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a b s t r a c t

Traditional geostatistical modelling of orebodies and estimation of grade–tonnage curves do not

account for the uncertainty of the orebody grades and tonnages. Geological interpretations of complex

shapes are often over-constrained, and therefore do not properly identify the location of the ore. In

these situations, tonnage is often under-estimated and grade is over-estimated, resulting in orebody

models used for mine planning that lead to costly financial decisions. This paper presents an approach

aiming to better assess the uncertainty in an orebody model. The approach is applied to Vale’s West

Orebody of the Coleman McCreedy Mine, a poly-metallic deposit containing nickel, copper, gold,

platinum and palladium. To encapsulate the orebody’s variability and uncertainty, the nickel–copper

sulphide mineralized zone is simulated using the single normal equation simulation method. The

realizations serve as the orebody models from which the grades of multiple elements are jointly

simulated using Min/Max Autocorrelation Factors. The final result is a series of equiprobable

representations of the mineralization that incorporates both grade and tonnage uncertainty. The case

study indicates that had conventional orebody estimations been used, there would have been a 10%

over-estimation of orebody volume, along with significant over-estimation of low-grade material and

under-estimation of high-grade material.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In cases where drillhole spacing is particularly tight and the
geological domains are continuous, deterministic mapping of
geological domain boundaries (i.e. a wireframe) is likely to be
sufficient in describing the mineralized volume of a deposit
(Srivastava, 2005). To the contrary, deposits containing a mixture
of two or more grade populations and uncertainty in the inter-
pretation of the edges of the geological domains lead to substantial
volumetric uncertainty, and stochastic treatment of the wireframes
offers a suitable alternative (Osterholt and Dimitrakopoulos, 2007).
Curvilinear geometries, typical in mineral deposits, are not prop-
erly modelled using traditional two-point spatial statistics such as
variograms (Journel, 2007). The reproduction of geometries calls
for the consideration of the joint categorical variability at three or
more points at a time. Strebelle (2002) proposed a stochastic
simulation algorithm that does not require variogram modelling
ll rights reserved.
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and is based on extracting the so-called multiple point (MP)
statistics from a training image (Strebelle, 2002). Some recent
developments on multiple-point methods include a list-based
storage of patterns (Straubhaar et al., 2011), directly sampling
patterns from the training image (Mariethoz et al., 2010), filter and
pattern-based simulations (Zhang et al., 2006; Arpat and Caers,
2007) and high-order simulation (Mustapha and Dimitrakopoulos,
2010).

Geological deposits typically contain several variables of interest
that are spatially correlated. The use of joint geostatistical techni-
ques that maintain spatial correlation are not new (David, 1988;
Goovaerts, 1997), however, the computational costs associated
with the simulation increase significantly with more variables,
and require modelling of cross-correlations, which substantially
increases with the number of variables being jointly simulated.
A practical alternative to the ‘direct’ joint-simulation of variables is
the decorrelation of variables introduced using principal compo-
nent analysis or PCA (David, 1988; Wackernagel, 2003). The
effectiveness of this approach is limited because PCA does not
eliminate cross-correlations at distances other than zero. To over-
come the limitations associated with PCA, minimum/maximum
autocorrelation factors, MAF (Desbarats and Dimitrakopoulos,
2000; Boucher and Dimitrakopoulos, 2009; Dimitrakopoulos and
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Fonseca, 2003; Lopes et al., 2011) may be used to decorrelate
pertinent variables into spatially non-correlated factors that are
independently simulated and back transformed to correlated attri-
butes. To further reduce the time required to simulate the deposit
for the variables of interest, MAF can readily be integrated with the
direct block simulation method (Boucher and Dimitrakopoulos,
2009).

In the following sections, a general overview of multiple-point
simulation is given, followed by an overview of joint simulation of
multiple correlated variables using Min/Max Autocorrelation Factors
at the block support scale. Both methods are then applied to a case
study at Vale’s West Orebody at the Coleman McCreedy deposit, by
first simulating the ore envelope and subsequently simulating the
grades for gold, copper, nickel, palladium and platinum jointly
within the models. Following this, the results from the generated
grade–volume curves are discussed in terms of volumetric uncer-
tainty and grade variability within the generated models. Finally,
conclusions from this case study are presented.
2. Multiple-point simulation of orebody models

2.1. Definitions

Multiple-point statistics, or MP-statistics, consider a neighbour-
hood of any n number of surrounding points jointly. The geometric
configuration of a multiple-point data event dn centred at node A is
called a template, tn, of size n. The size of the template, n, and its
shape can be configured to capture any data events that inform the
central node A. Fig. 1 shows an example of a data event on a
template with n¼4 (Osterholt and Dimitrakopoulos, 2007).

