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Abstract

In this note, it is proven that, given two perturbative constructions of time-ordered products via the 
Bogoliubov-Epstein-Glaser recursion, both sets of coupling functions are related by a local formal power 
series, recursively determined by causality.
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1. Introduction

Perturbative renormalization theory is by now a well understood subject, after the intense 
streamlining which took place about ten years ago [1]. It is amusing to recall that the Wight-
man axioms for local fields [2], abstracted from those features of perturbation theory which were 
mathematically sound, and complemented by a nonperturbative part, were not used until some 
fifteen years later to clean up the perturbative theory. If many renormalization schemes of good 
mathematical standards were proposed ten years ago [1], it was the merit of H. Epstein and 
V. Glaser [3] to streamline the construction proposed by N.N. Bogoliubov and co-workers [1], 
which is closest to the spirit of Wightman’s axioms. It is in this construction that the role of 
locality and spectrum is most conspicuous, whereas the main combinatorial theorems were first 
proved in the momentum space scheme of W. Zimmermann and co-workers [1], or/and in the 
analytic renormalization schemes finally formulated by E.R. Speer, which culminated in the di-
mensional scheme proposed by G. ’t Hooft and M. Veltman, now one of the most popular, for 
computational reasons [1].

The main theorems we referred to are the quantum action principles which describe the 
changes of Green functions under reparametrization and field changes of variables. We will say 
very little about the second of these (the Lam action principle), because there is very little to add 
to the version given by R. Flume [4], taking into account the technical remarks which will be 
found here. On the other hand the first theorem follows from the well known fact that, given two 
renormalization prescriptions, one can pass from the first to the second by a suitable change in 
the Lagrangian.

This is well known, but in our knowledge, this has not been proved either in all generality or 
directly. All that seems to exist in the published literature is a collection of comparisons of pairs 
of useful renormalization schemes. To our great surprise, such a proof does exist and is extremely 
simple if it were not for fixing the notation. The Bogoliubov–Epstein–Glaser construction is ideal 
for this purpose, and we propose to review it here in a slightly modified form which, whereas it 
is—fortunately—equivalent to the initial one, is a bit more symmetrical and easier to work with 
in dealing with formal problems.

In section 2 we fix the notation, hopefully precisely enough and briefly enough so that it will 
be clear that the arguments given in the following are really proofs!

In section 3 we review the Epstein–Glaser recursive construction in time-ordered rather than 
retarded-advanced form as it was originally performed.

In section 4, we state and prove the first main theorem.
Section 5 is devoted to a few concluding remarks.

2. Notations

The building block of the construction is a finite set of N free—generalized free—fields, 
which we shall assume to be massive, defined in d-dimensional Minkowski space time Md , with 
signature (+, −, . . . , −.).

The set of all Wick monomials of those fields and their derivatives can be and will be lex-
icographically ordered. Given a word w of this dictionary D, there corresponds to it a Wick 
monomial W(x) which is an operatored-valued distribution defined within the Fock space of the 
problem. To each Wick monomial W(x) we associate a space-time dependent coupling constant 
in D or S, gW (x). The problem is to define
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S(g) = 1 +
∑
n

in

n!
∑

wi∈D
i=1,...,n

∫
T
(
W1(x1) . . .Wn(xn)

)
gW1(x1) . . . gWn(xn) dx1 . . . dxn (1)

as a formal power series in g = { gwi
| wi ∈ D } where T denotes time ordering, in such a way 

that causal factorization holds:

S(g1 + g2) = S(g1)S(g2) if supp g1 � supp g2. (2)

The symbol � means the following: (supp g1) ∩ (supp g2 + V −), where V − is the closed past 
light cone in Md .

We introduce a more compact notation:

T
(
W1(x1) . . .Wn(xn)

) = [
TW(X)

]
W1...Wn

X = (x1, . . . , xn), |X| = n, (3)

so that TW(X) denotes the set of time ordered products of n Wick monomials, and we may 
rewrite

S(g) = 1 +
∑
n

in

n!
∫

TW(X)gW(X)dX (4)

where a summation over W is implied. Summation over repeated W indices will be used through-
out.

It is well known that the heuristic formula for T, in terms of Heaviside step functions, leads 
to the cursed ultraviolet divergences due to mishandling of the distribution character of products 
of Wick monomials [2,3].

Besides, T-products will be defined in such a way that they fulfil Wick’s theorem (which holds 
for ordinary products): let us say that for words w in D syllables are made with vowels (fields) 
and consonants (derivatives).

