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SUMMARY

Somaticmutations in isocitrate dehydrogenase 1 or 2
(IDH1/2) contribute to the pathogenesis of cancer via
production of the ‘‘oncometabolite’’ D-2-hydroxy-
glutarate (D-2HG). Elevated D-2HG can block differ-
entiation of malignant cells by functioning as a
competitive inhibitor of a-ketoglutarate (a-KG)-
dependent enzymes, including Jumonji family his-
tone lysine demethylases. 2HG is a chiral molecule
that can exist in either the D-enantiomer or the
L-enantiomer. Although cancer-associated IDH1/2
mutants produce D-2HG, biochemical studies have
demonstrated that L-2HG also functions as a potent
inhibitor of a-KG-dependent enzymes. Here we
report that under conditions of oxygen limitation,
mammalian cells selectively produce L-2HG via
enzymatic reduction of a-KG. Hypoxia-induced
L-2HG is not mediated by IDH1 or IDH2, but instead
results from promiscuous substrate usage primarily
by lactate dehydrogenase A (LDHA). During hypoxia,
the resulting increase in L-2HG is necessary and suf-
ficient for the induction of increased methylation of
histone repressive marks, including histone 3 lysine
9 (H3K9me3).

INTRODUCTION

In addition to fueling cellular growth and proliferation, nutrients

and metabolic intermediates can influence cellular responses

to physiologic perturbations (Vander Heiden et al., 2009). The

potential impact that specific metabolites can exert on cell

responsiveness was exemplified by the identification of recur-

rent somatic mutations in isocitrate dehydrogenase 1 and 2

(IDH1/2) in a variety of human cancers (Losman and Kaelin,

2013). IDH1/2 are NADP+-dependent enzymes that normally

catalyze oxidative decarboxylation of isocitrate to a-ketogluta-

rate (a-KG). Cancer-associated mutations in IDH1/2 result in a

gain-of-function activity enabling conversion of a-KG to D-2-hy-

droxyglutarate (D-2HG) (Ward and Thompson, 2012). D-2HGhas
304 Cell Metabolism 22, 304–311, August 4, 2015 ª2015 Elsevier Inc
been proposed to function as an ‘‘oncometabolite’’ via its ability

to inhibit a number of a-KG-dependent enzymes, including

Jumonji histone lysine demethylases. In particular, D-2HG-medi-

ated inhibition of epigenetic modifying enzymes promotes

repressive chromatin structure that impairs expression of genes

required for normal differentiation in response to inductive

growth factors/cytokines.

Of note, 2HG is a chiral molecule that can exist in either the

D-(R)-enantiomer or L-(S)-enantiomeric conformation. While

IDH1/2 mutants exclusively produce D-2HG, biochemical evi-

dence indicates that L-2HG can potently inhibit many a-KG-

dependent enzymes, including epigenetic modifiers (Chowdhury

et al., 2011; Koivunen et al., 2012; Xu et al., 2011). Normal cells

without IDH1/2 mutations produce small quantities of both

D-2HG and L-2HG via metabolic pathways that remain poorly

understood. The evolutionarily conserved D-2-hydroxyglutarate

and L-2-hydroxyglutarate dehydrogenases (D2HGDH and

L2HGDH) prevent accumulation of D-2HG and L-2HG, respec-

tively, by catalyzing their conversion back to a-KG (Linster

et al., 2013). Homozygous germline loss-of-function mutations

of D2HGDH or L2HGDH result in 2HG acidurias, disorders char-

acterized by systemic elevation of D-2HG or L-2HG (Kranendijk

et al., 2012). Patients with 2HG acidurias suffer from significant

developmental abnormalities resulting in premature death. Sys-

temic elevations of L-2HG arising from inherited mutations of

L2HGDH have been associated with brain tumors (Moroni

et al., 2004). Likewise, the recent identification of recurrent

L2HGDH loss in kidney cancer further supports a potential onco-

genic role for deregulated L-2HG (Shim et al., 2014).

