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Abstract 

Sullivan (1970, 1974) pointed out the availability and applicability of localization methods in 
homotopy theory. We shall apply the method to dimension theory and analyze covering dimension 
and cohomological dimension from the viewpoint. The notion of localized dimension with respect 
to prime numbers shall be introduced as follows: the P-localized dimension of a space X is at 
most n (denoted by dimp X < n) provided that every map f : A + S;4 of a closed subset A of 
X into a P-localized n-dimensional sphere 5’; admits a continuous extension over X. 

The main results are: 
(1) Let P, & Pz & P. Then dimp, X < dimq X (Theorem 1.1). 
(2) Let ,Y be a compactum. Then the following conditions are equivalent: (a) dimX < <co; 

(b) for some partition PI,. , P, of P, max{dimp& X: i = 1,. , s} < 00; (c) for any partition 
PI,. ~ P, of P, max{dimpi X: i = 1,. . , s} < 00 (Theorem 1.2). 

(3) Let X be a compactum, G an Abelian group. We have that sup{c-dime, X: p E ‘P} = 
c-dime X (Theorem 1.4). 0 1998 Elsevier Science B.V. 
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AMS classification: 55MlO; 55P60 

1. Introduction and preliminaries 

Bockstein [2] showed that the integral cohomological dimension of a compactum 

coincides with the supremum of cohomological dimensions with respect to the rings of 

integers localized at each prime numbers. Dranishnikov [3] proved the existence of an 

infinite dimensional compactum whose integral cohomological dimension three (also, see 

[12]). Thus covering dimension cannot be approximated by cohomological dimension in 
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the above-mentioned sense. A natural question is to find a new kind of dimension which 

does approximate the covering dimension. 

Sullivan [24,25] pointed out the availability and applicability of localization methods 

in homotopy theory. In the sense, K(Z cp), n) is a localization of K(Z, n) at p. Thus 

we may consider that cohomological dimension with respect to Z(,) is a localization of 

integral one at p. We shall apply the method to dimension theory and analyze covering 

dimension and cohomological dimension from the viewpoint. 

Throughout this paper, we shall denote by ‘P the set of all prime numbers. The full 

subcategory of the category G of all groups consisting of all nilpotent groups is denoted 

by N. Let P C P. A homomorphism e : G + Gp in N is said to be a P-localizing map 

if Gp is P-local (i.e., II: H 9, J: E Gp, is bijective for all n E P’, where n E P’ means 

that n is a product of primes in the complementary collection P’ of primes with respect 

to P) and if e* :Hom(Gp,K) = Hom(G, K) provided K E N, with K P-local. We 

know that there exists the P-localization theory on the category N [ 151. 

Definition. A connected CW-complex X is nilpotent if ~1 (X) is nilpotent and operates 

nilpotently on TV for every n 3 2. 

Let N’H be the homotopy category of nilpotent CW-complexes. N?-t contains the 

homotopy category of simply connected CW-complexes. Moreover, the simple CW- 

complexes are plainly in N’FI; in particular, N7-I contains all connected Hopf spaces. 

Definition. Let X E N7-i and P C P. Then X is P-local if 7rn(X) is P-local for all 

n 3 1. A map f : X --f Y in N’H P-localizes if Y is P-local and 

f* : [Y, 21, = [X, Z]* 

for all P-local 2 in NI-t, where [A, B], means the set of pointed homotopy classes of 

maps from A to B. 

We note that if a P-localization theory exists on N’H, it is essentially unique. In fact, 

the following results [ 15,241 are very useful for us. 

Theorem A. Every X in N?i admits a P-localization. 

Theorem B. Let f : X + Y in NI-t. Then the following statements are equivalent: 

(i) f P-localizes, 

(ii) x, f : ~T~X + 7r,Y P-localizes for all n > 1, and 

(iii) H, f : H,X + H,Y P-localizes for all n > 1. 

In this paper, for P C ‘P we define P-localized dimension as follows: the P-localized 

dimension of a space X is at most n (denoted by dimp X < n) provided that every 

map f : A --f 5’; of a closed subset A of X into a P-localized n-dimensional sphere SF 

admits a continuous extension over X. 

Here are the main results of the paper: 
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Theorem 1.1. Let PI C P2 C P. Then we have the following inequality: 

dimp, X < dimp? X. 