Two words in D differ if they do not have the same syllables—independent of order (if 
fermion fields are involved some games with Grassmann algebra valued source functions have to 
be played in order to get the right signs). Then Wick’s theorem asserts:

TW(X)

|X|! =
∑

W1∪W2=W

〈TW1(X)〉
|W1|!

:W2(X):
|W2|! (5)

where |Wi | is the product over elements of X of the number of repeated syllables in each subword 
involved.

Among the other properties required for TW(X), for which we refer to the original article, 
note

∂μ1 T
(
W1(x1) . . .Wn(xn)

) = T
(
∂μ1W1(x1) . . .Wn(xn)

)
(6)

which we shall need later on.

3. The recursive construction of Bogoliubov, Epstein, Glaser: the time ordered version

The recursion hypothesis formulated by Epstein and Glaser is that TW(X) has been con-
structed, fulfilling all required properties for |X| < n, such that, in particular:
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(i) TW(X) = TW1(X1) TW2(X2) if X1 � X2,

|X1| < n, |X2| < n,

W1 ∪ W2 = W.

(7)

(ii) [TW1(X1),TW2(X2)] = 0 if X1 ∼ X2,

|X1| < n, |X2| < n.

(8)

The question is now to construct TW(X) for |X| = n. We are going to use causal factorization 
in the form (i), (ii) as much as possible.

Note first that the regions

CI = 〈
X = I ∪ I ′ ∣∣ I � I ′〉, I, I ′ 
= ∅, (9)

cover almost all of M |X|
d . In fact, it is a simple geometrical Lemma that⋃

I,I ′ 
=∅
I∪I ′=X

CI = M
|X|
d \ diag X, (10)

where

diag X = (
X

∣∣
x1=···=xn

)
(11)

for |X| = n.
Let us now consider

T(I )
W (X) = TWI

(I ) TWI ′ (I
′), WI ∪ WI ′ = W (12)

as a distribution, this can be restricted to CI . It is a simple matter to show that

T(I )
W (X)

∣∣∣
CI ∩CJ

= T(J )
W (X)

∣∣∣
CI ∩CJ

. (13)

Indeed, using (i), this can be written

TWI∩J
(I ∩ J ) TWI∩J ′ (I ∩ J ′) TWI ′∩J

(I ′ ∩ J ) TWI ′∩J ′ (I
′ ∩ J ′)

= TWJ∩I
(J ∩ I ) TWJ∩I ′ (J ∩ I ′) TWJ ′∩I

(J ′ ∩ I ) TWJ ′∩I ′ (J
′ ∩ I ′), (14)

which is true by (ii), because in CI ∩ CJ , J ∩ I ′ ∼ I ∩ J ′.
If the various TW’s were scalar distributions instead of operator valued distributions they 

would thus define a unique distribution 
◦
TW(X) in all of M |X|

d \ diag X. The situation is reduced 
to a problem on scalar distributions by means of Wick’s theorem applied to TWI

(I ) TWI ′ (I
′). 

The theory of power counting elaborated by Epstein and Glaser insures that all the coefficients of 

the Wick expansion of 
◦
TW(X) are indeed continuable to all of Md with a “degree of singularity 

on diag X” which is the same as theirs. Since we have nothing to add here we refer the reader to 
the original article. It is clear at this point that TW(X) obtained through Wick’s expansion does 
fulfil Wick’s theorem. (i) is trivial, by construction; so is (ii) because if I ∼ I ′ (I ∪ I ′ = X), then

TW(X)
∣∣
I∼I ′ = TWI

(I ) TWI ′ (I
′)
∣∣
I∼I ′ = TWI ′ (I

′) TWI
(I )

∣∣
I∼I ′ ,

the first equality holding in CI = {I � I ′}, the second in CI ′ = {I ′ � I }.
In their initial construction, Epstein and Glaser defined a certain commutator CW(X) with 

support the union of two opposite closed cones intersecting on diag X, by virtue of (i) and (ii), 
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and they decomposed it as CW(X) = RW(X) − AW(X), the difference of a retarded and an 
advanced function, decomposition whose ambiguity, with support on diagX is the same as that of 

the continuation TW(X) of 
◦
TW(X). TW(X) was then deduced from RW(X) through the known 

formulae relating time ordered products to retarded products [3]. In time, the present version 
was a by-product of Ref. [5]. The problem of cutting a distribution into two pieces with given 
supports is really the same problem as that of continuing a distribution through the boundary of 
the open set where it is defined, both analytically and geometrically [6]. We have just chosen the 
second route here.