The 2HG acidurias demonstrate that physiologic D-2HG and

L-2HG levels must be tightly regulated by D2HGDH and

L2HGDH in order to prevent 2HG-mediated pathology. These

findings also raised the possibility that controlled physiologic

production of D-2HG or L-2HG might modulate specific cellular

functions. In this study, we identify ametabolic pathwaywhereby

IDH1/2-wild-type cells selectively produce L-2HG via enzymatic

reduction of a-KG during hypoxia. Hypoxia-induced L-2HG does

not depend on either IDH1 or IDH2, but instead arises via promis-

cuous substrate usage by lactate dehydrogenase A (LDHA), with

additional contributions from malate dehydrogenase 1 and 2

(MDH1/2). Structural modeling of the active site of LDHA demon-

strates the spatial constraints for substrate binding that dictate

how LDHA-mediated reduction of a-KG gives rise to L-2HG.
.
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Figure 1. L-2-Hydroxyglutarate (L-2HG) Production in Response to Hypoxia

(A) The indicated cells were cultured for 24–48 hr in 21% or 0.5% oxygen (O2). Total intracellular 2HGwasmeasured by gas chromatography-mass spectrometry

(GC-MS) and normalized to total protein to control for input. The 2HG level for each cell type in 21%O2 is arbitrarily set to 1 to illustrate fold change. Graphs show

mean ± SD of triplicate samples.

(B and C) SF188 cells were stably infected with lentiviruses expressing nontargeting shRNA (Cont), shRNAs targeting D2HGDH (D2, D3, D4, D5), or shRNAs

targeting L2HGDH (L2, L3, L4). Cells were cultured for 48 hr in 21% or 0.5% O2, and 2HG was measured as in (A). Western blots show expression of HIF1a,

D2HGDH, L2HGDH, and S6 protein (loading control).

(D) Metabolites from hypoxic SF188 cells were divided into four fractions, then spiked with reference standards of D-2HG, L-2HG, or a mixture of D-2HG and

L-2HG, or left unspiked. Chiral derivatization was performed to allow separation of 2HG enantiomers by GC-MS. For each panel in this figure, representative data

from 1 of R3 independent experiments are shown. See also Figure S1.
Moreover, we show that L-2HG is necessary and sufficient for

enhanced trimethylation of histone 3 lysine 9 (H3K9me3) that oc-

curs in response to hypoxia. Thus, we propose that hypoxia-

induced L-2HG represents a metabolic signaling intermediate

that conveys information about the metabolic state of the cell

via modulation of epigenetic marks in the nucleus.

RESULTS

L-2-Hydroxglutarate Accumulates in Hypoxic Cells
A previous report indicated that some cells accumulate 2HG un-

der conditions of oxygen limitation (Wise et al., 2011). Indeed, we

identified a generalizable phenomenonwhereinmammalian cells

accumulate 2HG in response to hypoxia (Figure 1A). We used

gas chromatography-mass spectrometry (GC-MS) to measure

intracellular 2HG in IDH1/2-wild-type cell lines cultured in nor-

moxia (21% oxygen) versus hypoxia (0.5% oxygen). In all cases,

we observed a substantial increase of 2HG in hypoxia, ranging

from 5- to 25-fold depending on the type of cell (Figure 1A).
Cel
Quantification of intracellular 2HG levels demonstrated an abso-

lute concentration of 304 ± 81 mM (mean ± SD; Figures S1A

and S1B, available online, show the standard curve and calcula-

tions for a representative experiment). Standard methods for

measuring metabolites by GC-MS do not distinguish enantio-

meric species; thus total 2HGmeasured in these assays includes

both D-2HG and L-2HG.

We next investigated the effects of manipulating D2HGDH

or L2HGDH on intracellular 2HG levels. shRNAs targeting

D2HGDH or L2HGDH were stably infected into the SF188 glio-

blastoma cell line. Regardless of oxygen availability, ablation of

D2HGDH had little effect on intracellular 2HG (Figure 1B). How-

ever, ablation of L2HGDH substantially increased accumulation

of 2HG in hypoxia, suggesting that L-2HG represents the major

form of 2HG that accumulates in response to oxygen limitation

(Figure 1C). Similar results were obtained using HEK293T cells

transfected with siRNAs targeting D2HGDH or L2HGDH (Fig-

ure S1C). Overexpression of L2HGDH, but not D2HGDH, in

HEK293T cells abrogated hypoxic induction of 2HG, providing
l Metabolism 22, 304–311, August 4, 2015 ª2015 Elsevier Inc. 305
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Figure 2. Hypoxia-Induced L-2HG Originates from Glutamine-Derived a-Ketoglutarate

(A and B) Isotope tracingwas performed in SF188 cells cultured inmedium containing either [U-13C]glucose or [U-13C]glutamine. The graph depicts the fraction of

intracellular 2HG labeled by 13C at the indicated time. A similar labeling pattern was observed in RCC4 and CS-1 cells (data not shown).

