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SUMMARY

Mutations in transcription factor (TF) genes are
frequently observed in tumors, often leading to aber-
rant transcriptional activity. Unfortunately, TFs are
often considered undruggable due to the absence
of targetable enzymatic activity. To address this
problem, we developed CRAFTT, a computational
drug-repositioning approach for targeting TF activ-
ity. CRAFTT combines ChIP-seq with drug-induced
expression profiling to identify small molecules that
can specifically perturb TF activity. Application to
ENCODE ChIP-seq datasets revealed known drug-
TF interactions, and a global drug-protein network
analysis supported these predictions. Application
of CRAFTT to ERG, a pro-invasive, frequently over-
expressed oncogenic TF, predicted that dexametha-
sone would inhibit ERG activity. Dexamethasone
significantly decreased cell invasion and migration
in an ERG-dependent manner. Furthermore, analysis
of electronic medical record data indicates a protec-
tive role for dexamethasone against prostate cancer.
Altogether, our method provides a broadly appli-
cable strategy for identifying drugs that specifically
modulate TF activity.
INTRODUCTION

Transcription factors (TFs) are frequently mutated in cancer.

These include factors that function in a variety of ways, including

nuclear hormone receptors, resident nuclear proteins, and latent

cytoplasmic factors (Darnell, 2002). One classic example of a

recurrently altered TF is the tumor suppressor TF gene p53,

which is mutated in up to 40% of human tumors (Libermann

and Zerbini, 2006) yet has remained a highly elusive target for re-

activation (Mees et al., 2009). Other examples include c-Myc,
2348 Cell Reports 15, 2348–2356, June 14, 2016 ª 2016 The Author(
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which is also among themost commonly altered genes in cancer

(Ablain et al., 2011), ERG, and other ETS-family factors, which

are fused to the androgen-controlled promoters in more than

50% of prostate cancer patients (Rickman et al., 2012).

Inhibition of oncogenes and reactivation of tumor suppres-

sors have become well-established goals in anticancer drug

development (Darnell, 2002). Yet TFs are generally considered

difficult to drug (Mees et al., 2009). If a strategy could be devel-

oped for safely and effectively modulating the activity of specific

TFs, it would affect the treatment of tumor types and subtypes

driven by oncogenic TFs. In theory, a similar strategy could be

applied to reactivate the lost activity of tumor-suppressive fac-

tors. Potential mechanisms for pharmacological activation or in-

hibition include disruption of direct DNA binding, perturbation or

prevention of the interaction with cofactors and other interacting

proteins (Libermann and Zerbini, 2006), and disruption or acti-

vation of upstream signaling mechanisms (Mees et al., 2009).

Disrupting interactions with cofactors and other regulatory pro-

teins is broadly viewed as one of the most promising ap-

proaches to altering the activity and function of TFs implicated

in disease.

One of the first and best-understood successes in disrupting

TFs was the identification of the combination of retinoic acid

and arsenic trioxide for inhibition of the PML/RARA fusion onco-

gene in acute promyelocytic leukemia (APL). The PML/RARA

fusion results in the repression of many genes, which in turn

blocks the differentiation phenotype that is characteristic of

APL (Ablain et al., 2011). The retinoic acid-arsenic combination

induces PML/RARA degradation, which reactivates the silenced

genes (Ablain et al., 2011). A small molecule, JQ1, has been

discovered to inhibit c-Myc and n-Myc, both key regulators of

cell proliferation, by inhibiting BET bromodomain proteins, which

function as regulatory factors for c-Myc and n-Myc (Delmore

et al., 2011; Puissant et al., 2013). While important, these studies

are based on extremely detailed knowledge of the mechanisms

and structures of the cofactors required for TF activity. Such

knowledge is not always available, and as a result, there is no

systematic way to identify small molecules that can specifically

disrupt TF activity.
s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Methodology Overview

(A) Alterations in TFs are frequently observed in

tumors, leading to aberrant activity. Our method

integrates transcriptional binding data and drug-

induced gene expression profiles to make pre-

dictions about drugs thatmay affect transcriptional

activity. This disruption can occur through a variety

of mechanisms, including the inhibition or re-

activation of direct binding to DNA or disruption via

cofactors.