Theorem 1.2. Let X be a compactum. Then the following conditions are equivalent: 

(1) dimX < 00, 

(2) for some partition PI, . . . , P, of P, max{dimpL X: i = 1, . . . , s} < co, 

(3) for any partition PI, . . . , P, of P, max{dime X: i = 1,. . . , s} < CCL 

Corollary 1.3. Let X be a compactum and PI, . . . , P, a partition of P. Then if 

dimA X = c-dimz,,Z) X for i E { 1, . . . , s}, dim X = c-dimz X. 

Theorem 1.4. Let X be a compactum, G an Abelian group. We have the following 

equality: 

c-dirnG x = sup{c-dimGp x: p E P}. 

In this paper, we use the following definition of cohomological dimension: the cohomo- 

logical dimension of a space X with respect to a coej‘icient group G is less than or equal 

to n (denoted by dimG X < n) provided that every map f : A -+ K(G, n) of a closed 

subset A of X into an Eilenberg-MacLane space K(G, n) of type (G, n) admits a con- 

tinuous extension over X. By the dimension of a space X (denoted by dimX) we mean 

the covering dimension of X. Z is the additive group of all integers and Q is the additive 

group of all rational numbers. Z(p) is the ring of integers localized at P, that is, the sub- 

ring of Q consisting of rationals expressible as fractions k/l with 1 E P’. We denote by Z, 

and Zlpm the cyclic group of order p and the quasicyclic group of type J_F’, respectively. 

Recall that K E AI?(X) means that any map f : A --+ K, A closed in X, extends over X. 

2. Localized dimension with respect to prime numbers 

In this paper, for P C P we define P-localized dimension as follows: the P-localized 

dimension of a space X is at most n (denoted by dimp X < n) provided that every map 

f : A ---f S; of a closed subset A of X into a P-localized n-dimensional sphere SF admits 

a continuous extension over X. Note that since a P-localization of the n-dimensional 

sphere is unique up to homotopy type, the definition above is well-defined. We use dime 

instead of dim(a). 

The first half of the section is devoted to developing the basic properties. 

Proposition 2.1. Zf dimp X < n, then dimp X < n + 1. 

Proof. We shall give a direct proof by using a classical argument (also see the remark 

below). Let dimp X < n. Select a map f : A + S;+’ of a closed subset A of X into 

a P-localized (n + 1)-dimensional sphere. Since we have a homotopy equivalence (see 

Appendix Al(l)) h: Sp+’ ZZ! (S’ A Sri))) % S’ A S;4 E CS$, where CZ means the 
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suspension of 2, it suffices to show that h o f can be extended over X. We can represent 

CS$ as Con+ 5’; U Con- SF with Con+ SF n Con- S; = SF, where Con 2 means the 

cone on 2. Select open sets U and V of X such that (h o f)-‘(Con+ Sg \ 5’;) C U, 

(h o f)-’ (Con- SF \ 5’;) & V and U n V = 0. Because of dimp X < n, we have an 

extension f”:X \ (U U V) U (ho f)-‘($3) + SF of ho flchof)-~(~;). Then by using 

Con+ SF, Con- SE E AR we can get an extension F : X + ES; of h o f. q 

Remark. The proposition above follows from Dranishnikov’s theorem [5, Lemma I] 

and the closed subset theorem of P-localized dimension. 

Proposition 2.2. Let X be a metrizable space. We have the following inequality: 

c-dimzcpj X < dimp X. 

In particular if X is finite dimensional or an ANR, the equality holds. 

Proof. The first part of proposition follows from Dranishnikov’s theorem of noncompact 

version (see the proof of [6, Theorems 9 and 61, or [l 11). 

Assume that dimX < 03 or X is ANR. Let c-dimz,,, X = 72. Since the homotopy 

group of SF contains only a combination of Z(p), Zp:, @. . . @Zp;, (pi E P, ki E N) and 

trivial, we see c-diw,(S;) X < m for m E W. Thus we have, by using the Postnikov 

decomposition of SF, that dimp X < n = c-dimzcpI X (cf. [lo]). 0 

Proposition 2.3 (Dydak [lo]). Suppose p : E + B is a map, B is a regular cell complex 

and X is a metrizable space such that p-‘(a) E AE(X) for each cell u E B. Then 

E E AE(X) zfB E AE(X). 

Proposition 2.4. Let X be a metrizable space. We have the following equality: 

c-dim,o X = dim0 X. 

Proof. We shall show the inequality c-diq X 3 dimq X. 

