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Abstract After fabric relaxation, there is a reduction in wale and course density due to a reduction

in loop length and this actually will affect the fabric properties. Then, it is useful to find a relation

between loop length and courses and wales per unit length as well as the yarn thickness because

wales and courses per unit length can be easily measured at any state while it is difficult to measure

the loop length in the knitted fabrics. Therefore, it is required to find an equation, through which

the value of loop length can be easily calculated from the measured values of courses and wales per

unit length at any state after the knitting process. In this work estimated equations to calculate the

knitted loop length for open to normal structure and for normal to compact structure are devel-

oped. By comparing the value of the loop length predicted from this work with the other mentioned

models, it was found that the calculated values are very near to the L value of the case study; so the

developed equations are acceptable. The tightness factor and the porosity of single jersey fabrics

were also calculated theoretically.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The important loop dimensions are loop length, loop width
(wale spacing) and loop height (course spacing). Besides the

loop dimensions, which has a great effect on fabric quality
and the physical, mechanical and dimensional properties of
the cotton single jersey knitted fabric, are the machine gauge,

needle type, cam type, yarn feeding system, number of feeders,
take down system, cloth rolling or spreading, monitoring and
control systems, etc. After fabric relaxation whatever is dry or
hot and also after washing there is a reduction in wale and
course density due to a reduction in loop length and this actu-

ally will affect the other fabric properties. A standard loop
shape is shown in Fig. 1 for single jersey structure. The geo-
metrical shape of a standard loop should have same curvature
for crown and sinker loop (normally sinker loops are larger

than crown). Both the arms of loop should be in the same
plane. The bending of crown and sinker loop should be to
an equal depth and without twisting or turning. The shape fac-

tor, ratio of width to height of the loop should be about 1.3 [1].
Prakash and Thangamani [2] found that at dry-relaxed

state, the values of courses per inch and wales per inch vary

with respect to loop length and also any increase or decrease
in courses per inch and wales per inch are a reflection of any
change in the loop length. Also there was an increase in the
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Figure 1 Loop shape of jersey knitted fabric by Benltoufa et al.

[22].
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initial courses per inch values, while a decrease in wales per
inch value was observed during wet relaxation process. They

also found that courses per inch values vary with respect to
loop length and also a considerable increase in the course
per inch after hot washing. Wales per inch values vary with

respect to loop length and also decrease after hot washing. It
was also found that, loop length values vary before and after
wet relaxation and found a minimal change in the loop length
after hot washing. Also their results showed that width of fab-

ric values varies with respect to loop length and also a decrease
in the width of fabric after hot washing and thickness of fabric
values varies with respect to loop length and also an increase in

the thickness of fabric after hot washing. Haji [3] concluded
that the loop length had a significant effect on the air perme-
ability, bursting strength, dimensional change, crease recovery

angle and fabric weight. The loop length had the most signif-
icant influence on pilling resistance rating. Marmarali [4] sta-
ted that, it was apparent that as the amount of spandex

increases loop length values remain nearly the same and the
course and wale spacing values decrease.

Kumar and Sampath [5] said that, geometric properties
such as course density, stitch density, areal density and tight-

ness factor were found to be inversely proportion to the stitch
length at all the relaxation states. Herath and Kang [6] found
that, fabric tightness affects significantly the structural behav-

ior of cotton and cotton/spandex structure during relaxation.
Mikučionien _e and Laureckien _e [7] found that, plain jersey

knitted fabric shrinks in longitudinal direction 3.1%, and in

transverse direction – 2.9%. The shrinkage values of plain jer-
sey knitted fabrics after three washing and drying cycles were
less than �1%, because in single structure knitted fabrics the
zero-shrink-potential is achieved faster than double structure

knitted fabrics. Anand et al. [8] stated that, this work demon-
strated that changes occurring after laundering were largely
due to alterations in the loop shape, rather than yarn or loop

length shrinkage. The fabrics had taken up their fully relaxed
dimensions after five wash and dry cycles and appropriate con-
ditions for laundering had been applied. Quaynor et al. [9]

studied the effects of laundering and laundering temperatures
on surface properties and dimensional stability for plain flat
knit silk, cotton, and polyester fabrics with varying cover fac-

