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Anchorage of Vinculin to Lipid Membranes Influences Cell Mechanical
Properties
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ABSTRACT The focal adhesion protein vinculin (1066 residues) can be separated into a 95-kDa head and a 30-kDa tail
domain. Vinculin’s lipid binding sites localized on the tail, helix 3 (residues 944–978) and the unstructured C-terminal arm (resi-
dues 1052–1066, the so-called lipid anchor), influence focal adhesion turnover and are important for cell migration and adhesion.
Using magnetic tweezers, we characterized the cell mechanical behavior in mouse embryonic fibroblast (MEF)-vin(�/�) cells
transfected with EGFP-linked-vinculin deficient of the lipid anchor (vinDC, residues 1–1051). MEF-vinDC cells incubated with
fibronectin-coated paramagnetic beads were less stiff, and more beads detached during these experiments compared to
MEF-rescue cells. Cells expressing vinDC formed fewer focal contacts as determined by confocal microscopy. Two-dimensional
traction measurements showed that MEF-vinDC cells generate less force compared to rescue cells. Attenuated traction forces
were also found in cells that expressed vinculin with point mutations (R1060 and K1061 to Q) of the lipid anchor that impaired lipid
binding. However, traction generation was not diminished in cells that expressed vinculin with impaired lipid binding caused by
point mutations on helix 3. Mutating the src-phosphorylation site (Y1065 to F) resulted in reduced traction generation. These
observations show that both the lipid binding and the src-phosphorylation of vinculin’s C-terminus are important for cell mechan-
ical behavior.
INTRODUCTION

Adhesion of cells to extracellular matrix (ECM) proteins or

to neighboring cells is a prerequisite for their survival and

proliferation. The contact to ECM proteins triggers biochem-

ical signals inside the cell and initiates protein synthesis and

reorganization of the cytoskeleton (1). An important group of

adhesive receptors are the integrins, comprising part of the

series of focal adhesions (FAs) that link the extracellular

matrix to the actin cytoskeleton of the cell. FAs themselves

consist of several proteins—including talin, zyxin, paxillin,

FA-kinase, and vinculin—that enable the cell to generate

mechanical forces for adhesion and migration (1). The matu-

ration of FAs is believed to be force-dependent; however, the

mechanism is still not clear (2,3).

The 116-kDa vinculin with its 95-kDa head and 30-kDa

tail domain is one of the first proteins involved in FA forma-

tion (4). It exists in two states—the open and closed confor-

mations (5). In the closed or autoinhibited state, the vinculin

head masks the binding sites for paxillin, actin, and phospho-

lipids on the vinculin tail. Activating vinculin frees the

binding sites on the tail (5,6). In the open or activated state,

vinculin localizes to FAs and connects the actin-cytoskeleton

via talin with the integrin receptor (5,6). Förster resonance

energy transfer experiments with a vinculin construct

carrying a yellow fluorescent protein in the polylinker region

and a cyan fluorescent protein at the C-terminus of vinculin-
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tail revealed that concurrent binding of talin and actin

enables the displacement of the head from the tail and the

activation of vinculin (7,8). Talin interacts with the vincu-

lin-head (residues 1�258), which lowers the affinity to its

tail domain (9–11). Phospholipids such as phosphatidylino-

sitol 4–5 bisphosphate have also been reported to induce

a conformational shift in vinculin and to activate it (9–11).

Cells deficient of vinculin are still able to form focal con-

tacts but spread poorly on ECM- coated surfaces (12–16).