Specifically, consider an attribute S taking K possible catego-
rical states fsk,k¼ 1, . . . ,Kg, which may represent, for example,
lithological codes or metallurgical ore types. A geometric tem-
plate tn is defined by a set of n vectors fha,a¼ 1, . . . ,ng. A data
event dn of size n, centred at the location or node x, is defined by
the vectors in the template tn, offset from a central location x.
The data event consists of a set of measured categorical state

values sðxþhaÞ at locations ðxþhaÞ,a¼ 1, . . . ,n. Any permutation
of data values sðxþhaÞ,a¼ 1, . . . ,n for the set of vectors fxþha,
a¼ 1, . . . ,ng represents a distinct data event, hence will represent
a different MP-statistic.

Given that MP statistics are often used to characterize spatial
relationships of closely spaced data, training images (TIs) are used
to supplement the multiple-point statistics that cannot be inferred
from sparse drilling data alone. The geometries and underlying
patterns contained in a training image should be consistent with the
geological concept and interpretation of the deposit.

2.2. A conditional simulation algorithm for MP-geostatistics

Whereas traditional variogram-based conditional simulation
methods estimate a conditional distribution function by solving
Fig. 1. Example of a data template. The central node A is to be simulated using the

n surrounding known data events, D.
a kriging system consisting of two-point covariances, the MP condi-
tional distribution is conditioned to a single joint MP data event dn:

f ðx; sk9dnÞ ¼ EfIðx; skÞ9dng ¼ PrfSðxÞ ¼ sk9dng, k¼ 1, . . . ,K ð1Þ

where f ðx; sk9dnÞ is the conditional probability that sðxÞ ¼ sk given
the data event dn and EfIðx; skÞ9dng is the conditional expectation of
the indicator function Iðx; skÞ given the data event dn, whereby
Iðx; skÞ ¼ 1 if sðxÞ ¼ sk, otherwise Iðx; skÞ ¼ 0.

Let Ak denote the binary random variable indicating the
occurrence of data event dn at location x

Ak ¼
1 if SðxÞ ¼ sk

0 otherwise

�
ð2Þ

Similarly, let D denote a binary random variable indicating
the occurrence of data event dn. The conditional probability of the
node or location x corresponding to state sk is given by the
following simple indicator kriging expression:

f ðx; sk9dnÞ ¼ PrfAk ¼ 19D¼ 1g ¼ EfAkgþl½1�EfDg� ð3Þ

where EfDg ¼ PrfD¼ 1g is the probability of the conditioning data
event dn occurring and EfAkg ¼ PrfSðxÞ ¼ skg is the prior probability
for the state at location x is sk. Solving the simple kriging system
for the single weight l corresponding to data event dn leads to the
following solution (Guardiano and Srivastava, 1993):

f ðx; sk9dnÞ ¼ PrfAk ¼ 19D¼ 1g ¼
PrfAk ¼ 1,D¼ 1g

PrfD¼ 1g
ð4Þ

The numerator and denominator of Eq. (4) are inferred by
scanning the training image for both the number of replicates of
the conditioning data event cðdnÞ, and the number of replicates
ckðdnÞ from the set of replicates cðdnÞ that have SðxÞ ¼ sk, i.e.

f ðx; sk9dnÞ ¼
ckðdnÞ

cðdnÞ
ð5Þ

In the SNESIM (single normal equation simulation) algorithm
(Strebelle, 2002), the available conditioning data forming the data
event dn is stored in a search tree. The proportions for building the
ccdf are retrieved by searching for similar data events in the search
tree reading the related frequencies. In MP geostatistics, there is no
need to approximate the use of the global conditioning data event
due to the use of a training image and the exact calculation of the
probability distribution conditional to dn. It must be noted that given
that all MP statistics are derived from the patterns present in the
training image, the algorithm is said to be ‘‘training-image driven’’;
the conditioning samples represented by, for example, drillhole data
merely guide the algorithm to search for patterns from the training
image that fit the same data configuration dn. For this reason, it must
be assumed that the training image is an accurate representation of
reality. For a more detailed discussion on the SNESIM algorithm, the
reader is referred to Remy et al. (2011). An overview of the general
steps of the simulation is given below:
1.
 Scan the training image and store occurrences of all data
events D.
2.
 Define a random path and visit all nodes to be simulated.