tors. The fabrics were subjected to relaxation processes and an
extended series of wash and tumble-dry cycles in laundering
baths of various temperatures. The results revealed that the
dimensional stability of silk was sensitive to a particular tem-

perature. The highest shrinkage was recorded with slackly
knitted cotton at the highest temperature. There was a consid-
erable effect of wet relaxation on dimensional stability as well

as on surface properties. Silk’s coefficient of friction was the
highest, and the lowest surface friction for cotton higher fric-
tion than tightly knitted fabrics. The coefficient of friction

had a tendency to decrease with increasing tightness, while
the surface roughness showed an opposite tendency. There
was a good correlation between stick–slip motion and ribs
on the fabrics. Therefore, the loop length can be varied after

knitting production i.e. during dry relaxation, wet relaxation,
at stretch level, and before and after washing, whatever was
cold or hot washing. Then, it was interesting to find a relation

between loop length and courses and wales per unit length
because wales and courses per unit length can be easily mea-
sured at any state while it was difficult to measure the loop

length in the knitted fabrics. Therefore, it is required to find
an equation, through which the value of loop length can be
easily calculated from the measured values of courses and

wales per unit length at any state after manufacturing. This
theoretical value of loop length will be an equivalent loop
length value which is applicable to the measured values of wale
and course density.
2. Estimation of loop length of single jersey knitted fabric

Loop length (L) is influenced by yarn input tension, knitted

fabric take-down tension, knitting velocity, friction in the knit-
ting zone, machine gauge, machine cam setting, yarn structure,
yarn linear density, etc. [10].

A more detailed review of the most noted geometrical knit-
ted loop models, including Leaf and Glaskin’s, Munden’s and
Korlinski’s model, is presented elsewhere [11]. In these models,

the loop length is defined as the function of parameters other
than loop width (1/W) and height (1/C), and yarn thickness.

Peirce [12] presumed that a knitted structure is normal

when adjacent yarns within a knitted fabric are joined in con-
tact points only. The projection of the loop onto the fabric
plane is composed of the circular needle and sinker arcs con-
nected with straight lines i.e. loop legs. The loop is three-

dimensional, which means that the loop arcs and legs lay on
the cylinder surface with curvature radius (R) and the axis par-
allel to the course direction. For a normal structure, loop

length (L) depends only on yarn thickness (d) [12]:

L ¼ 16:66 d ð1Þ
The loop length of the open knitted structure (‘) defined by

Peirce [12] is:

L ¼ 2Aþ Bþ 5:94 d ð2Þ
where A= loop width, B = loop height, d= yarn thickness.

Peirce’s loop model was verified through experimental work
by Fletcher and Roberts [13–15].

According to Dalidovich [16], loop length (L) is a function
of loop width (A), loop height (B) and yarn thickness (d).
Assuming the simplifications that the loop is planar,

L ¼ 1:57Aþ 2BþPd ð3Þ



Figure 2 Loop shape of single jersey knitted fabric for open to

normal structure.
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According to Dalidovich, the loop length (L) of a normal
structure only depends on yarn thickness (d) and can be calcu-
lated with a simple equation:

L ¼ 16:64 d ð4Þ
Vékássy [17] also defined a simplified equation for the loop

length of a normal knitted structure in which the needle and
sinker arcs are in contact. The loop length (l) of the normal

structure is only dependent on yarn thickness (d):

L ¼ 17:33 d ð5Þ
Moreover, Vekassy anticipated the structure being more

closed than the normal structure. The loop height of the closed

structure is smaller than the height of the normal loop
structure.

The loop length (L) of the close knitted structure is as

follows:

L ¼ 13:396 d ¼ 13:40 d ð6Þ
With the derivation from the original Morooka and
Matsumoto and Morooka’s loop model [18] and introduction
of loop width (A), loop height (B) and yarn thickness (d), the

general equation for the loop length (L) calculation is [19]:

L ¼ Aþ 2Bþ 4:28 d ð7Þ
In order to define the mathematical models valid for both,

conventional and elasticized single knitted structures, the

impact of independent variables to loop length was studied
with the multiple linear regressions [20].

