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Abstract 

One-dimensional diffusion wave equation is a simplified form of the full Saint Venant equations by neglecting the 
inertia terms. In this study, the Lattice Boltzmann method for the linear diffusion wave equation was developed. In 
order to verify the calculation accuracy of it, the analytical solution and Muskingum method were also introduced. 
Excellent agreement was obtained between observed data and numerical prediction. The results show that the Lattice 
Boltzmann method is a very competitive method for solving diffusion wave equation in terms of computational 
efficiency and accuracy. 
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1. Introduction 

Flood routing has a series of methods to estimate the future flood in downstream cross-section of the 
river which relates to the flood in upstream cross-section, the theory of it is the flood wave law in the 
river. These methods can be divided into hydraulic way and hydrology way [1]. For the hydraulic way, 
flood wave movement can be described by full Saint Venant equations which has rigorous theoretical 
basis. However, these equations are too complicated to be calculated, and this way requires a lot of 
detailed river topography information. Therefore, a simplified form of full Saint Venant equations should 
be chosen. A lot of studies have found that the diffusion wave equation can reflect the characteristics of 
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flood wave movement well [2]. Diffusion wave equation solution is a method which has sufficient 
accuracy and easy to be solved, it is a good selection to describe the flood wave movement in the river.  

The Lattice Boltzmann method was proposed in recent years as a new numerical method for 
simulating fluid flows [3]. The fundamental idea of it is to construct simplified kinetic models that 
incorporate the essential physics of mesoscopic processes so that the macroscopic averaged properties 
obey the desired macroscopic equations. It provides an indirect way to solve flow equations and brings 
certain advantages over conventional numerical methods, such as parallel computation, easy handing of 
complex geometries, easy programming and easy simulating complex flows [4, 5]. In addition, the Lattice 
Boltzmann method has been developed to solve nonlinear partial differential equations, such as, shallow 
water flow equation and Burgers equation, etc. [6, 7]. These features make the Lattice Boltzmann method 
to be a very promising computational method in different areas [3].  

Therefore, in this paper, the Lattice Boltzmann method is proposed to solve the diffusion wave 
equation. In order to illustrate applications of it, two examples are introduced. The Lattice Boltzmann 
method has been verified by comparing to the results of the Muskingum method and analytical solution. 

2. Theoretical basis for diffusion wave equation  

Unsteady flow in an open channel can be represented by the one-dimensional Saint Venant equations 
of continuity and momentum, respectively 
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Where Q is the discharge, A is the cross-section area of flow, g is the gravitational acceleration, V is 
the average velocity of flow cross-section, y is the water flow depth, S0 is the channel bed slope, Sf is the 
frictional slope, t is time and x is the distance along the flow direction. 

For many flow equations, the inertia terms can be considered much smaller than friction slope and 
pressure gradient, therefore, be neglected. And if the assumption is made that the friction slope can be 
determined as in steady uniform flow, then it can be described by Chezy equation. The St Venant 
equations are reduced to diffusion wave equation  
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Where dC is the diffusion wave celerity,  is diffusion coefficient. 
If dC and  is constant, Eq. (3) reduces to linear diffusion wave equation. The initial and boundary 

conditions for Eq. (3) can be expressed as  
( , 0) 0 (0 ) (0, ) ( ) ( 0) lim ( , ) 0 ( 0)

x
Q x x L Q t I t t Q x t t
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Where L is the length of channel, ( )I t is the inflow of up boundary. 

3. Lattice Boltzmann model 

3.1. Lattice Boltzmann equation 

The Lattice Boltzmann method can be considered as a finite difference scheme for the kinetic equation 
of the discrete-velocity distribution function [3]. It divides the space into uniform mesh and the particle 
distribution function ( , , )f x e t 

  is laid on each node. Based on the physical characteristics, and with the 



192 	 Ningning LIU et al. / Procedia Engineering 28 (2012) 190 – 195 Author name / Procedia Engineering  00 (2011) 000–000 3 

BGK approximation [8], the lattice Boltzmann equation can be obtained as 
1
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Where ( , , )f x e t 
  is the particle velocity distribution function, e

 is the particle velocity,   is the single 
relaxation time, ( , , )eqf x e t 

   is the local equilibrium distribution function. 
According to the theory of the lattice Boltzmann method, it consists of collision step and streaming 

step. In the collision step, particles at the points interact one another and change their velocity directions 
according to scattering rules, which can be expressed as  
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In the streaming step, particles move to the neighboring lattice points which is governed by 
( , , ) ( , , )new newf x t e e t t f x e t         
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3.2. Lattice Boltzmann model of diffusion wave equation 

In this paper, the D1Q5 five-bit model of Lattice Boltzmann method is developed to solve the 
diffusion wave equation. For the D1Q5 model, the discrete velocities are: 2 02e C  , 

1 0e C  , 0 0e  , 3 0e C , 4 02e C ,where 0 /C x t   , 0C is the magnitude of velocity. The 
diagrammatic sketch of D1Q5 model is shown as Fig.1.  

