)>-m, (v|0) <m+1}.

Note that the set of alcoves in 2, is in bijection with Q /(mn + 1)Q. Furthermore, it is easy to see by
translating (by mp = 2 " _,+ @) that Q N2, is in bijection with Q N (mn + 1) Ag. Itis the latter that
is discussed in Lemma 7.4.1 of [ 10] and studied in [3] (technically for the co-root lattice Q). Taking
the latter bijection into account, the second statement of Theorem 7.1 appears in Theorem 4.2 of [3].
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Fig. 4. m-minimal alcoves w~" A in the dominant chamber of the 1-Shi and 2-Shi arrangements of type A, filled with the
3-core partition w#. In the first, they are also 4-cores, and in the second are also 7-cores.

Theorem 7.1. (1) The map w#q — w ™' Aq restricts to a bijection between alcoves in the region 2,,, and
m-minimal alcoves.

(2) The map w(0, ..., 0) — w~'.Aq restricts to a bijection between Q N 2, and m-minimal alcoves in
the dominant chamber.

Proof. Observe 2, = Hpmt1™ N ﬂ;:ll Ha,-,—m+ can be viewed as an m-dilation of (the closure of)
Ao € Hoim NN} Haoh

The second statement follows directly from Corollary 4.3.

A proof of the first statement can be given that is very similar to that of Propositions 4.1 and
3.2. Instead we shall use those propositions to prove it.

Write w™ (o) = o — k8 witha € A.

Suppose k < 0. Then «; ¢ Inv(w™") so by Proposition 3.2 wsg¢ € H_4, 0~ = Ha,0" < Hey—m -

Suppose k > 0. Then the m-minimality of w™ '+ implies k < mwhena > Oandk < m — 1
in the case @ < 0 by Propositions 3.2 and 4.1 and Remark 4.2. When « > 0, w™'(a; + k8) = o s0
o + k8 ¢ Inv(w™"). By Proposition 3.2, wA¢ € H_g, k" = Hy, k" < He—m "' since —k > —m.
Whena < 0,w (i + (k+ 1)) = + 8 > 050 woho € H_g, k41~ = Hyy—k—17 € Hy,—m " since
—k —1> —m. Hence wAg C ﬂ?;] Hy—m™.

In the case i = 0 since o; = § — 6, a similar argument gives wAq € Hp 41 . Hence we get
on - le.

For the converse, suppose wA¢ C 2. Letting 8 = w(0,0,...,0) € A, we get (B | 6) <
m+1,(8 | o) > —m,1 < i < nbecause %, is closed. Assume w~ !4 is not m-minimal. Then
Ji, o, kwith0 <i < n,a € A, k € Zsuch that w™ Ay € Hy " but w™1sjAg € Hy ™ withk > m
ifao > 0,butk > m — 1ifa < 0. Note by Proposition 4.1 w™!(a;) = o — k8 where —k = (B8 | o).
First consider « > 0.Then (8 | «;) = —k < —m which is a contradiction. Next consider @ < 0. Then
@i+ ks € Inv(w™") so by Proposition 3.2 wA¢ € H_o ™ = Hy —k~ < Hy, —m ™~ sincek > m > m—1,
contradicting wsg C Am € Hy, —m ™. O

The bijection is illustrated in Figs. 6, 5 and 7, the first part comparing Fig. 6 to Fig. 5, and the second
part in Fig. 7.

8. Narayana numbers

In this section, we add another set to Athanasiades’ list in Theorem 1.2 of [3] of combinatorial
objects counted by generalized Narayana numbers. We further refine the enumeration of n-cores A
which are also (mn + 1)-cores. This refinement produces the m-Narayana numbers, or generalized
Narayana numbers, N, (k), which are defined in Definition 8.6 below. Recall Definition 5.3: the (k, [)-
box of the n-core A is referred to as an i-box if it has residue i = [ — kmod n. Our refinement here is to
count the number of n-cores A which are also (mn 4 1)-cores by the number of residues i such that A
has exactly m removable i-boxes.
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Fig.5. w.Aq for the m-minimal alcoves w™~' s in Fig. 6, m = 1, 2. Note wAg € Uy, Each y € Q isin precisely one yellow/blue
alcove, so this illustrates the second statement of Theorem 7.1. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. m-minimal alcoves in the m-Shi arrangement for m = 1 (m = 2). Dominant alcoves are shaded yellow (and/or blue,
respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