Preliminarily, a general linear model with four predictors,

i.e. loop width (A), loop height (B), yarn thickness (d) and knit-
ted fabric thickness (t), was obtained for all knitted fabrics,
elasticized and conventional Eq. (8).

L ¼ 0:80Aþ 2:45B� 1:17 dþ 3:43 t ð8Þ
The model is very good, as it explains more than 99% (R2

adj. = 99.4%) of the variability in loop length (L). For the use
of this model, knitted fabric thickness measurements are

required.
In order to eliminate the fabric thickness measurements and

simplify the calculation, a linear model with three predictors
given by Cuden et al. [21], i.e. loop width (A), loop height

(B), yarn thickness (d), was developed according to Eqs. (2),
(3) and (7). On the basis of this model, it is possible to calculate
loop length (L) for all knitted fabrics, elasticized and conven-

tional, as stated hereafter – Eq. (9).

L ¼ 1:92 Aþ 1:41 Bþ 4:59 d ð9Þ
The model is good, as it explains more than 98% (R2 adj.

= 98.5%) of the variability in loop length (L).

Again, [21] added that, linear models with three predictors,
i.e. loop width (A), loop height (B), yarn thickness (d), were
generated.

According to the model, the loop length of conventional
samples can be calculated as presented in Eq. (10).

L ¼ 0:80 Aþ 2:58 Bþ 4:26 d ð10Þ
The model explains more than 99% (R2 = 99.8%) of the

variability in loop length (L).

The loop length of elasticized samples made from various
types of elastomeric yarns can be calculated as presented in
Eq. (11).
L ¼ 2:46 Aþ 2:11 Bþ 2:98 d ð11Þ
The new loop model for the elasticized single weft structure

is good as it explains more than 98% (R2 adj. = 98.8%) of the

variability in loop length (L).
Finally they concluded that, as anticipated, the structures

made from conventional yarns without elastane show the best
agreement with the studied geometrical loop models for open

structures. Elasticized structures cannot be modeled well with
the existing geometrical loop models. Therefore, the investi-
gated loop models cannot be generally applied when designing

both conventional and elasticized single weft knitted fabrics.
For both conventional and elasticized knitted fabric planning,
Eq. (9) is the new general loop model, which can be applied.

For elasticized single weft knitted structures, Eq. (11) is a
new mathematical model, which is proposed.

Estimation for the loop length for both conventional and

elastomeric yarn in case of normal, compact and super com-
pact can be derived as follows.

2.1. Estimation of the knitted loop length for open to normal
structure

Assume that the knitted loop for open to normal structure has
the shape as shown in Fig. 2.

Loop width = 1/Wales per unit length = 1/w = A
Loop height = 1/courses per unit length = 1/c = B

The loop length ¼ P
1

2w
þ d

� �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=cÞ2 þ d2

q

¼ PðA=2þ dÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ d2

p
ð12Þ

According to [23] for normal to compact structure A 6 4d,
B 6 3.46d.

Therefore by substituting the values of A= 4d and
B = 3.46d in Eq. (12) for normal structure the loop length will
be 16.63d. So the loop length for open structure will be larger

than 16.63d.
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2.2. Estimation of the loop length for normal to compact
structure

Assume that the knitted loop has the shape as shown in Fig. 3.

Assumptions

A is the loop width.

B is the loop height.

Therefore the loop length can be calculated as follows:

The loop length ¼ needle loopþ 2 1=2 Sinker loopþ loop legs½ �
Needle loop ¼ ðA� dÞ=2
Sinker loop ¼ IIðA� dÞ=2
Loop leg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ ðA=2� dÞ2

q

where
d= yarn diameter in mm.

A= 1/Wales per mm= 1/w.

B = 1/courses per mm= 1/c. Then,

Loop length in mm ¼ PðA� dÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ ðA=2� dÞ2

q
ð13Þ

According to [23] for normal to compact structure A 6 4d,
B 6 3.46d

L ¼ Pð4d� dÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:46dÞ2 þ ð4d=2� dÞ2

q
¼ 16:63 d

For super compact Single Jersey Knitted Fabric:

A ¼ 2d; B ¼ d

From Eq. (13), L = 5.14d.