3.
 Simulate each node by:

a. Retrieving all data events containing the surrounding data
and previously simulated nodes.

b. Derive the local probability distribution from stored frequen-
cies of central values; the probability of finding a certain
categorical variable at the node given the surrounding data
event D is given by the Bayes’ relation for conditional
probability in Eq. (5).

c. Randomly select a pattern from the distribution and add
simulated node to the grid.
4.
 Repeat the previous steps for a desired number of simulations.
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3. Joint simulation of correlated variables with Minimum/
Maximum Autocorrelation Factors

Consider a multivariate, stationary and ergodic spatial random
function of a continuous variable ZðxÞ ¼ ½Z1ðx, . . . ,ZpðxÞ�

T that has
been transformed to a standard Gaussian random function
YðxÞ ¼ ½Y1ðx, . . . ,YpðxÞ�

T ¼ ½fðZ1ðxÞÞ, . . . ,fðZpðxÞÞ�
T and is assumed

to be multi-Gaussian. Minimum/Maximum Autocorrelation Fac-
tors (MAFs) are defined as the p orthogonal linear combina-
tions MiðxÞ ¼ aT

i YðxÞ,i¼ 1, . . . ,p of the original multivariate vector
YðxÞ. MAFs are derived assuming that YðxÞ is represented by a
two-structure linear model of coregionalization (Desbarats and
Dimitrakopoulos, 2000). The MAF transformation can be rewrit-
ten as

MðxÞ ¼AT
MAFYðxÞ ¼AT

MAF/ðZðxÞÞ ð6Þ

and the MAF factors, AMAF , are derived from

AMAF ¼Q 2K
�1
1 Q 1 ð7Þ

where the eigenvectors Q 1 and eigenvalues K1 are obtained from
the spectral decomposition of the multivariate covariance matrix
B of YðxÞ at the zero-lag distance. More specifically, the spectral
decomposition is computed as

Q 1BQ T
1 ¼K1 ð8Þ

Q 2 is the matrix of eigenvectors from the following spectral
decomposition:

Q 2ð
1
2½CzðDÞ�Tþ½CzðDÞ�ÞQ

T
2 ¼K2 ð9Þ

where the matrix CzðDÞ is an asymmetric variogram matrix at
lag distance D for the regular PCA factors zðxÞ ¼ YðxÞA, where
A¼Q 1K

�1=2
1 . K2 is the matrix of eigenvalues obtained from the

spectral decomposition in Eq. (9). In practice, the simplest way to
ensure that the transformed variables are orthogonal is to test the
cross-variograms of the MAF factors for several lag distances, D,
and select the one which provides the best decorrelation; this
method permits applying the MAF transformation to the experi-
mental data set without having to derive theoretical variogram
and cross-variogram models beforehand. For a more detailed
description of MAF for simulation of correlated attributes, the
reader is referred to Desbarats and Dimitrakopoulos (2000).

The direct block simulation method (Godoy, 2003), and more
specifically direct block simulation for multiple correlated vari-
ables (Boucher and Dimitrakopoulos, 2009), is used to simulate
the MAF factors MðxÞ independently for each of the blocks in the
domain DARn. Simulation at the block-support scale using MAF
calls for the block support vector random function ZV , which can
be expressed as

ZV ðvÞ ¼
1

N

XN

i ¼ 1

f�1
ððAT

MAFÞ
�1MðxiÞÞ, xiAv, 8i ð10Þ

where each block vAD is discretized by N points at locations
xiAv and fi¼ 1, . . . ,Ng denotes the indices for each of the
discretization points. For each block to be simulated, the dis-
cretizing point values conditional to neighbouring point and
block data are simulated with the joint LU simulation. Let Cl

IIVV

be the covariance matrix for the conditioning data and Cl
IV be the

covariance matrix between the simulation grid’s points and the
neighbouring point and block data for the lth MAF factor