They are more motile and less adhesive than wild-type cells

(12). Stable retransformation of the vinculin-tail in F9 mouse

carcinoma vinculin (�/�) cells improved adhesion and

decreased cell motility (17). Reintroduction of ~8% intracel-

lular vinculin is sufficient to recover the wild-type phenotype

(17). In magnetic twisting, magnetic tweezer, and atomic-

force-microscopic measurements, F9 vinculin (�/�) cells

showed a lower shear modulus compared to F9 wild-type

cells suggesting that vinculin operates as an intracellular

mechano-coupler (16,18–20). It is also believed that

phosphorylation of vinculin is important for the mechano-

coupling function of vinculin (21). Removing the phosphor-

ylation site at position Y822 caused an upregulation of

p-ERK, which resulted in the reduction of cell migration

(21). Furthermore, c-src-dependent vinculin phosphoryla-

tion at position Y100 and Y1065 affects cell spreading and

migration, indicating that the phosphorylation of vinculin

stabilizes the active or open conformation (22). In vitro

experiments showed that the presence of acidic lipid vesicles

elevates the src-dependent phosphorylation of vinculin

(23,24). We then hypothesize that there is a direct link
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between lipid binding and mechanical function such as cell

migration, and that this link is affected by src-dependent

phosphorylation.

Three regions on the 30-kDa tail domain have been iden-

tified as candidates for lipid-binding: 1), helix 3 (residues

935–978); 2), helix 5 (residues 1020–1040); and 3), the lipid

anchor (residues 1052–1066) (25,26). Pull-down assays with

artificial lipid membranes showed that, in contrast to full-

length vinculin-tail (Vtail), a vinculin-tail variant with six

mutated surface-exposed basic residues in helix 3 (i.e.,

K952, K956, R963, and R966 to Q) and the C-terminal lipid

anchor (i.e., R1060 and K1061 to Q) as well as a variant

lacking the last 15 amino acids (VtailDC) were both unable

to interact with acidic phosphatidylserine or phosphatidyli-

nositol vesicles under physiological conditions (25–27).

The actin binding of these vinculin mutants, however, was

not affected (25–27). Detailed studies showed lipid insertion

behavior of helix 3 and the unstructured C-terminus of

Vtail (28,29). Furthermore, it was reported that cells trans-

fected with a vinculin variant including these six point muta-

tions (vinculin-LD; K925, K956, R963, R966, R1060, and

K1061 to Q) show a reduced focal adhesion turnover rate,

impaired cell adhesion on different extracellular substrates,

and decreased cell motility (25). Cells expressing vinculin

without the lipid anchor (vinculinDC) had the same reduced

FA adhesion turnover rate and decreased cell motility (26).

These results imply that the membrane interaction of vincu-

lin’s lipid anchor influences cell mechanical behavior.

In this study, we determined the effect of the lipid anchor

(residues 1052–1066, vinculinDC) on cell stiffness, binding

strength to ECM-coated surfaces, and traction generation.

Magnetic tweezer experiments showed that mouse embry-

onic fibroblasts (MEF)-vin(�/�) cells transiently transfected

with enhanced green fluorescent protein (EGFP)-labeled

vinculinDC are less stiff than MEF-wild-type and MEF-

vin(�/�) cells retransfected with full-length (EGFP)-

vinculin (¼ MEF-resc). Measuring the binding strength of

fibronectin(FN)-coated beads attached to integrin receptors,

we found that more beads detached during force application

from MEF-vin(�/�) cells retransfected with vinculinDC

compared to the MEF-resc cells. Actomyosin-driven

contractile forces of different cells were determined using

two-dimensional-traction microscopy. MEF-vinculinDC

cells developed less force and formed fewer FAs than

MEF-resc cells. Two-dimensional-traction measurements

using various vinculin mutants deficient in lipid binding

revealed that not only the lipid anchor but also the src-phos-

phorylation at Y1065 affects cellular force generation.

MATERIALS AND METHODS

Cell lines

Mouse embryonic fibroblast (MEF) vinculin (�/�) and wild-type were

a kind gift of Dr. E.D. Adamson (Burnham Institute, La Jolla, CA). These

cell lines were generated and characterized by Xu et al. (15).
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Cell culture

MEF cell lines were maintained in low-glucose (1 g/L) Dulbecco’s modified

Eagle’s medium supplemented with 10% fetal calf serum (low endotoxin),

2 mM L-glutamine, and 100 U/mL penicillin/streptomycin (Dulbecco’s

modified Eagle’s medium, complete medium; Biochrom, Berlin, Germany)

and kept at 37�C with 5% CO2 .