(B) Application of our method to JQ1 expression

profiles and MYC ChIP-seq. The left panel illus-

trates the results for the GSEA involving JQ1 and

MYC. The lowest plot in the left panel shows the

log2 differential expression profile for JQ1, with the

locations of the MYC target genes marked directly

above. Directly above that are the running enrich-

ment score and a histogram of the MYC target

gene frequency across the drug-induced ranked

list, which illustrate whether the MYC target gene

set is enriched in the under- or overexpression

regions. In the middle panel, the shortest path

between JQ1 and MYC is shown, with BET Bro-

modomain proteins lying between the two. On the

right, we illustrate that the application of JQ1 re-

sults in the downregulation of MYC target genes.

See also Figure S1.
To address this unmet need, we developed CRAFTT, a

computational drug-repositioning approach for targeting TFs.

Altogether, our method provides a broadly applicable strategy

to identify drugs and small molecules that specifically target

the activity of individual TFs. Because a significant number of tu-

mors are driven by oncogenic TFs or have lost tumor-suppres-

sive TFs, our approach could potentially affect the development

of new therapeutic strategies. For example, our method may be

applicable to other therapeutically elusive factors with onco-

genic activity, such as FOXA1, or for reactivating the expression

program of tumor-suppressive TFs such as p53.

RESULTS

Computational Drug-Repositioning Approach
Rediscovers JQ1 for MYC Inhibition
We first set out to quantify the prevalence of somatic mutations

in TF genes.We found that 45.1% (p < 0.001, permutation test) of

cancer samples in the Catalogue of SomaticMutations in Cancer

(COSMIC) reported a mutation in a TF (Figure S1). Furthermore,
Cell R
TFs constitute a significant proportion

(18.1%) of the genes in the Sanger Insti-

tute’s Cancer Gene Census. This

confirmed that the prevalence of genomic

alterations in TF genes in cancer is sub-

stantial and further indicates that TFs

should constitute a major class of anti-

cancer drug targets.

To address this need, we reasoned that

if drugs could be identified that specif-

ically disrupt the expression of the direct
target genes of a given TF, then these drugs would represent

good candidates for perturbing the driving role of that particular

TF in cancer (Figure 1A). We propose CRAFTT, which consists of

two major steps: (1) prediction and (2) prioritization using

network analysis.

For the prediction step, we compute a score that represents

how the direct targets of a TF are modulated by a particular

drug. Direct transcriptional target genes are identified using

chromatin immunoprecipitation sequencing (ChIP-seq) binding

data. The drug treatment-induced modulation profiles are ob-

tained by analyzing expression profiles from drug perturbation

experiments, such as those in the Broad Institute’s Connectivity

Map (CMap) (Figure 1A) (Lamb et al., 2006), and generating

ranked gene lists by sorting the genes frommost downregulated

to most upregulated upon treatment. For a given TF and drug

pair, we implement the Broad Institute’s gene set enrichment

analysis (GSEA) (Subramanian et al., 2005) approach, using the

drug-induced ranked gene list and the TF’s direct target gene

set (see Experimental Procedures). Each GSEA yields a normal-

ized enrichment score (NES) and a corresponding p value
eports 15, 2348–2356, June 14, 2016 2349



indicating whether the TF target gene set is mobilized as a whole

by the drug, either toward downregulation (NES > 0) or toward

upregulation (NES < 0). The p values are corrected for multiple

testing using family-wise error rate (FWER) controlling proce-

dures. This multiple testing procedure is applied to each drug

perturbation profile individually, correcting across all TF gene

sets that we are testing. We consider a drug to be predicted to

affect TF activity if the FWER-adjusted p value for the pair was

less than 10% (FWER < 0.1).

Next, we use network analysis to prioritize the predictions

made in the first step of CRAFTT. We reasoned that if many of

our predictions are true drug-TF modulatory interactions, the

network path between a drug and its predicted target TF should

be relatively short. This is due to the presumed mechanisms un-

derlying the interaction, which would involve signalingmolecules

immediately upstream of TFs in signaling pathways and tran-

scriptional cofactors. More broadly, we expected that the drug

and target TFs would be functionally related and therefore be

located near each other in a global drug-protein network. We

curated a biological network that contains 22,399 protein-coding

genes, 6,679 drugs, and 170 TFs. The protein-protein interac-

tions represent established interactions (Aksoy et al., 2013;

Das and Yu, 2012; Khurana et al., 2013), which include both

physical (protein-protein) and non-physical (phosphorylation,

metabolic, signaling, and regulatory) interactions. The drug-pro-

tein interactions were curated from several drug target data-

bases (Aksoy et al., 2013; Knox et al., 2011).