(C) SF188 cells were cultured for 48 hr in 21%or 0.5%O2 in the presence of vehicle (DMSO) or 5mMdimethyl-a-KG. Total intracellular 2HGwas assessed byGC-

MS. Graph shows mean ± SD of triplicate samples. Representative data from one of three independent experiments are shown.

(D and E) SF188 cells were cultured as in (C), and then chiral derivatization of metabolites was performed to allow separation of 2HG enantiomers by GC-MS.

(D) shows an overlay of GC-MS histograms for 2HG on the same scale. (E) shows individual GC-MS histograms for 2HG. The color code of the graphs for (D)

and (E) is the same as shown in (C). L-2HG (left) elutes at a shorter retention time than D-2HG (right) as in (1D). Representative data from one of five independent

experiments are shown.
additional evidence supporting selective accumulation of the

L-enantiomer of 2HG in hypoxic cells (Figure S1D).

To determine which enantiomer of 2HG accumulates in

hypoxia, we utilized a chiral derivatization procedure in which

metabolites undergo sequential reaction with R(-)-2-butanol fol-

lowed by acetic anhydride (Figures S1E and S1F), thereby allow-

ing D-2HG and L-2HG to be distinguished by GC-MS (Ward

et al., 2010). Prior to chiral derivatization, metabolite extracts

from hypoxic cells were either left unmanipulated or spiked

with commercially available standards of D-2HG, L-2HG, or a

mixture of D-2HG and L-2HG as references. This technique

demonstrated that L-2HG was the major enantiomeric form of

2HG present in hypoxic cells (Figures 1D, S1G, and S1H).

Hypoxia-Induced L-2HG Originates from Glutamine-
Derived a-KG
Glucose and glutamine represent two major nutrients that prolif-

erating cells uptake and metabolize (Vander Heiden et al., 2009).

We performed isotope tracing in SF188 cells supplemented with

either [U-13C]glucose or [U-13C]glutamine in order to identify the
306 Cell Metabolism 22, 304–311, August 4, 2015 ª2015 Elsevier Inc
source of the carbon backbone utilized to produce L-2HG in hyp-

oxia (Figures 2A and 2B). In normoxia, the relatively small pool of

total 2HG (Figure 1A) was derived mostly from glutamine, with a

small contribution from glucose (Figures 2A and 2B). In contrast,

the larger pool of hypoxia-induced L-2HG (Figures 1A and 1D)

was derived exclusively from glutamine (Figures 2A and 2B).

Since cellular metabolism of glutamine generates a-ketogluta-

rate (Fan et al., 2013), we reasoned that hypoxia-induced L-2HG

might arise from enzymatic reduction of glutamine-derived

a-KG. We tested the effect of supplementing cells with a cell-

permeable form of a-KG. Addition of cell-permeable dimethyl-

a-KG to cells in normoxia resulted in a modest increase in

intracellular 2HG, while in hypoxia there was a nearly 100-fold in-

crease in 2HG (Figure 2C), which was confirmed to be L-2HG by

chiral derivatization (Figures 2D and 2E).

Hypoxia-Induced L-2HG Results from Promiscuous
Substrate Usage by LDHA
In order to determine the enzymatic source(s) of hypoxia-

induced L-2HG, we ablated candidate metabolic enzymes by
.
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Figure 3. Hypoxia-Induced L-2HG Arises via Promiscuous Substrate Usage by LDHA

(A–C) SF188 cells were transfected with siRNAs targeting (A) IDH1 (IDH1-a, IDH1-b) and/or IDH2 (IDH2-a, IDH2-b), (B) MDH1 (MDH1-a, MDH1-b), and/or MDH2

(MDH2-a, MDH2-b), or (C) LDHA (LDHA-a, LDHA-b, LDHA-c, LDHA-d). Forty-eight hours after transfection, cells were transferred to 21% or 0.5% O2 for an

additional 24–48 hr, followed bymeasurement of intracellular 2HG.Western blot confirms target knockdown efficiency and shows hypoxia-induced expression of

HIF1a. Expression of either S6 protein or a-tubulin is shown as loading control.