Cl
IIVV ¼

Cl
II Cl

IV

Cl
VI Cl

VV

2
4

3
5 and Cl

pIV ¼ Cl
pI Cl

pV

h i
ð11Þ

where Cl
II , Cl

IV and Cl
VV are the point-to-point, point-to-block and

block-to-block covariance matrices for the lth MAF factor, respec-
tively; Cl

pI and Cl
pV define the covariances between the discretizing
points and the point data and the block data for the lth MAF
factor, respectively. The vector of N simulated values mln

p for each
factor l is obtained by solving the following system of equations
similar to generating LU simulations with conditioning data
(Godoy, 2003; Boucher and Dimitrakopoulos, 2009)

mln
p ¼ Ll

pIV ðL
l
IIVV Þ

�1ml
IVþLl

ppwp ð12Þ

where ml
IV is the vector containing neighbouring point and block

data for factor l, wp is a vector of randomly generated standard
normal numbers and Ll

pIV , Ll
IIVV and Ll

pp are obtained from the
following Cholesky decomposition:

Cl
IIVV Cl

pIV

Cl
pIV Cl

pp

2
4

3
5¼ Ll

IIVV 0

Ll
pIV Ll

pp

2
4

3
5 LlT

IIVV LlT

pIV

0 LlT

pp

2
64

3
75 ð13Þ

The block value can be obtained by averaging the back-
transformed points that discretize each block with Eq. (12).
The direct block MAF simulation algorithm (Boucher and
Dimitrakopoulos, 2009) proceeds as follows:
1.
 Transform the data ZðxÞ to normal-score data YðxÞ.

2.
 Transform YðxÞ to MðxÞ using the MAF transformation in Eq. (6).

3.
 Define a random path to visit each block to be simulated.

4.
 For each block v, simulate the MAF factors at each of the

block’s N discretizing points mnðxiÞ,i¼ 1, . . . ,N with the LU
decomposition using Eq. (12).
a. Average the points mnðxiÞ,i¼ 1, . . . ,N over the block to

obtain mn
V ðvÞ for further conditioning.

b. Back-transform the simulated nodes mnðxiÞ,i¼ 1, . . . ,N to
znðxiÞ and average the points xiAv to obtain the simulated
value at the block support scale, zn

V ðvÞ using Eq. (10). Write
the values to a file.
5.
 Repeat step (4) for each block v to be simulated.

6.
 Repeat steps (3)–(5) to generate a set of multi-element

geological simulations.

4. Geology of the West Orebody

Vale’s West Orebody (WOB), located in Sudbury, Ontario,
Canada, is located 1463 m west of the Lower Coleman Orebody.
It has a known strike length of 213 m. The ore thickness ranges
from 1.5 to 46 m with an average of 27 m. The upper portion of
the orebody dips steeply to the south at 801 before flattening
to 401 at depth. The orebody is composed of massive sulphides,
stringer sulphides, and weaker disseminations within granite
breccia zones enclosed in the host footwall rocks. The host rocks
are granite gneiss, granite breccia and Sudbury breccia.
5. Simulation of the ore envelope

5.1. TI and hard data

A conventional deterministic orebody model is used to serve
as a training image for the simulation process. To generate the
model, the drillhole data is coded as inside (1) or outside (0) the
nickel–copper mineralized zone based on the presence low-grade
nickel. A wireframe envelope is generated and converted to a
block model on a regular grid, whereby all blocks that lie within
the mineral envelope (wireframe) are designated as mineralized
material (1) and all other blocks are designated as barren rock (0).
It is noted that the low-grade nickel criterion, hence the wire-
frame envelope, is subject to interpretation; a single, smooth and
connected orebody model is generally preferred by the geologist.
The conventional model is used as a training image and is



Fig. 3. Indicator variogram reproduction of the post-processed simulations.

Fig. 4. Frequency distribution of the volume of ore for the post-processed SNESIM

realization as a percentage of the volume of ore blocks in the training image.
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comprised of 31�84�80 blocks with dimensions of 6.1�4.6�
4.6 m3. A cross-section of the training image is shown in Fig. 2(a).
The hard data used for the simulations is obtained from 15,319
drillhole samples composited over 1.52-m lengths.