Cloning and expression of vinculin

Mouse vinculin-encoding cDNA was kindly provided by Dr. E.D. Adam-

son. To distinguish transfected from untransfected cells, an EGFP cassette

was cloned into pcDNA3.1 eukaryotic expression vector (Invitrogen,

Karlsruhe, Germany), using NheI and XhoI restriction sites. The poly-

merase-chain-reaction-amplified vinculin wild-type (1–1066) and VinDC

(1–1051) constructs were C-terminally fused to the EGFP cassette using

AflII and XbaI restriction sites. The fused EGFP constructs are driven by

a CMV promoter (Clontech, Mountain View, CA). EGFP-linked vinculin-

LD, vinculin-helix 3 (H3), and vinculin-C-terminal (CT) constructs were

kindly provided by Dr. Wolfgang H. Ziegler (IZKF; University of Leipzig,

Leipzig, Germany), which were previously generated and described by

Chandrasekar et al. (25). In brief, the following lipid binding variants of vin-

culin were used: vinculin-H3 with point mutations on K925, K956, R963,

and R966 to Q; vinculin-CT (C-terminal arm) with point mutations on

R1060 and K1061 transferred to Q; and vinculin-LD with point mutations

on K925, K956, R963, R966, R1060, and K1061 to Q. The exchange of

tyrosine (Y) on position 1065 to phenylalanine (F) was done by site-directed

mutagenesis. To transfect cells, 2 � 105 cells were seeded in a 30-mm B

tissue culture dish for 24 h. The cells were then transfected with 4-mg

DNA using Lipofectamine (Invitrogen). Before fluorescence microscopy

and tweezer measurements, 1 � 105 cells of the transfected cells were re-

seeded in a 30-mm-diameter dish or on FN-coated coverslips, respectively.

Magnetic tweezers

The principle of the magnetic tweezer device used is described in Koll-

mannsberger and Fabry (30). In brief, superparamagnetic 4.5-mm epoxylated

beads (Invitrogen) were coated with fibronectin (100 mg/mL; Roche Diag-

nostics, Mannheim, Germany) in phosphate-buffered saline (PBS) at 4�C
for 24 h. Beads were washed in PBS and stored at 4�C. Before measure-

ments, fibronectin-coated beads were sonicated, added to cells (1 � 105

beads/dish), and incubated for 30 min at 5% CO2 and 37�C. A magnetic field

with a high-field gradient was generated using a solenoid (250 turns of B

0.5-mm copper wire, solenoid length ¼ 2 cm, mean solenoid diameter

1 cm) with a needle-shaped core (HyMu80 alloy; Carpenter, Reading,

PA). The needle tip was placed at a distance of 20�30 mm from a bead

bound to a cell, using a motorized micromanipulator (Injectman NI-2;

Eppendorf, Hamburg, Germany). Bright-field images of the cell, bead, and

needle tip were taken by a charge-coupled device camera (ORCA ER;

Hamamatsu, Hamamatsu City, Japan) at a rate of 40 frames/s. The bead posi-

tion was tracked on-line using an intensity-weighted center-of-mass algo-

rithm. A preset force was maintained by continuously updating the solenoid

current or by moving the solenoid such that the needle-tip to bead distance

was kept constant. Measurements on multiple beads per well were per-

formed at 37�C for 1 h, using a heated microscope stage on an inverted

microscope at 40� magnification (NA 0.6) under bright-field illumination.

Transfected MEF-vin(�/�) cells were identified in fluorescence mode using

an EGFP-filter.

To ensure that cells had not experienced any significant forces resulting

from previous measurements, the needle was moved by at least 0.5 mm

between two measurements. The bead as well as the needle tip position

and the solenoid current were continuously recorded at a rate of 40 s�1.