Since Sg+’ M K(Q, 2k + 1) and 

i=2k, 4k- 1, 

i # 2k, 4k - 1, 

it suffices to show the inequality with respect to rational-localized even dimensional one. 

Let K(Q, 2k) E AE(X). Factorize the natural inclusion map i : S$ L) K(Q, 2k) by 

a homotopy equivalence i : S&k z S and a fibration p : S + K(Q, 2k). Then we have 

that a fibre F of p is K(Q, 4k - 1) (by the Serre’s homotopy exact sequence). Thus we 

see p-’ (g) z F x o E AE(X) by a cell structure of K(Q, 2k) (note 4k - 1 > 2k for 

k E N). Therefore S@ M S E AE(X) follows from Proposition 2.3. q 

Lemma25 LetPsP,pEP\Pandp:9 -+ S” be a map of degree p. Then any 

map f IS” ---) s; can be extended over the mapping cylinder M(p) of p, where 5’” 

identifies the top of M(p). 
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0 1 2 3 

Fig. 1. 

Proof. Let (~1, ~2,. . .} be an enumeration of P \ P with I{i f N: pi = q}\ = No for 

q E P \ P. We can assume SF the Milnor’s infinite telescope M(p,) u Ad(p2) u a - ., 

where kf(pi) is the mapping cylinder of a map p; : S” + Sn of degree pi and AJ(p,_, ) n 
M(p,) = S” x {i - 1) (see Fig. 1). 

Now we can select io E W such that p;, = p and Im f C AI U . 1 e U Al&,_ L). 

Then we have homotopies H: Sn x [0,1] + M(pl) u . . . u M(pio_,) with Ho = f and 

H1 = j, orof and H’ : S” x [0, l] + M(pz,) with HA = jlorof and Hi = j20r’oj10rof, 

where ‘r : AI U. . U M(p+l) --+ S” and r’ : hf(pi,) --f S” are the natural retractions 

to the bottoms of M(p,,_l) and A4(pi0), respectively and the natural homeomorphisms 

ji :S” -+ S” x {iO- 1) andj2:Sn + Sn x {in}, respectively. Since we see that 

doj~o(rof)=p;,o(rof)~(~of)op ins”, 

we have a homotopy H” : Sn x [0, l] + Sn with H{ = r’ojlo(rof) and H,” = (rof)op. 

Then we can get an extension F : M(p) ---f SF defined by 

H(G 3t), 0 < t < l/3, 

F(nr’t) = 

1 

H/(x, 3t - 1). l/3 G t < 2/3, 

(H”(2,3t - 2), i,,), 2/3 < t < 1, 

(r 0 f(x), io)- t=1. 0 

Theorem 2.4. Let PI C P2 C P. Then we have the following inequdity: 

dimp, X 6 dimp, X. 

Proof. We use the notations above. Let dimp, X = n. Select a map f : A + SF, from 

a closed set A of X into a PI-localized n-dimensional sphere SF,. Pick d E N with 

Im f C A!f(pl)U+. .Un/l(pi) and the natural retraction T : M(pl)U- . -Uhf(pi) -+ 5’” x {i}. 

Thenthecompositionh-‘orof:A 4 SRx{O) s SF*, whereh:S”x{O} t S”x(i}is 

a homeomorphism, has an extension F over S;42, as dimp, X = n. Consider an extension 

e:S$ + s;, of h by using Lemma 2.5. Since the composition e o F is an extension of 

e 0 pi-4 = T 0 f = f in SF,. Thus the existence of an extension of f over X follows 

from the homotopy extension theorem. 0 

Proposition 2.7. rf dimp X < n, then dimp X x [0, 11 < n + 1. 
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Proof. We can easily see the inequality by [6] and Appendix Al( 1). 0 

Proposition 2.8. Let f, g : X + SF be maps with dimp 2 < 72 - 1, where Z = {x E 

X: f(x) # g(z)}. Then f = g in SF. 

Proof. We can easily see it in a similar fashion of the covering dimension by using 

Proposition 2.7, see [17] quoted in the references. 0 

Lemma 2.9. Let dimp X < n - 1. Then any map f : X + 5’; is inessential. 

Proof. It follows from Proposition 2.8. 0 

We shall illustrate by the following example, which is essentially constructed from an 

idea of Dydak and Walsh [ 121, the essential differences between the theory of cohomo- 

logical dimension and the theory of P-localized dimension. 