For each drug-TF pair, we calculated the network path length

(shortest path) between the TF and the drug. To account for the

biases associated with TFs or drugs with large numbers of tar-

gets, we calculated a normalized path length, which we defined

to be the probability that the path length would be observed

given randomized networks that conserved TF and drug degrees

(Gobbi et al., 2014). We then generate a final prediction score,

which we term the modulation index (MI). The MI is a weighted

score that scales the NES for the drug-TF pair (NESd,TF) by the

normalized network path length (NPLd,TF) (see Experimental Pro-

cedures). The proposed approach does not make any assump-

tions about the mechanisms by which a drug can disrupt the

expression program of TFs (Figure 1A). Such disruption can

occur in a variety of ways, e.g., disruption of interaction with co-

factors and DNA binding disruption.

As a first proof of principle, we applied this approach to JQ1-

induced gene expression profiles derived from another study

(Puissant et al., 2013), all CMap drug-induced expression pro-

files (Lamb et al., 2006), and MYC direct target genes, which

were derived from Encyclopedia of DNA Elements (ENCODE)

ChIP-seq data (ENCODE Project Consortium, 2011). We found

that JQ1 significantly downregulated a substantial fraction

(47%) of the 1,250 MYC direct target genes identified by ChIP-

seq (FWER < 0.001). Furthermore, we found that JQ1 had the

lowest FWER-adjusted p value, highest enrichment score

(NES = 5.12), and shortest possible network path length of 2,

given the underlying mechanisms of the true interaction. This

indicated that JQ1 is the best candidate (MIJQ1,MYC = 5,120) of

the 1,310 drugs that we investigated. Thus, as predicted, our

method correctly identified the inhibitory effect of JQ1 on

MYC-induced transcription (Figure 1B).
2350 Cell Reports 15, 2348–2356, June 14, 2016
Systematic Drug-TF Analysis Predicts that Candidate
Small Molecules Can Disrupt TFs
Next, we applied our drug repositioning approach to 166 ChIP-

seq experiments from ENCODE (ENCODE Project Consortium,

2011) and to the 1,309 drug perturbation experiments in CMap

(Figure S2) (Lamb et al., 2006). This approach identified 37,638

candidate drug-TF pairs (out of 218,603 possible combinations)

(Figure 2A). These candidates included 21,495 predicted acti-

vating interactions (a drug induces activation of many direct TF

targets) and 16,143 inhibiting interactions (a drug induces

repression of many direct TF targets). In particular, there were

1,673 selective predictions involving 49 TFs and 1,308 drugs

that we have greater confidence in due to the selectivity of the

prediction (see Supplemental Experimental Procedures for

more details). Top specific predictions for both drug-induced

inhibition and drug-induced activation of each TF are shown in

Table S1.

Several predicted drug-TF interactions are consistent with the

known activity of the drugs involved. For example, all four known

heat shock protein 90 (HSP90) inhibitors that were included both

in our biological network and in CMap were predicted to repress

HSF1 activity, which was expected given HSP90’s chaperone

effect on HSF1(Conde et al., 2009). These four HSP90 inhibitors

were monorden (FWER = 0.054), 17-AAG (FWER = 0.031), 17-

DMAG (FWER = 0.085), and geldanamycin (FWER < 0.001). In

addition, novobiocin, whose antagonism of HSP90 is reported

in literature but was not annotated in our network, was recovered

by CRAFTT for disruption of HSF1 (FWER = 0.031). Novobiocin

and geldanamycin had been previously identified to disrupt

HSF1 activity through inhibition of HSP90 chaperone activity,

operating through the inhibition of HSP90 autophosphorylation

for novobiocin and the binding to the HSP90 site in geldanamy-

cin (Conde et al., 2009). We found experimental evidence for

numerous other predicted drug-TF interactions for both inhibi-

tion and reactivation, which can be found in Table S2.

Because experimental validations are not available for most

drug-TF pairs, we turned to network analysis to further evaluate

the prediction step of our approach.Within our curated biological

network, therewere35knowndrug-TF interactions thatwerealso

present in both the ENCODE and the CMap datasets. Most of

these combinations involved a glucocorticoid receptor (GR)

agonist (26 combinations) or a HDAC inhibitor (7 combinations).