Image acquisition was triggered and synchronized with the solenoid current

generator, using a custom-made C2þ program run on a PC equipped with an

AD-DA board (NI-6052E; National Instruments, Austin, TX).
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Force protocol and data analysis

When a force step with an amplitude, DF, was applied to a bead, it moved

with a displacement, d(t), toward the needle tip. The ratio, d(t)/DF, defines

the so-called creep-response, J(t) (31). The creep-response of cells followed

a power law,

JðtÞ ¼ J0ðt=t0Þb; (1)

where t0 is a reference time that was arbitrarily set to 1 s (32–34). The param-

eter J0 (units of mm/nN) characterizes the elastic cell properties and corre-

sponds to a compliance (i.e., inverse of stiffness). The exponent b is

a measure for the viscoelasticity and varies between b ¼ 0 (purely elastic

solid) and b ¼ 1 (purely viscous liquid) (32). Typical values for b in our

measurements were between 0.1 and 0.3.

Bead detachment

To determine the bead-binding strength to the cell, a staircaselike force

protocol was applied during 10 s. With every increase of force, some beads

were not able to sustain the higher force and detached from the cell. The

fraction of beads that detached during the measurements was then used to

quantify the binding strength to the cell. Since beads were coated with an

extracellular matrix protein (fibronectin), the bead-binding strength is

a measure for the adhesion strength of cells to extracellular-matrix coated

surfaces.

Traction microscopy

Gels for traction experiments were cast on rectangular 75� 25 mm nonelec-

trostatic silane-coated glass slides (Menzel, Braunschweig, Germany)

according to the procedure described by Pelham and Wang (35). Gels

with 6.1% acrylamide and 0.24% bis-acrylamide were used. The Young’s

modulus of the gels was measured with a magnetically driven plate rheom-

eter and found to be 13 kPa. Red fluorescent 1-mm carboxylated beads

(Molecular Probes, Eugene, OR) were suspended in the gels and centrifuged

at 300g toward the gel surface during polymerization at 4�C. The beads

served as markers for gel deformation. The surface of the gel was activated

with sulfo-SANPAH (Pierce Biotechnology, Rockford, IL) and coated with

bovine collagen G (Biochrom) at 50 mg/mL. The cell suspension added to

the gel was contained in a silicone ring (Flexiperm; In Vitro, Göttingen,

Germany) attached to the glass slide.

Cell tractions were computed from the displacement field of the gel

surface that occurred when the cells were detached from the substrate adding

trypsin (36). Local gel deformations were computed by comparing an image

pair taken before and after trypsin treatment using a difference-with-interpo-

lation method (37). To compute the tractions, the unconstrained Fourier

transform approach of Butler et al. was followed (36). To characterize the

contractile forces of each cell by a single number, the elastic strain energy

stored in the polyacrylamide gel due to the cell tractions was calculated as

the product of local tractions and gel deformations, integrated over the

spreading area of the cell (36).

Cell fixation and fluorescence microscopy

The transfected cells were trypsinized 24 h after transfection, and 1 � 105

cells were reseeded on fibronectin-coated coverslips (FN, 25 mg/mL; Roche

Diagnostics). After 24 h of incubation, the cells were washed with PBS and

fixed in 3% paraformaldehyde (Sigma-Aldrich, Munich, Germany) for

20 min at room temperature. For staining the actin cytoskeleton, cells

were incubated for 15 min with Alexa-phalloidin (Sigma-Aldrich). Note,

that Alexa phalloidin was dissolved in lyso-phosphocholine for better

diffusion into the cell. This is a softer approach of cell permeabilization

than Triton X-100. To stain for focal adhesions, MEF-wild-type and

MEFvin(�/�) cells were incubated with monoclonal antibodies against vin-

culin (Sigma, Deisenhofen, Germany) and paxillin (BD Bioscience, Heidel-
berg, Germany), respectively. After washing with PBS, the cover slides were

mounted with MOWIOL (Kuraray, Frankfurt, Germany).

To visualize the linkage between FAs and the actin cytoskeleton, a fluores-

cence microscope (Leica DM16000B; Leica, Solms, Germany) was used.