Example 2.10. There exists a compacturn X such that dim;! X > 3 and c-dim+) X = 2. 

For the construction, we need first a preliminary proposition. 

Proposition 2.11. Let p be a prime. Then we have for n odd [K(Z?, s), CFS’:] = 0 for 

k 3 n, s 2 2 and t 3 1, and for n even [K(Z?, s), ,R”Sp”] = 0 for k > 2n - 1, s 3 2 

and t 3 1. 

Proof. We assume SF the Milnor’s infinite telescope hl(pl) U M(p2) U . .. like in 

Lemma 2.5. Then we have, by using [12,28], the following: 

[K(Zt, s), f&S;] M [S’ A K (Z’, s), Sp”] 

-lim{ [S’ A K(Z?,s),S”] 2 [Sk A K(Z?,s),S”] 3 . ..} 

slim{ [K(Zt,s),R”S”] 2 [K(Zt,s),R”S”] 2 . ..} 

=o. 0 

Construction of Example 2.10. Let f : S3 4 f13Si be an essential map (note that 

rQ(fi”S,“) M rre(Sz) M &2, for 7r6(S3) M z1.z and Appendix A2(1)). Construct an inverse 

sequence {(Pi, ri),pi+l} of compact polyhedra and maps, by using Proposition 2.11, 

satisfying (cf. [ 121): 

(i) Pi = S3 

(ii) for m ; N, given a map g : L -+ K(Z, 2) of a subcomplex L of P, with 

respect to the triangulation r,, the composition g o pm+1 1 -I 
Pm+1 CL) 

extends to a 

map G: Pm+1 --) K(Z, 2), 

(iii) for each i E N and each E > 0, there is an ma > i such that for m 3 mo the 
diameter of pi+1 o . . o p,(a) C Pi is less than E for each 0 E rm, and 

(iv) each of the compositions f o p2 o . . . o pi : Pi + fi3Si is essential. 
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Put 

Then we have c-dimz X < 2 (i.e., c-dimz,p, X 6 2 for p E ‘P) and essential map 

.f”&O,l :X + S3 + Q3Si. Then by the universality of localizations, we have a map 

fi : (5’:. *) + ((a3S3)2, *) with f2 o e? E f. It follows that e2 op,.t :X + S3 + S; is 

essential: 

xS(S,*) f pm;, *) 
ez 1 1 

fi ((n’s;2. *) (s23, *> - 

where OY means the component of the loop space of Y containing the constant map. 

Thus by Lemma 2.9 we have dim2 X 3 3. 

Remark 2.12. From the example above it follows that Tor(&, rrq(S2)) # * for infinitely 

many q [22]. 

The remainder of the section is devoted to developing the main results. 

A finite collection Pi, . . , P, of subsets of P is called a partition of P if PI U. . ‘Up< = 

P (we do not assume that Pi are pairwise disjoint). 

Theorem 2.13. Let X be a compactum. Then the following conditions ure equivalent: 

(1) dimX < 03, 

(2) for some partition 9, . . . , P, of P, max{dimp: X: ,i = 1, . . . , s} < co, 

(3) for any partition PI,. . ~ P, of P, max{dimpZ X: i = l! . . . y s} < co. 

Proof. (1) + (3) follows from dimX 3 dimp X for P C P. (3) + (2) are trivial. We 

shall show (2) + (l).’ 

Let max{dimpt X: i = 1, . . , s} < m for some partition PI,. . . , P, of P. We shall 

show that dimX < m + 1. We may assume that Pi are pairwise disjoint, because of 

Theorem 2.6. 

According to Sullivan [24, 2.131 or [25, p. 231 a sphere S” is homotopy equivalent to 

the pullback 2, E nz==,{gi: SpZ + SG}, where each gi is a Serre fibration. 

Assume that dim X > m+ 1. Then there exists a closed subset A of X and an essential 

map f : A + _&+I. Theorem 2.6 implies that dim@ X < m. Thus, SC+’ E AE(X x I’) 

by Proposition 2.7. Therefore, OSg+’ E AE(X x I) by an argument of evaluation maps. 