There is another small technical alternative we may offer to the Epstein–Glaser construction. 
In the course of verifying all the recursion hypotheses which we have not bothered to list one 
may, at one point worry about Lorentz invariance. If not so important by far as translation in-
variance, this is important in practice. The question is whether one can find TW(X) with the 

same Lorentz covariance properties as those of 
◦
TW(X). Epstein and Glaser solve this question 

by using momentum space analyticity properties of the constructed kernels and integrating over 
the compact O(4) subgroup of the complex Lorentz group that leaves the analyticity domain 
invariant—another tribute to A. S. Wightman [2]. The same question can be solved in the reals 
and boils down to a trivial cohomology problem for SL(2, C)—trivial because the cohomology 
of SL(2, C) with values in a finite dimensional representation space is trivial. This was indicated 
to us long ago by B. Malgrange and P. Cartier in a similar context [7].

Consider a set of scalar coefficients occurring in the Wick expansion of 
◦
TW(X), 

◦
τ (X), trans-

forming covariantly:

◦
τ (�X) = D(�)

◦
τ (X), � ∈ SL(2,C) (15)

(in the sense of distributions), according to the covariance properties of the involved fields and 
derivatives. Here, D(�) is a finite dimensional representation of SL(2, C). Among the continu-

ations of
◦
τ (X):

τ (X) = τ∼(X) +
∑

ci Pi(∂) δ(X), (16)

where τ∼(X) is a given continuation, Pi(∂) a monomial of derivatives, ci complex coefficients, 

with values in the representation space of D, and the summation ranges over all polynomials of 
a given degree, in agreement with power counting theory [3], is there one such that

τ (�X) = D(�)τ (X) ? (17)

Now,

τ (�X) −D(�)τ (X) = τ∼(�X) −D(�)τ∼(X) +
∑(

�i
j (�) − δi

jD(�)
)
ci Pj (∂) δ(X),

(18)

where �(�) is the representation acting on {Pi(∂)}. Now

τ∼(�X) −D(�)τ∼(X)

∣∣∣
M

|X|
d \diag X

= ◦
τ (�X) −D(�)

◦
τ (X) = 0. (19)

Thus,
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τ∼(�X) −D(�)τ∼(X) =
∑

i

ci (�)Pi(∂) δ(X) (20)

for some set of coefficients ci(�).
Now

τ∼(��′ X) −D(��′)τ∼(X)

= τ∼(��′ X) −D(�)τ∼(�′X) +D(�)
[
τ∼(�′X) −D(�′)τ∼(X)

]
=

∑
i

ci (��′)Pi(∂) δ(X)

=
∑

i

ci (�)Pi(∂) δ(�′X) +D(�)
∑

i

ci (�
′)Pi(∂) δ(X)

=
∑

i

ci (�)�i
j (�

′)Pj (∂) δ(X) +D(�)
∑

i

ci (�
′)Pi(∂) δ(X). (21)

Thus, the ci (�)’s fulfil the consistency condition:

cj (��′) = ci (�)�i
j (�

′) +D(�)cj (�
′), (22)

or, putting

cj (�) = di (�)�i
j (�

′), (23)

di (��′) = di (�) +D(�)
[
�̃

]j
i

dj (�
′), (24)

where �̃ is contragredient to �. Thus {di (�)} is a one cocycle of SL(2, C) with values in the 
representation space carrying D ⊗ �̃. By the vanishing of the corresponding cohomology [7],

di (�) = [
D(�)�̃

j
i (�) − δ

j
i

]
dj (25)

for some constant dj .
Thus

ci (�) = [
D(�) − �

j
i (�)

]
dj (26)

and

ci = di (27)

does the job.

4. The first main theorem of renormalization theory

Let us now assume we have constructed two solutions ST (g), ST ′(G) of the Bogoliubov–
Epstein–Glaser recursion, involving two sequences of time ordered products T(X), T′(X). We 
want to prove that there exists a local formal power series

GW(x) = gW(x) +
∞∑
1

GW,n(g,Dg)(x) (28)

of g(x) and its derivatives, such that
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ST (g) = ST ′(G). (29)

The term GW,n involves n factors g or Dg. Let us denote by S(n), G(n) the n-th order approxi-
mation to S, G. Let us assume we have found G(n−1) such that

S
(n−1)
T (g) = S

(n−1)