Of the 35 known drug-TF combinations, CRAFTT was able to

correctly predict more than expected (n = 21, p = 1.708e-8, bino-

mial test). In particular, CRAFTT predicted well both the GR ago-

nists (p = 6.524e-8, binomial test) and the HDAC inhibitors

(p = 0.01978, binomial test). Furthermore, we observed that the

drugperturbationprofileswithin theseclasseswerequitedistinct;

thus, this is not likely due to recovery of the same signal. In addi-

tion, about 85%of these combinationswere nominally significant

(p = 3.42e-8), which indicates that our approachwas able to iden-

tify evidence of the targeting event. The drug-TF pairs that were

not rediscovered generally involved drugs or TFs that targeted

many genes or were predicted to interact with most other drugs

or TFs (non-specific). In general, we found that CRAFTT had

limited predictive ability for drugs with more than 25 targets and

TFswithmore than 2,300 target genes (see Supplemental Exper-

imental Procedures for more details).
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Figure 2. Systematic Analysis of 166 TFs

and 1,309 Drug Perturbation Experiments

Identifies Approximately 38,000 Candidate

TF-Drug Pairs

(A) Heatmap of the FWER p values for all TF-drug

pairs involving 166 ChIP-seq experiments from

ENCODE and the 1,309 drugs from CMap. In the

middle panels, we highlight a subset of non-pre-

dictions with high GSEA FWER scores (top) and

predictions with low GSEA FWER scores (bottom).

On the right, we illustrate that we would expect the

candidate TF-drug pairs to have shorter network

path lengths than those of non-predictions. For

example, the non-predicted pair ETS1-betazole

(p = 1, GSEA nominal p value) has a path length

of 4, while the predicted pair FOXA2-pro-

chlorperazine (p < 0.001, GSEA nominal p value)

has a path length of 2.

(B) Normalized network path lengths for the spe-

cific predictions (FWER < 0.1) and non-predictions

(FWER = 1). Statistical significance was evaluated

using the Mann-Whitney test.

(C) Network visualization of HSF1, three HSP90

inhibitors covered in CMap and our network

(monorden, 17-AAG, and 17-DMAG), and four

other drugs not predicted to disrupt HSF1

disruption (clomifene, yohimbine, oxprenolol, and

cortisone).

See also Tables S1 and S2.
To further assess CRAFTT’s predictive ability, we performed

a global network analysis by computing the network path lengths

for all drug-TFpairs thatwere found tobe significant (FWER<0.1)

in the predictive GSEA step of our approach. As described

earlier, we reasoned that true drug-TF interactions should be

short, given the underlying mechanisms of the interactions (Fig-

ure 2A). Network analysis revealed that the network path lengths

(normalized shortest path) of our predicted specific drug-TFpairs

were significantly shorter than the path lengths of non-predic-

tions (FWER = 1.0) (p = 0.00313, Mann-Whitney test) (Figure 2B).

This is illustrated in Figure 2C, where we show a subnetwork

centered on HSF1 that includes drugs connected to HSF1 via

one or more intervening proteins. Predicted HSF1 inhibitors by

our transcriptomic approach are closer to HSF1 in this subnet-

work (red paths) compared to non-predicted molecules (yellow

paths). Altogether, this analysis indicates that our predictions

are not random and confirms that many drugs might disrupt

TFs by targeting regulatory or interacting cofactors. The network

analysis provided increased confidence in our approach’s pre-

dictive capacity. Moving forward, we used shorter drug-TF paths
Cell R
to further prioritize drug-TF predictions

using our combined score (MI) (see

Experimental Procedures).

Identification and Validation of
Small Molecules that Inhibit the
TF ERG
We hypothesized that CRAFTT could be

used to identify molecules that inhibit

the activity of the pro-invasive, oncogenic
TF ERG. This is of an interest due to ERG overexpression result-

ing from a tissue-specific gene fusion event that occurs in as

many as 50% of prostate cancer patients. This overexpression

results in a pro-invasive phenotype in prostate cancer (Elemento

et al., 2012; Rickman et al., 2010; Tomlins et al., 2008). We had

previously identified ERG target genes using ChIP-seq in

RWPE1 benign prostate cells (Rickman et al., 2012). We applied

our approach to all CMap drug profiles to identify candidate

drugs for inhibition of ERG.