Also, note that SE+’ E AE(X x I). Consider the fibration OS;+’ + F, + Sz+’ (in 

the homotopy category) generated by the fibration gi : Fi - SE+’ -+ Sg+‘. Then it 

follows from a Ferry’s argument [26, Appendix A] (or Proposition 2.3) that Fi E AE(X x 

? This proof. which is shorter than the original one, was suggested by the referee. The author is grateful to him 

for kind suggestion. 
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I). Letg:Z,+t 4 Sg+’ denote the natural projection. Since Sg+’ E AE(A x I), go f 

is homotopic to a constant map via some homotopy Qt with @po = g o f, Q1 = *. Let 

St : A + &+I be a lift of Qt with 3,~ = f (use Proposition 2.3). Note that 31 (A) C 

g-l(*) = n Fi. Since Fi E AE(X x I) for all i, we have n Fi E AE(Con(A)), where 

Con(Z) means the cone of 2. Hence 3, is an inessential map. This means that f is 

inessential. This is a contradiction. 0 

Remark 2.14. There exists an infinite dimensional compacturn X such that for any 

partition PI, . . , P, of ‘P, max{c-dimz,s, X: i = 1. . . , s} < cc (use the Dranishnikov’s 

example). 

Remark 2.15. Let P = {pl,pz, . . .}. There is an infinite dimensional compactum Y 

such that dim,% Y = i for i E N (use the fundamental compacta [3] and the countable 

sum theorem for P-localized dimension). 

Remark 2.16. By Theorem 2.13 and an argument of cohomological dimension, we have 

dim X = sup{ dirnp* X: i = 1 q . . . . s} 

for any partition PI. . . . , P, of P. 
We note that the above does not always hold for noncompact spaces [8]. 

Corollary 2.17. Let X be a compacturn and PI,. . . , P, a partition of P. Then if 

dimp, X = c-dimz,,t, XforiE {l....,s}, dimX=c-dimzX. 

Remark 2.18. There is a compactum X such that dimX = c-dimz X = co, dim2 X 3 3 

and c-dim+, X = 2 (use Example 2.10 and the fundamental compacta). 

From Dydak’s theorem, we obtain the following Menger-Urysohn’s type sum formula. 

Theorem 2.19. Let X = A U B be a metrizable space. Then we have the following 

inequality: 

dimpX <dimpA+dimpB+ 1. 

Proof. We have the following homotopy equivalence: 

s,-*s; z s’ A (S,- A SF) M (9 A s”)p AS;: = (9 A S” A s”)p 

z Smfnfl 
P 

(see Appendix Al (1) and (2)). Thus the inequality follows from [l 1 I. 0 

Corollary 2.20. Let X = A u B be a metrizable space. Then we have the following 

inequality: 

c-dimq X < c-dimq A + c-diq B + 1. 

In particular, if X is$nite dimensional, then the inequality with respect to Z(,) holds. 
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Proof. It follows from Theorem 2.19, Proposition 2.4 and Proposition 2.2. 0 

Remark. For more general cases, which contain the result above, see Dydak [ 1 I]. 

3. Localization and cohomological dimension 

The object of this section is to develop the relation between localization and cohomo- 

logical dimension. 

We shall use the following result of Bockstein [2]: 

Bockstein Theorem. For any Abelian grotip G and a compactum X, we have the fol- 

lowing: 

c-dimG X = sup{c-dimH X: H E a(G)}. 

For an Abelian group G its Bockstein basis a(G) is a subset of 

{Q) ” u 1%) 1% %I- > 

PEP 

defined as follows: 

(i) Q E a(G) iff G @ Q # 0, 

(ii) Z(,) E a(G) iff G %I .Zr+ # 0, 

(iii) Z, E a(G) iff p-TorG @Z, # 0, 

(iv) Zp= E a(G) iff G @ Z, = 0 and Tor(G, Z,) # 0. 

Theorem 3.1. Let X be a compactum, G 

equality: 

c-dimG X = SUP{ C-diIIQp X: p E P} 

Proof. Let c-dimG X = rz. Note that 

G, _ x lim {G 26% . ..}. 

an Abelian group. We have the following 

where pi E P \ {p} and a prime of P \ {p} . rises for infinitely many pi. Then the Milnor’s 

infinite telescope h’ = M($t) U M@) U . . ., where 6, : K(G. n) + K(G, n) is a map 

induced by pi, is an Eilenberg-MacLane complex of type (G,, n). By using the complex, 

we shall see that c-dirnGp X < n for p E P. 