T ′ (G(n−1)), (30)

and let us look for

G(n) = G(n−1) + G ,n (31)

such that

S
(n)
T (g) = S

(n)

T ′ (G(n)). (32)

Equating the differences of both sides of Eq. (31) and (32), we get, for W = W1 ∪ · · · ∪ Wn,∫
TW(x1, . . . , xn) gW1

(x1) . . . gWn
(xn) dx1 . . . dxn

=
∫

T ′
W(x1, . . . , xn) gW1

(x1) . . . gWn
(xn) dx1 . . . dxn

+
p=n−1∑
p=2

n1,...,np
n1+···+np=n

∫
T ′

W(x1, . . . , xp)G
(n1)
W1

(x1) . . .G
(np)

Wp
(xp) dx1 . . . dxp

+
∫

T ′
W(x)GW,n(x) dx. (33)

Note that the middle sum only involves previously known terms G(k)
W for k ≤ n − 1, the only 

place where G(n)
W is involved being the last term. In order to prove that this equation does de-

termine G
(n)
W , it is enough to prove that both sides admit the same causal factorizations outside 

diag (x1 = · · · = xn), and thus, the left hand side differs from the sum of the first two terms 
on the right hand side by a counter-term supported by diag (x1 = · · · = xn), which does indeed 
define GW,n.

This is achieved by substituting gW = (1)gW + (2)gW with supp (1)gW � supp (2)gW, which 
entails, by locality, G(k)

W = (1)G
(k)
W + (2)G

(k)
W for k < n. Here (i)G is obtained from G by replacing 

g by (i)g, i = 1, 2. By varying the supports of (1)gW, (2)gW and identifying terms with different 
powers of (1)g, (2)g we obtain the desired result: Eq. (33) can be rewritten

S
(n)
T ((1)g + (2)g) − S

(n−1)
T ((1)g + (2)g)

= S
(n)

T ′ ((1)G(n) + (2)G(n)) − S
(n−1)

T ′ ((1)G(n−1) + (2)G(n−1)). (34)

By causal factorization for ST (g), ST ′(G), the cross terms we are solely interested in, read[
ST ((1)g) ST ((2)g)

]
n

= [
ST ′((1)G(n)) ST ′((2)G(n))

]
n
, (35)

ST ((1)g)p ST ((2)g)q = ST ′((1)G(n))p ST ′((2)G(n))q = ST ′((1)G(n−1))p ST ′((2)G(n−1))q

for p + q = n, 1 ≤ p ≤ n − 1, (36)

where the last step uses the previous remark that, for the indicated terms, only (1),(2)G
(n−1)
W is 

involved. This is the required coincidence of the causal factorizations of both sides of Eq. (33). 
It is true because for p ≤ n − 1,
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S
(p)
T ((1)g) = S

(p)

T ′ ((1)G(n−1)), S
(p)
T ((2)g) = S

(p)

T ′ ((2)G(n−1)), (37)

by the recursion hypothesis.

5. Remarks

1. It is not exactly true that this construction determines G(n)
W uniquely, as expected: only ∫

T ′
W(x) GW,n(x) dx is determined, i.e. the corresponding action integral: GW,n is only deter-

mined modulo the ambiguity which stems from the identities∫
∂μ

[
T ′

W(x)GW(x)
]
dx = 0.

2. It would be of interest to classify all admissible sequences with respect to their behaviour 
with respect to power counting and, in particular, those for which some subsets S of the GW’s 
are expressible in terms of the corresponding subset of gW. This happens for many known renor-
malization schemes of renormalizable theories.

In practice, one has to study the adiabatic limit for some such subsets: gW(x) → γ W, W ∈ S, 
where the γ W’s are coupling constants, the other gW’s being used to define local observables and 
Green functions thereof.

3. In many cases of interest, namely, in particular in the renormalizable case corresponding to 
a classical total Lagrangian density, one can reorganize the multiple series in γ W into a single 
series in h̄ involving no infinite resummation, at each order, for 〈ST (γS/h̄, g/h̄)〉0 from which 
ST can be recovered by use of the asymptotic LSZ formula guaranteed to hold true thanks to 
causal factorization, provided mass renormalization has been performed correctly.

6. Conclusion

Although the main interest of workers in field theory has by now shifted far ahead of formal 
perturbation theory, and although the main theorem referred to here has been well known for 
quite some time now, we have found it amusing to stress once more the role of locality in the 
structure of the formal perturbative expansions, still often used, before one knows better.
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