From the prediction step of CRAFTT, we identified eight candi-

date drugs that downregulate ERG target genes: dexametha-

sone (FWER = 0.086), naproxen (FWER = 0.048), acemetacin

(FWER = 0.087), ondansetron (FWER = 0.061), epitiostanol

(FWER = 0.069), diloxanide (FWER = 0.003), methanthelinium

bromide (FWER = 0.046), and isoflupredone (FWER = 0.088).

Five of these candidate drugs were contained in our biological

network: dexamethasone (MI = 1,015.85), naproxen (MI =

530.90), acemetacin (MI = 2,167.88), ondansetron (MI = 3.35),

and epitiostanol (MI = 520.99) (Figure 3A). An initial network anal-

ysis suggested that dexamethasone, naproxen, acemetacin,
eports 15, 2348–2356, June 14, 2016 2351



Dexamethasone

Drug NES PL MI MI*
Dexamethasone 2.13 3 1016 9.26
Naproxen 2.23 3 531 2.48
Acemetacin 2.16 3 2168 2.45
Ondansetron 2.26 4 3.35 2.42
Epitiostanol 2.19 3 521 0.90
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Figure 3. Identification of Dexamethasone

as a Candidate Drug for Inhibition of ERG

Activity

(A) Network visualization illustrating path lengths

from ERG to five candidate drugs for ERG inhibition

(dexamethasone, naproxen, acemetacin, ondan-

setron, and epitiostanol). The node sizes corre-

spond to the gene expression levels, with the larger

size representing a higher expression level. If low-

expression genes are removed (RPKM< 4), the path

lengths for naproxen and acemetacin are increased

while the paths from ondansetron and epitiostanol

are disrupted. The corresponding table shows

metrics that describe each of these drugs in relation

to ERG: NES is obtained from GSEA, PL is the

shortest network path length required to connect

ERG to the drug, and MI* is the MI after low-

expression genes were removed (RPKM < 4).

(B) Application of our method to dexamethasone

expression profiles and ERG target genes. The left

panel illustrates the results of theGSEA for ERG and

dexamethasone. The lowest plot of the left panel

shows the log2 differential expression profile for

dexamethasone, with the ERG target genesmarked

directly above. Above are the running enrichment

score and a histogram of the ERG target gene fre-

quency, which illustrates whether the gene set is

enriched in the under- or overexpression regions.

Themiddle panel shows a subnetwork that includes

all genes that were members of any shortest path

between ERG and dexamethasone. The right panel

illustrates our prediction that the application of

dexamethasone would result in the downregulation

of activity of ERG target genes.

(C) ERG target gene PLAU expression by RT-PCR in

cell lines expressing ERG (DU145-ERG and VCaP)

and controls (DU145-GFP) after treatment with

vehicle or dexamethasone.

(D) Cell invasion and migration in cell lines ex-

pressing ERG (DU145-ERG) and controls (DU145-

GFP). The data are shown at n = 4 representation

103 field of view.

(E) The binding of ERG and a control (immuno-

globulin G) by ChIP-PCR at the promoter of its

target gene PLAU and at a negative control

(ARHGEF) in cell lines expressing ERG (DU145-

ERG and VCaP).

Data are shown as mean ± SEM. Asterisks indicate

statistically significant differences by paired t test,

and n = 3 for each condition. *p < 0.05, **p < 0.01,

***p < 0.001; NS, not significant. See also Figure S2.
and epitiostanol were the best candidates due to their large

modulation indices.

Next, we performed an additional analysis to use with our

CRAFTT methodology to further prioritize our drug candidate

list. We used gene expression (RNA sequencing) from RWPE1

prostate cells to filter out genes that have low expression in the

network, which we defined as reads per kb of transcript per

million mapped reads (RPKM) < 4. This analysis resulted in dexa-

methasone being identified as the drug with the shortest path

length and highest-modified MI (9.26) (Figure 3B).