8.1. Proposition 4.1 revisited

Recall Eq. (5.1) in Remark 5.5 that a (n-regular) partition has weight

Wt()‘) = Ap — Z O (y—x)modn-
(x.y)er

It is well-known that s;A = o iff s;wt(X) = wt(w) where the action of @n on the weight lattice is
given by
siy) =y — (v | ai)ai.

We refer the reader to [15, Chapters 5, 6] for details on the affine weight lattice, definition of Ag, and
so on. For computational purposes, all we need remind the reader of is that (A | «;) = 8;0 and
(oo | @) = 280 — 81,1 — Bin—1-
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5152505190525150 525150 5250515251

Fig. 7. w in the alcove w™'#4¢; and the corresponding 8 = w(0, ..., 0).

Remark 8.1. Eq. (5.1) says that if s; removes k boxes (of residue i) from A, or adds —k boxes to A to
obtain u, then wt(u) = sj(wt(X)) = wt(r) — ko,

A straightforward rephrasing of Proposition 4.1 is then:

Proposition 8.2. Let A be an n-core, k € Z-o, and w € @n of minimal length such that w® = A. Fix
0 < i < n. The following are equivalent:

(1) X has k many removable i-boxes; in particular |s;)| = |A| —k as the action of s; removes those i-boxes.
(2) (RN | o) = —kfori=#0, (1(X) | 8) =k 4+ 1fori=0,

(3) w™lAg € Hyx™, wolsjho € Hy ™ where w™ (o) = o — k8.

When we rephrase Corollary 4.3 in this context, it says:

Proposition 8.3 (Corollary 4.3 Restated). Suppose . = w{ is the n-core associated to the dominant
alcove A = w14y via the bijection & of Section 6. Then A is m-minimal if and only if whenever A has
exactly k removable boxes of residue i then k < m. (And in this case, A is also an (mn + 1)-core.)

Example 8.4 (Example 3.3 Continued). Let us again consider the 3-core A = (5, 3, 2, 2, 1, 1), where
A = wl for w = 5155051525150 = S2£(—2,0,2) = t(—2,2.0)S2- In the figure below X is pictured with each
box marked with its residue mod 3. Let 4 = w ™!, which is pictured in Fig. 1. Proposition 8.2 tells
us the 4 removable 1-boxes of A correspond to the 4 half-spaces #4 C Hp " for 1 < k < 4, and also
that ((—=2,2,0) | a1) = —4.

A= 210]1]

— | |o|—

BEEENE

We encode some related information in the following chart. Recall that in place of (ii() | ) we
instead calculate (1(1) | 9).

o w () %—space bounded i-boxes () | o)
by wall of w14

ag  —a1+38 Hy 3™ 3 addable 0-boxes —3+1

a; 6 —46 Hy 4t 4 removable 1-boxes —4

ay —ap+28 Hyyoo 2 addable 2-boxes 2
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Example 8.5. Consider the 4-core u = (5,2,2,1,1,1) = wd for w = 53505152535251Sp. In the
figure below p is pictured with each box marked with its residue mod 4. Let 4 = w™~'4. Note
w™! = s3t2.0,_2.0) and Ai() = (2, 0, —2, 0). Then

A C Hoy 1" MHyytas2” MHey2” NMHaygay 2™,

which corresponds to u’s 1 removable 0-box, 2 addable 1-boxes, 2 addable 2-boxes, 2 removable
3-boxes. Note w1 (ag) = a3 — 8, w™ (1) = —(0otz + a3) + 28, w N(an) = —at; + 28, w ' (a3) =
(Ol] + 0{2) — 2.