Images were taken using a 40 � objective. The contacts between FN-coated

beads and focal adhesions inside the cells were visualized by confocal

microscopy (LSM 510, 25 � oil immersion, NA ¼ 0.8; Zeiss, Jena,

Germany). The calculation of the spreading area ensured that only cells of

similar size were used for FA determination. The LSM-Image Browser soft-

ware (Zeiss) was used to calculate the spreading area of the cells.

RESULTS

Localization of EGFP-vinculin constructs in MEF
cells

The interaction between the integrin-linked focal adhesions

and the ECM is necessary for cell survival and is mainly

driven by transmembrane receptors, like integrins (38).

Here, we examined the localization of various vinculin

constructs linked to EGFP expressed in MEF-vin(�/�) cells.

Fig. 1 shows images of MEF-wt (wild-type), MEF-vin(�/�)

(vinculin knock-out), MEF-resc (rescue), and MEF-vinDC

(transfected with vinculin lacking the lipid anchor; residues

1–1051) cells. The focal adhesions (green) in MEF-wt and

FIGURE 1 Confocal microscopic images show colocalization of the auto-

fluorescent beads (red) with focal adhesions (green). Transfected and non-

transfected MEF-vin(�/�) cells were seeded on fibronectin (FN)-coated

glass slides and allowed to adhere overnight. Before fixation, the cells

were incubated with FN-coated beads for 1 h. The FAs in MEF-wt and

MEF-vin(�/�) cells were stained with antibodies against paxillin; in

MEF-vin(�/�) cells transfected with vinculin (MEF-resc) and vinculinDC

(MEF-vinDC), focal adhesion were determined using the N-terminal

EGFP label. The arrows mark the FN-coated beads, which are in close prox-

imity to the focal adhesion proteins, vinculin and paxillin. Note that the focal

plane of the confocal micrograph was adjusted to the beads and not to the

basal cell surface.
Biophysical Journal 97(12) 3105–3112
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MEF-vin(�/�) cells were stained with antibodies against

paxillin, and focal adhesions in MEF-resc and MEF-vinDC

cells were visualized using the EGFP molecule attached to

the different vinculin peptides. The position of the 4.5-mm

FN-coated beads (red, arrow) was determined by confocal

microscopy, which were in close proximity of the FA

components such as paxillin or vinculin.

Cell stiffness and binding strength

The expression of vinculinDC has been reported to result in

reduced FA turnover and cell migration as well as altered

mechanical properties (26). The effect of the lipid anchor

on cell mechanics was measured using the magnetic tweezer

device. For stiffness measurements, we applied forces of

1 nN to FN-coated beads. We used MEF-wt and MEF-

vin(�/�) cells, both of which are stable cell lines, and full-

length vinculin (MEF-resc) or vinculinDC (MEF-vinDC)

were then transiently transfected in MEF-vin(�/�) cells.

MEF-wt and MEF-resc cells showed similar stiffness,

whereas MEF-vin(�/�) and MEF-vinDC cells revealed

significantly reduced stiffness values of ~48% and ~26%,

respectively, compared to MEF-wt cells (100%) (Fig. 2).

To test whether the binding strength to fibronectin-coated

beads differed between vinculin mutant cell lines, we

increased the externally applied force over 10 s in a staircase-

like manner from 0.5 to 10 nN (Fig. 3 A). With increasing

force, the bead detachment increased. At 10 nN force,

FIGURE 2 Stiffness of the transfected and nontransfected MEF cells were

determined at 1 nN force. The n indicates the number of cells (equals the

number of beads) measured in these experiments. Error bars denote the

mean 5 SE. (Inset) Force-versus-time protocol of these measurements.
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~20% and ~14% of the beads detached from MEF-wt and

MEF-resc, respectively, while ~37% of the beads detached

during force application from MEF-vin(�/�) cells. MEF-

vinDC showed similarly high levels of detached beads at

10 nN (Fig. 3 B). The fraction of beads that detached at

a given force level can be regarded as a direct measure of

the adhesion strength (yielding force) of the force-transmit-

ting elements and bonds among the FN-coated beads, integ-

rins, focal adhesion proteins, and the cytoskeleton. These

results imply that the lipid anchor of vinculin may influence

the adhesion strength between the cytoskeleton and ECM-

coated surfaces.