Because dexamethasone has not been previously linked to

ERG, we next sought to experimentally test our hypothesis that
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dexamethasone would be able to reverse ERG-induced onco-

genic phenotypes through disruption of ERG in ERG-expressing

prostate cancer cells. One of the top target genes that was

reversed by dexamethasone in the CMap profile was the uroki-

nase plasminogen activator (PLAU), a known ERG target gene

that has been previously implicated in ERG-mediated cell inva-

sion in multiple cancers and models (Tomlins et al., 2008). We

found experimentally that dexamethasone abrogated expres-

sion of the ERG target gene PLAU in both DU145 cells express-

ing ERG and VCaP cells with high endogenous levels of ERG

(Figure 3C). In comparison, dexamethasone was weakly active

in the control GFP cells (Figure 3C).To further test the inhibitory



A B Figure 4. Extended Analyses of CRAFTT

Predictions

(A) Kaplan-Meier survival analysis for time from

first prescription of drug to prostate cancer diag-

nosis (censor point) using an age-adjusted cohort

of male patients was performed for patients

treated with dexamethasone, prednisone, simva-

statin, and the top-100 prescribed drugs. Statisti-

cal significance was assessed using a Cox

proportional hazards test for comparison of

dexamethasone to each other drug.

(B) The drug GI50 in mutant p53 and wild-type p53

cell lines in the National Cancer Institute (NCI) DTP.

Statistical significance was assessed using the

Mann-Whitney test.

See also Figures S3 and S4.
effect of dexamethasone on ERG activity, we treated a ERG-

overexpressing cell line newly derived from PTEN�/�/ERGRosa26

prostate tumors in transgenic mice (Chen et al., 2013). Consis-

tent with the commercially available human prostate cancer

cells, dexamethasone treatment resulted in a dose-dependent

decrease in mouse PLAU mRNA expression (Figure S2A).

Using cell invasion and migration assays, we then found that

dexamethasone significantly decreased cell invasion and migra-

tion in DU145 prostate cancer cells overexpressing ERG but not

in isogenic control cells (Figure 3D; Figure S2B). High-resolution

microscopic images revealed that dexamethasone helps the

cells partially regain polarity, which may be a potential mecha-

nism for reduced cell invasion (Figure S2C). As expected from

published literature on the mostly invasive oncogenic role of

ERG, we found that ERG inhibition via dexamethasone treatment

had no effect on cell viability in vitro (Figure S2D). Finally, we

found using ChIP-PCR that dexamethasone substantially

decreased binding of ERG at the PLAU promoter in both

DU145-ERGand VCaP cells (Figure 3E). Altogether, these exper-

imental results support CRAFTT’s computationally derived pre-

diction that dexamethasone inhibits ERG activity.

CRAFTT’s PredictedDexamethasone-ERG Interaction Is
Independent of AR and GR
Dexamethasone is a GR agonist, which suggests that GR, en-

coded by NR3C1, may play a role in ERG-mediated gene

expression. We found that small interfering RNAs targeting

NR3C1 mRNA lowered GR levels by 80% in the DU145-ERG

cells (Figure S2E). Although GR seems to play a role in PLAU

regulation in the absence of ERG, lowering GR levels did not

significantly alter dexamethasone’s impact on PLAU expression

in ERG-positive cells (Figure S2F). In addition, we found that AR

target genes were not substantially mobilized by dexametha-

sone, and screening of VCaP cells showed that dexamethasone

had little effect on AR signaling (Figure S2G). Altogether, these

results indicate that dexamethasone-mediated ERG inhibition

occurs independent of GR and AR signaling.

We next looked to see what CRAFTT would predict for predni-

sone, another glucocorticosteroid that is used in the treatment of

prostate cancer. We found that CRAFTT predicted prednisone

would not inhibit ERG activity, and subsequent experiments
involving prednisolone, the active form of prednisone, supported

this finding. Clinical trials for castration refractory prostate can-

cer (CRPC), in the absence of ERG fusion status, have suggested

that an advantage of using dexamethasone over prednisolone is

improved patient PSA response rates (37% on dexamethasone,

compared to 17% on prednisolone) (R. Venkitaraman et al.,

2013, Genitourin. Cancers Symp., conference).

Electronic Health Record Analyses Support CRAFTT’s
Predictions
To further investigate the correlation between dexamethasone