A normal to open structure converts to a compact or a very
compact structure after the dry or dry and wet relaxation. The
values of the loop width (A) for open, normal, compact and

super compact are larger than 4, equal to 4, from 2 to 4, less
than 2 respectively. The values of the loop height (B) are larger
than 3.46 for open, equal to 3.46 for normal, from 3 to 3.46 for
Figure 3 Loop shape for normal to compact single jersey knitted

fabric.
compact and from 1 to 3 for super compact [23]. However, [23]
approaches the ideal lengthwise-normal structure (B = 3.46).
The loose knitted fabrics made from yarns without the elastane

core are lengthwise loose, as in most cases B > 3.46. The ideal
linear loop module is d = 16.6 �17.3. Therefore by substitut-
ing the values of A and B, for loose to super compact knitted

fabric, in the developed equations of the loop length, the ideal
linear loop module will be larger than 16.63 for open, equal to
16.63 for normal, from 16.63 to 5.14 for compact, less than

5.14 for super compact.
Case study:

The values of the four predictors from an experiment were
as follows:

W = 36 Wales per inch.
C = 48 courses per inch.

d = 0.176 mm.
L = 2.8 mm.

A comparison between the values of loop length obtained
from the different mentioned models and the models from this
work is shown in Table 1.

By comparing the value of the loop lengths predicted from
this work from Eqs. (12) and (13) with the other models men-
tioned before, it is clear that the calculated values are very near
to the L value in this case study, which means that the devel-

oped equations are acceptable and the loop model is also very
near to the actual value.

3. Estimation of tightness factor of the knitted fabric

Generally the tightness factor of the knitted fabric is given [21]
as follows:

Tightness Factor ¼
ffiffiffiffiffiffiffi
tex

p
L

ð14Þ

where L = loop length in mm.
The above equation is true if the loop length is constant at

any state after knitted fabric manufacturing but it is not the

case because the loop length contracted during fabric finishing
and during washing whatever cold or hot washing at end-use.
Table 1 Comparison between loop length values obtained

from the different models.

Model name Estimated loop length (mm)

Peirce model Eq. (1) 2.93

Peirce Eq. (2) 2.98

Dalidovich model Eq. (3) 2.718

Dalidovich Eq. (4) 2.92

Vekassy model Eq. (5) 3.05

Vekassy Eq. (6) 2.35

Morooka Eq. (7) 2.517

Eq. (8) 2.86

Eq. (9) 2.9

Eq. (10) 2.67

Eq. (11) 3.37

Loop length from this work Eq. (12) 2.776

Loop length from this work Eq. (13) 2.779



Table 2 Comparison between the tightness factor values calculated from different equations.

Fed loop

length (mm)

Yarn

count

(Tex)

Wales

per inch

Courses

per inch

Yarn

diameter

(mm)

Tightness factor

from Eq. (14)

Tightness factor

from Eq. (15)

Tightness factor

from Eq. (17)

Tightness factor

from Eq. (18)

2.6 14.75 30.48 60.96 0.160 1.47 1.42 1.17 1.24

2.7 16.4 38 56 0.176 1.49 1.57 1.15 1.49

2.8 16.4 36 48 0.176 1.44 1.45 0.98 1.3

Single jersey knitted fabric 855
Therefore, if we substitute the values of loop length in conjunc-
tion with the value of Wales and courses at the two mentioned

equations of loop length, the tightness factor will be as follows:

Tightness Factor ¼
ffiffiffiffiffiffiffi
tex

p

PðA=2þ dÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ d2

p ð15Þ

Tightness Factor ¼
ffiffiffiffiffiffiffi
tex

p

PðA� dÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ ðA=2� dÞ2

q ð16Þ

where Eq. (15) by using estimated loop length from Eqs. (12)

and (16) by using estimated loop length from Eq. (13).
Also if we considered that the tightness factor is the ratio of

the area covered by the fabrics to the total area then:

Tightness Factor

¼ loop length � yarn diameter� 4 � yarn diameter square½ �
ð1=CWÞ

Tightness Factor ¼ L � d� 4d2

ð1=CWÞ ¼ CWd � ½L� 4d� ð17Þ

where d= 0.044
ffiffiffiffiffiffiffi
tex

p
in mm.