FAs per cell

It has been reported that focal adhesion maturation depends

on the internal tension and the adhesion strength of the cell to

the extracellular matrix (2,3,39). We then determined the

number of focal adhesions in MEF cell lines of similar

spreading area (Fig. 4). MEF-wt and MEF-resc cells showed

similar numbers of focal adhesions, whereas MEF-vin(�/�)

cells transfected with vinculinDC showed ~23% and MEF-

vin(�/�) cells ~40% fewer focal adhesions compared to

MEF wild-type and rescue cells (Fig. 4). The size of the

FAs in these different cell lines was similar.

FIGURE 4 Numbers of focal adhesions (FAs) per cell determined from

confocal microscopic images. Only cells of similar spreading area

(~4000 mm2) were analyzed, showing ~115 FAs in MEF-wt, 65 FAs in

MEF-vin(�/�), 110 FAs in MEF-resc, and 82 FAs in MEF-vinDC cells.

Note that n is the number of cells measured, and that the error bars denote

the mean 5 SE.
FIGURE 3 (A) A staircaselike force protocol was

applied during 10 s (solid bars). With every increase of

force, some beads detached from the cell; the displacement

of a bead that detaches at a force of 3 nN is shown as an

example (solid circle). (B) The percentage of detached

beads versus pulling force in MEF wild-type and vinculin

mutant cells is used to quantify the binding strength to

the cell.
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FIGURE 5 Two-dimensional-traction

microscopy measurements for MEF-wt,

MEF-vin(�/�), MEF-resc, and MEF-

vinDC cells. (A) Gel deformation and

bright-field and fluorescent images of

various MEF cells. The gel deformation

is color-coded. Vinculin was stained

with a monoclonal antibody in MEF-wt

and MEF-vin(�/�). For visualization

of the vinculin constructs in MEF-resc

and MEF-vinDC, the EGFP label was

used. The actin cytoskeleton was stained

with TRITC-Phalloidin. The scale bar is

50 mm. (B) Plot of the average elastic

strain energy stored in the extracellular

matrix due to cellular tractions. Note

that n indicates the number of cells

measured, and that the error bars denote

the mean 5 SE.
Two-dimensional-traction microscopic
measurements

To confirm the relationship between focal adhesion forma-

tion and cellular contractile force generated by actomyosin

motor activity that is transmitted via the focal adhesions,

we used traction microscopy on ECM-coated PAA gels.

No difference in the distribution of the actin cytoskeleton

between the different cell lines was found (Fig. 5 A, right
images). MEF-vin(�/�) cells generated ~80% and MEF-

vinDC mutants generated ~41% less tractions compared to

the MEF-wild-type and rescue cells (100%) (Fig. 5 B). These

results suggest that vinculińs lipid anchor is important for

force generation during cell adhesion.

Previously, it has been shown that the mutation of basic

residues on the surface of the vinculin-tail in helix 3 (H3;

K952, K956, R963, and R966 to Q) and in the C-terminal
Biophysical Journal 97(12) 3105–3112
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FIGURE 6 (A) Images of MEF-vin(�/�) cells trans-

fected with EGFP-labeled vinculin-LD (MEF-LD), vincu-

lin-CT (MEF-CT), and vinculin-H3 (MEF-H3). The actin

cytoskeleton was stained with TRITC-Phalloidin. The

scale bar is 20 mm. (B) Strain energy of MEF-LD, MEF-CT,

MEF-H3, and MEF-Y1065F cells was normalized to

MEF-resc (100%). Note that n indicates the number of cells

measured, and that the error bars denote the mean 5 SE.
lipid anchor (CT; R1060 and K1061 to Q) result in impaired

lipid membrane interaction (25). To test the influence of

the lipid-binding sites on cell mechanical behavior, we

performed additional two-dimensional-traction microscopy

measurements with these vinculin mutants. MEF-vin(�/�)