2[3]o0]

S| —

W

This concludes Example 8.5.

We could conversely construct A from the number of removable/addable boxes of each residue,
since this data describes wt(1) and hence determines A. However, in practice executing the bijection
of Section 6, one may as well find w, for instance, as follows. Given an n-core A, determine 71(})
as described in Section 5. Let u € &, be of minimal length such that u(—#(})) is dominant. Then
w = u" 't and

n—1
-1 R _ +
w™ o = tigyUo € Hutoy 1o 0 ) Hut ey, le
i=1
which describes where w~!.4 is located in V. This process gives a slightly more constructive version
of the bijection in Theorem 6.1.

We also note that one can easily read off the coordinates k(w~!, ) that Shi uses in [21] from the
data above, describing where w14 is located in V with respect to the (affine) root hyperplanes.

8.2. Arefinement

Proposition 8.2 thus gives us another combinatorial interpretation of the m-Narayana numbers, as
in[3].

Definition 8.6. The kth m-Narayana number of type A is

1 n—1 mn+ 1
nm+1\n—k—1 n—k )’

Recall from [3] that N;"(k) counts how many dominant regions of the m-Shi arrangement have
exactly k hyperplanes H, ;; separating them from +, such that H, ,, contains a wall of the region. The
m-Narayana numbers have many other combinatorial interpretations.

In other words, for a fixed k, we count how many m-minimal alcoves 4 = w4, satisfy that for

exactly k positive roots «, there exists an i such that w4 C Hy.m ™ but wlsjAg C Hy m™ . Itis clear
that

Z N;'(k) = m-Catalan number
k>0

N (k) =

since each dominant m-minimal alcove gets counted once.
By Proposition 8.2, N;" (k) equivalently counts how many n-cores A that are also (mn + 1)-cores
have exactly k distinct residues i such that A has precisely m removable i-boxes. See Example 8.8.



S. Fishel, M. Vazirani / European Journal of Combinatorics 31 (2010) 2087-2101 2101

Corollary 8.7. Let N(k) denote the m-Narayana number of type A,_;. Then

N'(k) = |[{A | A is an n-core and (mn + 1)-core and 3K C Z/nZ with |K| = k
such that A has exactly m removable boxes of residue i iff i € K}|.

Example 8.8. For n = 3, m = 2, the m-Catalan numberis 12 =546+ 1.
N3(0) =5 = {4, (1), (2), (1, 1), 3, 1, D}]
N32(]) - 6 = |{(3’ 1)7 (2? 15 1)’ (27 27 15 1)3 (47 2)? (53 3’ ]7 ])? (43 2’ 27 ]7 1)}|
N3(2) =1=1{(6,4,2,2,1, D}|.

Acknowledgements
Both authors wish to thank AIM and the SQuaREs program where this work was started.

References

[1] Jaclyn Anderson, Partitions which are simultaneously t;- and t,-core, Discrete Math. 248 (1-3) (2002) 237-243.

[2] Christos A. Athanasiadis, Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes, Bull. Lond. Math.
Soc. 36 (3) (2004) 294-302.

[3] Christos A. Athanasiadis, On a refinement of the generalized Catalan numbers for Weyl groups, Trans. Amer. Math. Soc.
357 (1) (2005) 179-196 (electronic).

[4] Christos A. Athanasiadis, Svante Linusson, A simple bijection for the regions of the Shi arrangement of hyperplanes,
Discrete Math. 204 (1-3) (1999) 27-39.

[5] Christos A. Athanasiadis, Eleni Tzanaki, On the enumeration of positive cells in generalized cluster complexes and Catalan
hyperplane arrangements, J. Algebraic Combin. 23 (4) (2006) 355-375.

[6] Alexander Berkovich, Frank G. Garvan, The BG-rank of a partition and its applications, Adv. in Appl. Math. 40 (3) (2008)
377-400.

[7] Chris Berg, Brant Jones, Monica Vazirani, A bijection on core partitions and a parabolic quotient of the affine symmetric
group, J. Combin. Theory Ser. A 116 (8) (2009) 1344-1360.