5.2. Orebody simulation, specifics and post-processing

To assess the geological uncertainty in terms of volume and
tonnage, a set of 20 realizations of the orebody are generated
using the SNESIM algorithm (Strebelle, 2002; Osterholt and
Dimitrakopoulos, 2007). The simulations are generated on the
same grid as the conventional model (training image) defined in
Section 5.1. Since this is a single orebody, connectivity for the
blocks is expected. In this application, the SNESIM algorithm
found it difficult to retrieve sufficient information related to the
connectivity and orientation of geological features in the orebody
in order to guarantee realizations that consisted of a single
completely connected orebody. One solution employed to over-
come this issue was to increase the number of nodes in the
template, thus providing more information to a node being
simulated. This, however, raises the computational costs for the
simulations.

Nevertheless, the connectivity issue was not completely over-
come, and the realizations required post-processing to remove
randomly allocated ore blocks in the model. A simulated anneal-
ing-based algorithm (Deutsch and Journel, 1998) is used to
post-process the simulations to better-reproduce the two-point
continuity of the training image. Osterholt and Dimitrakopoulos
(2007) also document similar issues related to connectivity and
smoothness when simulating iron ore channels. The ‘‘cleaned’’
realizations are referred simply as realizations in the subsequent
sections.

5.3. Validation

Fig. 2 shows how the simulated realizations reproduce the
large-scale features of the training image, such as the steeply
dipping of the upper portion of the orebody and its flattening with
depth. The algorithm (Remy et al., 2011) allows the realizations to
reproduce the target waste proportion of 93.2%; the waste
proportions of the 20 realizations fluctuate between 93.2% and
94.1% with a mean of 93.9%. Fig. 3 shows the indicator variogram
reproduction for the SNESIM realizations, training image and
data. The indicator variogram for vector h, gIðh; skÞ, is calculated
using:

gIðh; skÞ ¼
1

2NðhÞ

XNðhÞ
a ¼ 1

½Iðxa; skÞ�Iðxaþh; skÞ�
2 ð14Þ

where NðhÞ denotes the number of pairs of points separated by the
vector h, and the a is used to index these pairs. It is first noted
that the simulations accurately reproduce the indicator variogram of
the training image, however the variability for both the simulations
45 m

Fig. 2. Example of a data template. Cross-sections of (a) the training image,

(b) cleaned maximum, (c) cleaned median and (d) cleaned minimum simulated

models of the deposit (in terms of volume).
and training image are significantly less than the variability in
the data. This behaviour is to be expected, given that the
algorithm is driven by the patterns available in the training image
rather than a variogram model; additionally, the post-processing
step enhances the training image’s variogram reproduction. The
significant difference between indicator variograms suggests that
there is a conflict between the data and the training image, and is a
result of choosing a single, smooth and connected orebody model
rather than using a model that strictly obeys the low-grade nickel
coding applied to the drillholes. These issues have also been studied
by Osterholt and Dimitrakopoulos (2007) when simulating an iron
ore channel. To deal with such cases where there is a conflict
between the data and training image, data-driven methods, such as
high-order simulation with spatial cumulants (Mustapha and
Dimitrakopoulos, 2010; Dimitrakopoulos et al., 2010), need to be
explored.

5.4. Assessing volumetric uncertainty

To assess the grade–tonnage uncertainty present in the
modelling of the deposit, the realizations generated by SNESIM
are used as distinct orebody models from which nickel, copper,
gold, palladium and platinum are jointly simulated. The fre-
quency distribution, in terms of the percentage total volume of
ore in the simulation compared to the volume of ore in the
training image, is shown in Fig. 4. It is noted that the volume of
the ore blocks of the training image (a conventional deterministic
wireframe generated by a geologist) is approximately 10% higher
than the volume of the simulations. This highlights the need for
the generation of multiple objective orebody models when
assessing a mineral deposit. For the purpose of this study, the
simulated models with the maximum, median and minimum ore
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volumes are retained for further joint multi-element simulation,
and are referred to as the Max, Med and Min orebody models. It is
noted that in general, all simulations should be retained for joint
multi-element simulation. However, in this case there is very
little difference in terms of volumetrics for the majority of the
simulations (with the exception of the Max orebody model),
which is a result of the high drilling density within the miner-
alized zone. Fig. 2 shows sample cross-sections of the selected
orebody models.
6. Joint simulation of nickel, copper, gold, palladium and
platinum