treatment and prostate cancer, we performed a retrospective

analysis of electronic health records (EHRs) at Columbia Univer-

sity Medical Center (CUMC). Kaplan-Meier survival analysis was

performed using the time from first prescription of drug to pros-

tate cancer diagnosis (censor point) on an age-adjusted cohort

of male patients (Figure S3). Significance was assessed using

the Cox proportional hazards test. Dexamethasone patients

had a statistically significant greater likelihood of not getting

diagnosed with prostate cancer than did patients on prednisone

(p < 0.001), patients on simvastatin (p < 0.001), and patients on

any of the top 100 prescribed drugs (p < 0.001) (Figure 4A). We

next constructed a logistic regression model to assess the rela-

tionship of the dexamethasone and other control treatments and

the prostate cancer diagnosis independent of known prostate

cancer confounders. The results of our regression model

showed a protective effect for dexamethasone administration

versus other control treatment groups that was independent of

other known risk factors. Thus, dexamethasone appears to be

both protective against prostate cancer (perhaps through its

inhibitory effect on ERG-rearranged tumors, as predicted in

this study) and more active than prednisolone in its protective

effect and in the treatment of CRPC. These results are still largely

correlative in the absence of ERGmolecular status for electronic

medical record (EMR) patients, whichwe could not obtain for this

study.

CRAFTT Predicts Candidate Drugs for Reactivating TF
Activity
CRAFTT also made predictions about drugs for transcriptional

reactivation. We found that there was an enrichment of histone
Cell Reports 15, 2348–2356, June 14, 2016 2353



deacetylase inhibitors (p < 0.0001, permutation test) among our

reactivation predictions, indicating that CRAFTT is successful in

identifying true drug-TF interactions (Figure S4). Thus, we hy-

pothesized that we could identify a drug that reactivates the

tumor suppressor TF p53. The application of CRAFTT to p53

ChIP-seq (Kittler et al., 2013) and subsequent network analysis

identified promethazine (FWER < 0.001) as a therapeutic option

for reactivation of p53 activity. Analysis of Developmental Ther-

apeutics Program (DTP)-NCI60 drug sensitivity data (Reinhold

et al., 2012) supported this prediction, because we found that

the mutant p53 cell lines were significantly more sensitive to

promethazine than were the wild-type p53 cell lines (p =

0.0376, Mann-Whitney test) (Figure 4B). We next looked to see

whether any predicted drugs for p53 activity reactivation tar-

geted genes that had been previously identified as necessary

for growth in TP53-deficient cells (Xie et al., 2012). From that

list, we found seven of the drugs predicted by CRAFTT to reac-

tivate p53 activity target genes: pentetrazol, naftopidil, oxedrine,

capsaicin, ifenprodil, flumetasone, and dexpropranolol. Alto-

gether, this suggests that our approach can be used to identify

candidates for reactivation of TFs frequently lost in cancer.

DISCUSSION

Traditionally, TFs have been considered difficult to drug, and

attempts at identifying drugs that affect TFs have been unfruitful.

While breakthroughs have begun to experimentally identify mol-

ecules that indirectly modulate transcriptional activity, we pro-

pose a method (called CRAFTT) to do so computationally and

systematically. Because cancer subtypes are frequently associ-

ated with aberrant TF activity, often due to somatic mutations,

our approach has the potential to affect the development of

new therapeutic strategies in these subtypes.

We first looked to see whether CRAFTT could rediscover

known cases of drugs that affect TF activity. We found that

when we applied our method to transcriptional binding site

data and drug profiles from known cases, we could rediscover

these connections. We then used CRAFTT to identify dexameth-

asone as a candidate for inhibition of ERG activity; follow-up

experiments supported this prediction. We also found that

dexamethasone had a similar effect in isolated mouse cell lines

and in human cell lines. This suggests that mouse models could

be used for further follow-up on the therapeutic use of dexa-

methasone in treatment of the ERG-overexpression cancer

subtypes.

CRAFTT was successful in the identification of drugs for

affecting transcriptional activity, but some areas could further

improve its predictive capacities. While the shortest path anal-

ysis provides support for our predictions and is only used in

prediction prioritization, we cannot rule out that individual pre-

dictions may be affected by bad edges, especially in our pro-

tein-protein interaction network. However, a network sensitivity

analysis suggests that our network is robust to missing network

edges (see Supplemental Experimental Procedures). This is

likely due to the high interconnectivity of the network, which

has an average path length of 3.6. This high interconnectivity

also explains the bimodality in the normalized path lengths,

with the first and second peaks corresponding to shorter and
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longer observed path lengths, respectively, than average for a

drug-TF pair with the same network degree.

In addition, the ChIP-seq that we used to derive binding site

data was obtained from wild-type TFs. However, our approach

was able to capture true drug-TF interactions, at least partly

because these variants often cause constitutive expression

and binding of the TF instead of dramatic disruption and changes

to binding sites. As more mutant TF binding data become avail-

able, we will be able to adapt and apply our approach in a more

targeted and physiologically relevant manner. ChIP-seq peak

calling procedures are also known to be prone to error. While

we have taken steps to control for binding hotspots, our method

will benefit as improved peak calling methods become available.