[8] Karin Erdmann, Gerhard O. Michler, Blocks for symmetric groups and their covering groups and quadratic forms, Beitrige
Algebra Geom. 37 (1) (1996) 103-118.

[9] Frank Garvan, Dongsu Kim, Dennis Stanton, Cranks and t-cores, Invent. Math. 101 (1) (1990) 1-17.

[10] Mark D. Haiman, Conjectures on the quotient ring by diagonal invariants, ]. Algebraic Combin. 3 (1) (1994) 17-76.

[11] P.Headley, Reduced expressions in infinite Coxeter groups, Ph.D. Thesis, University of Michigan, Ann Arbor, 1994.

[12] Patrick Headley, On reduced expressions in affine Weyl groups, in: Formal Power Series and Algebraic Combinatorics,
DIMACS, May 1994, pp. 225-232, Preprint.

[13] James E. Humphreys, Reflection Groups and Coxeter Groups, in: Cambridge Studies in Advanced Mathematics, vol. 29,
Cambridge University Press, Cambridge, 1990.

[14] Gordon James, Adalbert Kerber, The Representation Theory of the Symmetric Group, in: Encyclopedia of Mathematics and
its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass, 1981, With a foreword by P.M. Cohn, With an
introduction by Gilbert de B. Robinson.

[15] Victor G. Kac, Infinite-Dimensional Lie Algebras, third ed., Cambridge University Press, Cambridge, 1990.

[16] Masaki Kashiwara, On crystal bases, in: Representations of Groups, Banff, AB, 1994, in: CMS Conf. Proc., vol. 16, Amer.
Math. Soc., Providence, RI, 1995, pp. 155-197.

[17] Luc Lapointe, Jennifer Morse, Tableaux on k + 1-cores, reduced words for affine permutations, and k-Schur expansions,
J. Combin. Theory Ser. A 112 (1) (2005) 44-81.

[18] Kailash Misra, Tetsuji Miwa, Crystal base for the basic representation of U,(sl(n)), Comm. Math. Phys. 134 (1) (1990)
79-88.

[19] Alexander Postnikov, Richard P. Stanley, Deformations of Coxeter hyperplane arrangements, J. Combin. Theory Ser. A 91
(1-2) (2000) 544-597. In memory of Gian-Carlo Rota.

[20] JianYi Shi, The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, in: Lecture Notes in Mathematics, vol. 1179, Springer-
Verlag, Berlin, 1986.

[21] Jian Yi Shi, Alcoves corresponding to an affine Weyl group, J. Lond. Math. Soc. (2) 35 (1) (1987) 42-55.

[22] Jian Yi Shi, Sign types corresponding to an affine Weyl group, J. Lond. Math. Soc. (2) 35 (1) (1987) 56-74.

[23] Richard P. Stanley, Hyperplane arrangements, parking functions and tree inversions, in: Mathematical Essays in Honor of
Gian-Carlo Rota, Cambridge, MA, 1996, in: Progr. Math., vol. 161, Birkhduser Boston, Boston, MA, 1998, pp. 359-375.

[24] Richard P. Stanley, Enumerative Combinatorics. Vol. 2,in: Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge
University Press, Cambridge, 1999, With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin.

[25] Richard P. Stanley, Catalan addendum, 2008. Posted at: http://www-math.mit.edu/~rstan/ec/.


http://www-math.mit.edu/~rstan/ec/

	A bijection between dominant Shi regions and  core partitions
	Introduction
	The type  A  root system, Shi arrangement, and Weyl group
	The type  A  root system
	Extended Shi arrangements
	The affine symmetric group

	Inversion sets
	 m -minimal alcoves
	Core partitions and their abacus diagrams
	Core partitions and residues
	Abacus diagrams

	The bijection between cores and alcoves
	A bijection on alcoves
	Narayana numbers
	Proposition 4.1 revisited
	A refinement

	Acknowledgements
	References