To simplify the Eq. (17) by ignoring the area repeated by
the yarn (4d2), the Eq. (17) will be the following:

Loop length * yarn diameter * Wales/unit length * courses/

unit length

Tightness Factor ¼ P
A

2
þ d

� �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ d2

p� �
� d � C �W

ð18Þ
Case study:

By comparing the values of Tightness factor calculated
from Eqs. (15)–(18) by the other which was calculated from

Eq. (14), it is obvious that the results of Eqs. (14) and (15)
are very near to the result of the normal equation of tightness
factor, and this confirms that the equations of loop length pro-

posed in this work are acceptable (Table 2).

4. Estimation of knitted fabric porosity

Porosity is one of the main physical parameters that have a
great influence on comfort properties. Porosity of knitted fab-
ric can be defined as [1 � the ratio between the volume of the
fibers in the cell to the volume of the unit cell of knitted fabric].

Therefore

Porosity % ¼ 1� volume of fibers

Volume of Cell

� �
� 100

Volume of the fibers ¼ Weight of the yarn in the Cell

fiber Density

Weight of yarn ¼ L � tex=106
where L, loop length in mm and tex/106 is the weight of yarn
per mm

Volume of Cell ¼ t

c � w
where (t) is the Fabric Thickness, which is 2d for Single Jersey
i.e.,

t= 2d.

d= 0.044
ffiffiffiffiffiffiffi
tex

p
in mm.

Porosity % ¼ 1� c � w � L � tex
q � 106 � 2 � 0:044 ffiffiffiffiffiffiffi

tex
p

� �
� 100%

Porosity % ¼ 1� c � w � L ffiffiffiffiffiffiffi
tex

p

q � 88 � 103
� �� �

� 100% ð19Þ

where
C= Courses/mm.

W =Wales/mm.
L, loop length in mm.
q; fiber density in gm/mm3.

To simplifying the above equation the Volume of the yarn
can be calculated from another way as follows:

Volume of the yarn ¼ loop length � cross section area

If the yarn is assumed theoretically to be circular in cross

section

Volume of the yarn ¼ L � p � d2=4
Therefore

Porosity % ¼ 1� c � w � L �P � d2
4t

� �� �

Porosity % ¼ 1� c � w � L �P � d
8

� �� �
� 100% ð20Þ

Benltoufa et al. [22] found that the porosity can be calcu-
lated as follows

e ¼ 1� pd2LCW=2t

t: sample’s thickness (cm);

L: elementary loop length (cm);
d: yarn diameter (cm);

C: number of courses per cm;
W: number of Wales per cm.

Case study:

The porosity of Single Jersey cotton knitted fabrics was cal-
culated from Eq. (19) as shown in Table 3.



Table 3 The porosity of Single Jersey knitted fabrics obtained from equation (19).

Measured loop length

(mm)

Yarn count

(Tex)

Wales per

inch

Courses per

inch

Tightness factor from Eq.

(14)

Porosity from Eq. (19)

(%)

2.3 20 47 85 1.9 52

2.5 20 46 66 1.78 60

2.8 16.4 36 48 1.44 77
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If the fabric porosity is calculated from the Eq. (20) the
value will be smaller than the calculated value in Table 3

because the yarn diameter was assumed to be circular and it
is not the case in knitted fabrics because the yarn twist has
low value.

5. Conclusion

In this work, an attempt has been carried out to develop a geo-

metrical theoretical model for the determination of the loop
length of single jersey knitted fabrics: a defined simplified
equations for the loop length for open to normal knitted struc-

ture and for normal to compact structure in which the wales
and courses are adjacent to each other and after knitting
become highly close in contact. By comparing the predicted
values of the loop lengths from this work by Eqs. (12) and

(13) with the other researcher’s models, it was found that the
calculated loop length values are very near to the actual fed
loop length.

From the developed equations of the loop length, we found
that, the ideal linear loop module will be larger than 16.63 for
open single jersey structure, equal to 16.63 for normal, from

16.63 to 5.14 for compact, and less than 5.14 for super com-
pact structures.

Also, theoretically the tightness factor and the porosity of

single jersey knitted fabrics were calculated by substituting
the developed loop length equations and the results agree clo-
sely with the normal equation of tightness factor.
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