2 1 0 3 4
 

Fig.1   D1Q5 five-bit model of Lattice Boltzmann method 

The Knudsen number   which is defined as /l L  , where l is the mean free path, and L is the 
characteristic length, is introduced to be taken as the time step t , Eq. (5) thus changes into 
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The Chapman-Enskog expansion which is a formal multiscaling expansion [9] is applied to the 
distribution function ( , , )f x e t 
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Introduce different time and space scales, and their differential coefficient form are 
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The second-order Taylor expansion is used on Eq. (8), it is  
2
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Combining Eqs (9), (11) and (12), the series of Lattice Boltzmann equations in different time scales 
are obtained 
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Zero-order moment of ( , , )eqf x e t 
  is solved on Eqs (13) to (17), and according to Eq. (10), the 

macroscopic manifestation can be set 
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In order to recover the diffusion wave equation, scale adhesion is needed (that is the time 
scale 0 1 2 3 4, , , ,t t t t t should be restored back to the time scale t), so let 2 3(16) (17)(14) (15)         
and sum the five directions, thus 
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Compare to Eq. (3), when 1 ( 0.5)k    , the diffusion wave equation with the fourth order accuracy 
of truncation error can be got. The equilibrium distribution function of D1Q5 five-bit model can be solved 
by Eq. (18), they are  
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The initial moment of the distribution function on each node can be instead by the equilibrium 
distribution function calculated by Eq. (20). Through the collision step and streaming step of particles, 
updating the distribution function of each node. According to Eq. (18), the macroscopic discharge on each 
node can be got.  

4. Applications 

In this paper, two examples are taken to illustrate applications of the Lattice Boltzmann method. The 
Muskingum method and analytical solution of linear diffusion wave equation are also applied to solve 
these examples.  

The first example is Longjie-Qiaojia River reach which located upstream of the Yangtze River in 
China. The length of the reach is 247km and the mean bed slope is 0.00112. A flood event was measured 
on 18-20 June 1967, at two stations located at the upstream and the downstream ends of the reach. The 
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diffusion wave celerity dC =5.92m/s, diffusion coefficient  =19456 m2/s can be got by the hydraulic 
elements of two cross-sections. In this example, for the Lattice Boltzmann method, the single relax 
time =1.5, the space step x =1000m and the time step t =10s. The other reach is the Jiangnan-Fuxi 
River reach, which is 20.1km long. In 13-24 May 1967, a flood event was measured at two stations 
located at the upstream and the downstream ends of the reach. Based on the hydraulic elements of 
Jiangnan and Fuxi stations, the celerity of the diffusion wave dC =2,792m/s and diffusion coefficient 
 =8376 m2/s can be got. In this example, for the Lattice Boltzmann method, the single relax time =1.5, 
the space step x =402m and the time step t =5s.  

The computed results are compared to the observed data of two reaches in Table 1. The comparisons 
of observed and computed hydrograph are shown in Fig.2. 

Table 1. The comparisons of observed and computed values of two river reaches 

River Method mQ observed 
(m3/s) 

mQ computed 
(m3/s) Error of peak (%) Deterministic Coefficient 

Longjie-
Qiaojia 
River reach 

LB-D1Q5 

11400.0 

13111.8 -15.02 0.939 

Analytical solution 12878.0 -12.96 0.950 

Muskingum 13390.0 -17.46 0.953 

Jiangnan-
Fuxi River 
reach 

LB-D1Q5 

4660.0 

4667.6 -0.16 0.987 

Analytical solution 4726.0 -1.42 0.992 

Muskingum 4668.4 -0.18 0.987 
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             (a)                                                                                                  (b) 

Fig.2. The comparisons of observed and computed hydrograph (a) Longjie-Qiaojia River reach (b) Jiangnan-Fuxi River reach 

Fig.2 shows that the hydrographs calculated by the Lattice Boltzmann method, Muskingum method 
and analytical solution are in agreement with the observed flood hydrographs for two flood events. It also 
demonstrates that the Lattice Boltzmann method can be used to solve the linear diffusion wave equation 
and to predict the flood hydrograph. Table1 shows that the D1Q5 five-bit model of Lattice Boltzmann 
method is more accurate than the Muskingum method and less accurate than the analytical solution. It is 
because that the Lattice Boltzmann method is a numerical method, it can not match the observed flood 
hydrograph better than analytical solution. 
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5. Conclusion 

In this paper, the diffusion wave equation is selected to describe the flood wave movement in the river 
and the D1Q5 five-bit model of Lattice Boltzmann method is presented to solve this partial differential 
equation. Two different river reaches are taken to illustrate applications of the Lattice Boltzmann method. 
The Muskingum method and analytical solution which can be got by Laplace transform are selected to 
verify the accuracy of the Lattice Boltzmann method. These three methods all compare well with the 
observed flood hydrographs for two flood events and the Lattice Boltzmann method is more accurate than 
the Muskingum method and less accurate than the analytical solution. It proves that the Lattice 
Boltzmann method can be used to solve the diffusion wave equation and predict the flood hydrograph 
well. Additionally, this method can not only save computation time but also easy to use and be 
programmed. These characteristics make the Lattice Boltzmann method have potential capability in 
solving flood routing problems. 
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