Let f : A + K be a map from a closed set A of X to K. Select i E W such that 

f(A) C n/r@) U.. U h!f(&). Then we have the following: 

f~r~f:A~h~(p~)u...uM(~~), 

where T : M($,) U . . . U Al(&) -+ K(G, n) is the natural retraction to the bottom of 

niI@). Thus we have, by using the homotopy extension theorem, an extension 

F: X 4 M($,) ” . . . u Ad(&) 2 K 

off. 
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We shall show the reverse inequality. By the Bockstein Theorem, it suffices to show 

that if H E o(G), then there is a prime q such that H E a(G,). 

l H = Q: for any q E P, G, @ Q M G @ Zc,) @ Q E G C?J Q # 0. 

l H=Z~,):putq=p.ThenG,cVZ,~ EGGZ(,)@Z$,~ =G@&,= #O. 

l H=Z,:putq=p.Then 

p-Tor G, @ Z, = p-Tor(G 8 Z,,J) 0 Z, > 
subgroup 

p-Tor G @ IT(,) @ Z, 

wp-TorGOZ, # 0. 

l H=Z,w: put q = p. Then G, @ Z, z G (9 Z(,) @ Z, E G @ Z, = 0. 

We shall show that Tor(G,, Z,) # 0. 

Since G @ Z, = 0 and Tor(G, Z,) # 0, we have, by the structure theorem of divisible 

groups [ 141, that 0 # p-Tor G = @ ZPx. Consider the following short exact sequence 

[13]: 

0 + p-Tor G 18 p-Tor z(q) 

-+ p-Tor(G @ Z(,)) 

+ (G/ p-Tor G @ p-Tor Zc,)) @ ( p-Tor G @ Zc,) / p-Tar Z(,)) + 0. 

Then we have 

p-Tor(G,) =p-Tor(G @ EC,,) = p-TorG 8 Z(,)/P-T~~Z;(~) 

It follows that Tor(G,, Z,) # 0. 0 

Remark 3.2. Note that there are infinitely many mutually nonisomorphic Abelian groups 

with p-localizations isomorphic to Zc,) for every prime p (for example, 

G(n) = {k/l E Q: 1 is nth power-free} 

for 72 3 2). 

Corollary 3.3. Let X be a jinite dimensional compacturn and K a simply connected 

CW-complex. The following are equivalent: 

(I) K E AE(X), 

(2) Kp E AE(X) for each prime p E P. 

Proof. Theorem 3.1 follows that 

c-dimH&(K) X = sup{c-dimH*(K), X: P E p> 

= sup{c-dimHZ(h-p) X: P E 7’}, 

see Appendix. We can see the equivalence by using [6]. 0 
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The author is interested in the following problems: 

Problem. 

(1) 

(2) 

(3) 

Suppose K E AE(X) is a simply connected CW-complex and P is a set of 

primes. Is Kp E AE(X)? 

Suppose K is a simply connected CW-complex and Eip E AE(X) for all primes 

p. Is K E AE(X)? 

Suppose K E AE(X) is a nilpotent CW-complex and P is a set of primes. Is 

Kp E AE(X)? 

Appendix A 

Al. We have the following pointed homotopy equivalences: 

(1) 
(2) 
(3) 

s’ A s,m M (S’ A P)p, 
s,-ASE 52 (P A P)p, 
TP(X,) 22 (PX) p, where ??X means the component of the loop space of X 

containing the constant map. 

Proof. (I) By the universality of localization, it suffices to show that 

idAep:S’ASm--+SIAS~ 

P-localizes (m 3 1). 

Because of the following homotopy equivalences: 

S’AS~“S’ASQASpmMS~*Spm, 

we see that S’ A SF is simply connected. 

That H,(S’ A SF) is a P-local group for n 3 1 follows from 

H,(S’ A spm) =&(S’ x Spm$ s’ v spm) = H, ((s’, *) x (Spm, *)) 

z @ Hi(S’,*) @Hj(S,“,*)@ @ Hi(S’,*) *Hj(SF,*) 
i+j=n i+j=n-1 

M 
1 

%T 3 
?2=m+1, 

0, n#m+l, n>l. 

Finally, we must show that 

(id Aep), : H,(S’ A Sm) + H,(S’ A S;F) 

is P-isomorphic for n > 1. But it can easily see that by using the homology exact 

sequences and the five lemma modulo the Serre’s class. 

By a similar way, we can see (2) and (3). q 

A2. We have the following isomorphisms: 

(1) %(XP) = %(X)&3 

(2) &(XP) = &(X)P. 
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Proof. It follows from Theorem B in the introduction and the universality of localiza- 

tion. 0 
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