6.1. Normal score and MAF transformation

Similar to traditional orebody estimation methods, the drill-
holes are filtered for each orebody model, such that only the
drillholes inside the model are kept. Prior to applying the MAF
transformations to the spatially correlated variables, each of
the elements is transformed to a normal distribution. Normal
score transformations are based on rank ordering of the data and
decrease the influence of outliers. The transformation matrix AMAF

(Eq. (7)) for the median orebody is shown in Table 1. MAF are
calculated by multiplying the vector of Cu, Ni, Au, Pd and Pt by a
vector of loadings from the rows of the transformation matrix.
The D lag in Eq. (9) used in this example is 9 m, and is derived
experimentally by testing several lag distances to assure a
suitable decorrelation and stable MAF decomposition.

6.2. Variography of MAF

The variogram models used for simulating each of the MAF
factors in the median orebody model are presented in Table 2.
Each of the variogram models was assumed to contain a nugget
and a spherical structure. It is noted that MAF variograms are
linear combinations of the variograms of the original (normal
Table 1
MAF factor loadings described as linear combinations of the input variables for the

median (Med) orebody model.

Metal MAF 1 MAF 2 MAF 3 MAF 4 MAF 5

Au 0.063 �0.292 0.181 �0.009 �0.054

Cu 0.783 0.210 0.012 0.240 0.154

Ni 0.296 0.015 0.038 0.168 0.391

Pd 0.539 0.917 0.940 0.731 0.762

Pt �0.070 0.173 0.287 0.617 0.490

Table 2
Variogram models used to simulate the MAF factors for the median (Med)

orebody.

Variable Variogram model Major (x) Minor (z)

AZ1 DIP1 AZ1 DIP1

MAF 1
gðhÞ ¼ 0:54þ0:46sph

hx

19
,
hy

15
,
hz

6

� �
90 0 0 90

MAF 2
gðhÞ ¼ 0:48þ0:52sph

hx

43
,
hy

30
,
hz

17

� �
135 0 45 168

MAF 3
gðhÞ ¼ 0:56þ0:44sph

hx

37
,
hy

26
,
hz

10

� �
135 0 45 68

MAF 4
gðhÞ ¼ 0:41þ0:59sph

hx

44
,
hy

44
,
hz

44

� �
135 0 45 �45

MAF 5
gðhÞ ¼ 0:41þ0:59sph

hx

51
,
hy

40
,
hz

17

� �
225 45 225 �45
score) variables; the variogram models of the MAF factors does
not necessarily correspond to the variography of the variables.

6.3. Conditional simulation of MAF at the block support scale

Conditional simulations for each of the factors in each of the
orebody models are performed independently using Eq. (12) and
averaged into blocks using Eq. (10); the point support informa-
tion is retained for a variogram validation with the drillholes.
The simulations are generated inside the orebody models using
6.1�4.6�4.6 m3 blocks and a 4�3�3 node discretization
density on the same grid as the wireframe, resulting in
502,524, 446,940 and 436,536 nodes within the limits of the
maximum, median and minimum simulated orebody models,
respectively. Ten simulations for each of the factors are generated
for each of the three simulated orebody models and are validated
in detail for reproduction of data, histograms and variograms
on the point support. Fig. 5 shows a cross-variogram between
the first two MAF factors for the median model. As one would
expect during simulation, there are no spatial cross-correlations
between the two factors, hence the MAF factors are indeed
independent and have been successfully decorrelated. The
remaining cross-variograms are very similar to the one presented,
thus are omitted. A validation of variograms, cross-variograms
and histograms is presented only for the data space in the
subsequent section.