cells were transfected with EGFP-linked vinculin-H3, vincu-

lin-CT, and vinculin-LD constructs. All constructs localized

in focal adhesions (Fig. 6 A). There was no detectable differ-

ence in FA size and distribution. The two-dimensional-

traction measurements expressed as relative strain energy

compared to MEF-resc cells are shown in Fig. 6 B. MEF-

vin(�/�) cells transfected with a lipid-binding deficient

variant of vinculin (MEF-LD) or with a vinculin variant

with mutations in the lipid anchor region (MEF-CT) both

showed a reduction in strain energy of ~50% compared to

MEF-resc cells. However, MEF-vin(�/�) cells carrying vin-

culin with the mutated H3 domain, which also influences the

lipid binding according to Chandrasekar et al. (25), showed

similar strain energy levels as MEF-resc cells, suggesting

that only the change of vinculińs lipid anchor localized at

the C-terminus affects force generation in MEF cells.

Within the lipid anchor there is also a src-dependent phos-

phorylation position at residue 1065 (22,40). The mutation

of this tyrosine phosphorylation site results in impaired cell

spreading and migration, which suggests that the src-phos-
Biophysical Journal 97(12) 3105–3112
phorylation may affect cell mechanical behavior. The vincu-

linY1065F mutant showed a decreased force generation in

comparison to rescue cells (Fig. 6 B). Note that differential

scanning calorimetric experiments using lipid vesicles con-

sisting of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-

dimyristoyl-sn-glycero-3-phosphorylserine in the presence

of vinculin’s last 21 amino acids indicate that the Y1065 to

F mutant has similar lipid binding compared to Y1065 wild-

type (Volker Wirth, personal communication, 2009).

DISCUSSION

Mechanical tension between the interconnected assemblies

of the extracellular matrix and the cytoskeleton plays a crit-

ical role in determining cell behavior and structure. The

forces generated by and in a cell have been shown to regulate

many biological functions (41). Here, we examined the

involvement of vinculin interaction with the lipid membrane

in MEF cells and the effect of this interaction on cell stiff-

ness, binding strength, and stress-stiffening.

The MEF-wt phenotype was restored when MEF-

vin(�/�) cells were transiently transfected with EGFP-

labeled vinculin, indicating that the N-terminal EGFP label

has no obvious effect on the localization or regulation of the

vinculin molecule in MEF cells. These so-called MEF-resc



Cell Biophysics 3111
cells also showed almost identical mechanical properties

to their wild-type counterparts. Therefore, the MEF-

vin(�/�) cells are suitable, and are a useful model system

for characterizing different vinculin mutants. Magnetic

tweezer measurements showed that the cell stiffness of

MEF-vin(�/�) cells decreased significantly and returned

to wild-type level in MEF-resc cells (42). However, MEF-

vin(�/�) cells, when transiently transfected with EGFP-vin-

culinDC, were less stiff than MEF-resc cells. Previously, it

was shown that the vinculin-tail lacking the lipid anchor

exhibited impaired interactions with acidic phospholipid

vesicles, while keeping the secondary structure and the

actin-binding properties intact (26,27). A direct involvement

of the lipid anchor in membrane binding was shown by

differential scanning calorimetry (29). These findings,

together with the diminished stiffness of MEF-vinDC cells,

indicate that the linkage of vinculin’s lipid anchor with the

cell membrane is important for cell mechanical function.

Support for this assumption also comes from our bead-

binding strength measurements. With increased pulling

force, more beads detached from MEF-vinDC cells than

from MEF-wt or rescue cells. At high forces, MEF-vinDC

cells displayed almost the same level of detached beads as

vinculin knockout cells, suggesting that the lipid anchor is

necessary for effective adhesion to ECM-coated surfaces.