Finally, the CMap data that we analyzed was in a collapsed

format, which limits the robustness of the predictions. The Broad

Institute has released an updated version of CMap, which in-

cludes a 1,000-fold scale-up and will better allow us to use the

variability in replicates. We also intend to apply CRAFTT to iden-

tification of candidate drugs for modulating the activity of other

TFs that are historically elusive but desirable for targeting, such

as FOXA1 and XBP1.

EXPERIMENTAL PROCEDURES

The CRAFTT Approach

CRAFTT requires two inputs for its predictions: ChIP-seq for a TF that is used

to derive its target gene set and drug-induced expression profiles. The

CRAFTT procedure (1) uses GSEA, with the target gene set for a TF and

drug-induced expression profiles as inputs, to make predictions about which

drugs modulate the TF’s activity and then (2) prioritizes predictions using

network analysis. For the network analysis, we compute a normalized path

length score (NPL), in which we calculate the probability of observing the

path length between the drug d and TF X (P(PLjd,X)) using 500 degree-preser-

ving randomized networks (Gobbi et al., 2014). These steps are combined to

generate a prediction score, the MI:

MId;X =
NESd;X

PðPL jd;XÞ
where

NPL=PðPL jd;XÞ=
X500

i =1
PLdxi ;Xxi

< PLdg ;Xg

500

See the Supplemental Experimental Procedures for a more detailed descrip-

tion of the approach.

Statistical Analysis

The statistical significance for each of our predictions was estimated accord-

ing to the GSEA procedure (Subramanian et al., 2005). For the analysis of EMR,

Kaplan-Meier survival analysis was performed on an age-adjusted cohort, us-

ing time to first diagnosis of prostate cancer as the endpoint in our study and

excluding all patients with prior diagnosis of cancer. The Cox proportional haz-

ards test was used to assess significance. See the Supplemental Experimental

Procedures for a more detailed description of the EMR analysis. Statistical

analysis of RT-PCR, ChIP-PCR, cell invasion, and cell migration experiments

was done in Prism using paired t test and n = 3 for each condition.

All other statistically significance values were calculated in R. The permuta-

tion test (using 1,000 random permutations) was used to assess the signifi-

cance of the enrichment of TF alterations in COSMIC and the enrichment of

drug categories (e.g., HDAC inhibitors) within our predictions. The chi-square

test was used to compare the TF enrichment to that of kinases. The signifi-

cance for the enrichment of known interactions was calculated using the exact

binomial test, comparing the enrichment of known pairs to the total percentage



of drug-TF pairs that were predicted. The Mann-Whitney test was used to

assign significance to the network analysis and to the difference between

the concentration required to inhibit 50% of growth (GI50) values in wild-type

and the GI50 values in mutant p53 cell lines.

Experimental Validation

RWPE1, VCaP, and DU145 were obtained from ATCC andmaintained accord-

ing to the manufacturer’s protocol. Isogenic DU145 or RWPE1 ± ERG cell lines

were generated to overexpress truncated ERG, as previously described (Rick-

man et al., 2010, 2012). The PTEN�/�/ERGRosa26 prostate cancer cells were

derived from PTEN�/�/ERGRosa26 prostate tumors, as previously described

(Chen et al., 2013). The cells were treated with PBS and incubated with the

appropriate media at the indicated drug or vehicle dose for 24 or 48 hr. Cells

were then analyzed using ChIP-PCR, qRT-PCR, or invasion or migration

assay. ChIP-PCR, qRT-PCR, cell invasion assay, and migration assay were

performed as previously described (Rickman et al., 2010, 2012).

ChIP-PCR primers for all sites are listed in Table S3. Each sample was run in

triplicate. The amounts of target genes were calculated relative to the refer-

ence gene HMBS. See the Supplemental Experimental Procedures for more

details.

Supplemental Website

A supplemental website for CRAFTT has been made available at http://

physiology.med.cornell.edu/faculty/elemento/lab/data/CRAFTT/. This in-

cludes an expanded overview of the methodology, with examples and a tool

for querying predictions. We also have released our code on the website so

that users can test our approach on their own drug perturbation profiles

and/or TF target gene set of interest.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2016.05.037.
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