6.4. Validation of results

Validation of the jointly simulated variables involves calcula-
tion of histograms, experimental variograms and cross-vario-
grams of the simulated point realizations in the data space to
ensure reproduction of original data and their spatial character-
istics. Fig. 6 shows the variograms and cross-variograms for the
original drillhole data and conditional simulations for the median
orebody at the point support scale. All results suggest that the
reproduction of the original data spatial characteristics by the
simulated realizations is reasonable. Recall that the variograms
and cross-variograms of original variables are not directly used in
the joint simulation based on MAF, which used the variograms
of the independent MAF. Fig. 7 shows the reproduction of the
histograms of the 10 simulations and the original drillhole data
for Au, Cu, Ni, Pd and Pt in the median orebody. All graphs
indicate that the simulations reproduce well the initial drillhole
data. Fig. 8 shows sample cross-sections for each of the simulated
metals inside the Min, Med and Max orebody models. It is noted
that by inspection, the grades are similar in all of the models,
however there are some fairly significant differences in the
shapes of the models, which highlights the benefits of generating
a series of equiprobable orebody models to obtain a better
understanding of volumetric variations.
Fig. 5. Example of a cross-variogram between MAF 1 and MAF 2 for all simula-

tions from the median orebody.



Fig. 7. Histogram reproduction of the 10 simulations and original drillholes for Ni,

Cu, Au, Pd and Pt in the median orebody model.

Fig. 6. East–West variogram and cross-variogram reproduction for the median orebody

(note that the heavy line is the drillhole variogram and the light lines are simulations).
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7. Risk analysis for decision making

To better understand the relationship between volumes and
grades for the deposit, Fig. 9 shows the changes in volume for a
nickel cutoff grade for the 6.1�4.6�4.6 m3 blocks. It is noted that in
the graph, the volumes above a cutoff for the Min and Med orebodies
are very close, and it is difficult to distinguish between the sets of
simulations. The volumes above a certain cutoff grade are signifi-
cantly higher for the Max orebody simulations, which is to be
expected given that the Max model has a 10% larger volume than
the Med model (whereas the Min model is only 2% smaller than the
Med model). This trend is particularly apparent for low cutoff grades
for all of the metals; at higher cutoffs, all of the curves for the Min,
Med and Max orebodies converge.

As a basis for comparison, the nickel grade is estimated within the
training image using ordinary kriging. The volume–cutoff curve
for this model (Fig. 9) highlights the importance of incorporating
both volumetric and grade uncertainty into the geology models. It is
clear that in this case study (however not necessarily in general),
neglecting to incorporate the volumetric uncertainty would lead to a
significant over-estimation of the orebody volume, as can be seen at
low cutoffs in Fig. 9. This figure also highlights the importance of
stochastic simulation methods over conventional grade estimation
methods, which would have led to a model that overestimates the
low-grade material and underestimates the high-grade material. It is
clear that using the traditional geostatistical methods, comprised of
creating a subjective and deterministic orebody model and estimating
within that model may lead to costly business decisions in the mine
planning phase.
8. Conclusions

This paper presents an approach to assess volumetric and multi-
ple-element uncertainty, and is applied at West Orebody of Vale’s



Fig. 8. Volume above Ni cutoff grade curves for the simulated orebodies with 6.1�4.6�4.6 m3 blocks.
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Coleman McCreedy deposit, located in Sudbury, Ontario, Canada. In
order to better quantify the spatial relationships, curvilinear features
and volumetric uncertainty in the orebody, SNESIM, a multiple-point
geostatistics method, was first used to simulate a series of equiprob-
able orebody models. A conventional, deterministic orebody model is
used as a training image to provide a set of patterns for the simulation



Fig. 9. Volume above Ni cutoff grade curves for the simulated orebodies with

6.1�4.6�4.6 m3 blocks.
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algorithm. Given that there is a conflict between the data and the
training image in terms of spatial correlations and proportions, the
majority of the simulated orebody models require post-processing
to enforce the geologists’ connectivity requirement in the orebody.
A subset of the simulations, specifically the orebody models that
represent the highest, intermediate and minimum quantities of
mineralized material, are then retained for joint simulation of nickel,
copper, gold, platinum and palladium using Min/Max Autocorrelation
Factors and Direct Block Simulation. This method permits the efficient
joint simulation of the spatially correlated metals without having to
fit cross-variogram models for each pair of elements. The result is a
set of equiprobable orebody models that account for both volumetric
and multi-metal uncertainty. Results indicate that had a conventional,
deterministic orebody model been used with conventional grade
estimation methods, there could have been as much as 10% over-
estimation of low-grade mineralized material. In order to alleviate the
issues with conflicts between training images and data, future work
will focus on data-driven high-order stochastic simulation methods
for simulating indicator variables (orebody models) and joint simula-
tion for multiple elements.
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