The reduced binding strength of MEF-vinDC cells may

also influence the tractions generated by these cells. The strain

energy generated by MEF-vin(�/�) cells was approximately

eightfold lower, and the strain energy generated by MEF-

vinDC cells was approximately twofold lower compared to

MEF-wt or MEF-resc cells. This observation indicates that

the lipid anchor plays an important role for internal force

generation and effective cell adhesion to ECM-coated

surfaces. Cell adhesion forces are believed to be due to the

actin-ECM connection via the focal adhesion complex and

the myosin II-driven force development (2,43). Blocking

the contractility with substances such as ML-7, BDM, or

KT5926, or by overexpression of peptides like caldesmon

(which inhibits actin-dependent myosin II ATPase activity)

leads to the dissolution of focal contacts (39,44). The reduced

numbers of focal adhesions in MEF-vinDC compared to

MEF-wt and rescue cells might be a secondary effect due to

the reduced force generation. Therefore, we tested the hypoth-

esis that the lipid anchor is necessary for force generation and

the maintenance of cellular prestress, which prevents the

dissolution of the focal adhesions in cells. Further experi-

ments with other vinculin variants deficient in membrane

binding revealed that only the lipid anchor, and not helix 3

(H3), affects cellular force generation. The relative strain

energy of 1), MEF-vinDC; 2), MEFvin-LD; or 3), MEFvin-

CT variants were all decreased to similarly low levels,

whereas the MEF-H3 cells demonstrate strain energies com-

parable to MEF-resc cells. This suggests that only the mem-

brane association of the lipid anchor (residue 1052�1066)

is important for force generation, whereas the lipid binding
of MEF-H3 has no influence on cell mechanical behavior.

Actin binding to vinculin tail is not impaired in MEF-vinDC

cells (25,26), but so far, to our knowledge, this has not been

unequivocally tested in MEFvin-LD or MEF-CT cells; there-

fore, a possibility remains that their lower tractions are the

result of impaired actin-vinculin binding.

It was reported that the tyrosine phosphorylation sites

(residues Y100 and Y1065) on vinculin are targeted by

c-src kinase (22,23). When the phosphorylation is prevented,

the interaction of vinculin with the Arp2/3 subunit p34Arc is

inhibited, which results in impaired cell spreading and migra-

tion (40). Further, it was shown that phospholipids stimulate

the phosphorylation of vinculin by src kinase (23,24). In this

study, we have attempted to describe the mechanical influence

of phosphorylation at position Y1065. Using two-dimen-

sional-traction microscopy, we found that MEF-Y1065F cells

generated ~50% less strain energy compared to MEF-

resc cells, which is similar to MEF-vinDC, MEF-LD, and

MEF-CT cells (Fig. 6, A and B). These first results are

intriguing, but further studies that are more detailed are needed

to characterize the molecular mechanism of vinculin’s phos-

phorylation at position 1065 and 100 in mechanical terms.

In summary, it is conceivable that the anchorage of vinculin

to lipid membranes by the C-terminus alters its conformation,

which could enhance its activation and FA recruitment

(9,10,24). Crystal structure data of vinculin show that the lipid

anchor region is not buried inside the vinculin molecule when

it is in a closed conformation (45,46). Data from our labora-

tory confirm an interaction of the hydrophobic part of lipid

membranes with vinculin’s C-terminal peptide (29). This

conformational switch may be important for the src-depen-

dent phosphorylation. Phosphorylation of vinculin’s Y1065

is essential for the binding of the p34 subunit of Arp2/3 to vin-

culin and consequently for the reinforcement of the focal

adhesion complex as well as the mechanical linkage to the

actin cytoskeleton. Only vinculin carrying the full lipid

anchor with an intact src-phosphorylation site may enable

the cell to generate sufficient prestress for adequate adhesion.
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zentrum, Deutscher Akademischer Austausch Dienst, Bavaria California

Technology Center, Deutsche Forschungsgemeinschaft, and Deutsche Kreb-

shilfe.

REFERENCES

1. Bershadsky, A. D., C. Ballestrem, L. Carramusa, Y. Zilberman, B. Gil-
quin, et al. 2006. Assembly and mechanosensory function of focal adhe-
sions: experiments and models. Eur. J. Cell Biol. 85:165–173.

2. Bershadsky, A. D., N. Q. Balaban, and B. Geiger. 2003. Adhesion-depen-
dent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19:677–695.
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