(D) SF-XL cells were transfected with siRNAs targeting LDHA (LDHA-b) or both LDHA and MDH2 (LDHA-b/MDH2-b). Forty-eight hours after transfection, cells

were transferred to 0.5% O2 and cultured for an additional 48 hr in the presence of vehicle (DMSO) or the indicated concentrations of dimethyl-a-KG (DMaKG),

followed by measurement of intracellular 2HG. Western blot confirms target knockdown efficiency with a-tubulin shown as loading control.

(E) Schematic summarizing enzymatic sources of hypoxia-induced L-2HG. For each panel, representative data from one of three independent experiments are

shown. See also Figures S2 and S3.
siRNA (Figure 3). Knockdown of IDH1 or IDH2 did not impair pro-

duction of L-2HG in hypoxic SF188 cells (Figure 3A). Likewise,

HEK293T cells subjected to siRNA-mediated ablation of IDH1,

IDH2, or both IDH1 and IDH2 together exhibited no dependence

on these enzymes for production of L-2HG in response to

hypoxia (Figure S2A). These observations are consistent with

the fact that the a-hydroxyl group in naturally occurring isocitrate

(analogous to the a-hydroxyl group of 2HG) always exists in the

D-(R)-enantiomeric conformation due to stereochemical con-

straints of enzymatic reactions catalyzed by isocitrate dehydro-

genases (Sprecher et al., 1964).
Cel
Metabolic enzymes can exhibit ‘‘promiscuous’’ catalytic activ-

ities (Linster et al., 2013), and previous cellular fractionation

studies implicated cytosolic malate dehydrogenase 1 (MDH1)

and mitochondrial malate dehydrogenase 2 (MDH2) as possible

enzymatic sources of L-2HG (Rzem et al., 2007). We tested the

requirement for metabolic enzymes whose primary catalytic ac-

tivities involve reduction of a-ketoacid substrates to L-hydroxyl

acids with structural similarities to a-KG and L-2HG, respectively

(Figure 3E). In SF188 cells, we identified a partial contribution

from MDH1 and MDH2 to hypoxia-induced L-2HG (Figure 3B).

Strikingly, however, LDHA was identified as the major enzyme
l Metabolism 22, 304–311, August 4, 2015 ª2015 Elsevier Inc. 307



required for hypoxia-induced L-2HG in SF188 cells (Figure 3C).

These observations were confirmed in HEK293T cells, where

combined ablation of LDHA and MDH2 also resulted in a near-

total abrogation of hypoxia-induced L-2HG, although the relative

contributions of each enzyme varied slightly between cell types

(Figures S2B and S2C). In contrast, ablation of LDHB did not

have a substantial effect on hypoxia-induced L-2HG (Fig-

ure S2D). Collectively, these findings suggest that hypoxic cells

can produce L-2HG from reduction of glutamine-derived a-KG in

the cytosol via alternative substrate usage by LDHA, with a

smaller contribution from cytosolic MDH1 and mitochondrial

MDH2 (Figure 3E).

We sought to address the possibility that ablation of LDHA

might indirectly inhibit hypoxic induction of L-2HG through

altered glutamine oxidation or perturbed mitochondrial meta-

bolism. To test if increasing cytosolic a-KG can increase L-2HG

production, we ablated LDHA alone or LDHA and MDH2

together, then added cell-permeable a-KG under hypoxic condi-

tions (Figure 3D). In hypoxic cells transfected with nontargeting

control siRNA, supplementation with cell-permeable a-KG re-

sulted in a dose-dependent increase in L-2HG. In contrast,

siRNA-mediated ablation of LDHA was sufficient to block

a-KG-mediated enhancement of hypoxia-induced L-2HG. Com-

bined ablation of both LDHA and MDH2 resulted in a modest

further decrease in a-KG-mediated enhancement of L-2HG.

Abrogation of hypoxia-induced L-2HG had no significant

effects on HIF1a protein levels (Figures 3B and 3C). Previous re-

ports demonstrated that L-2HG can stabilize HIF1a in normoxia

viaL-2HG-mediated inhibitionof theEGLNfamilyofa-KG-depen-

dent prolyl hydroxylases that mark HIF1a for proteasomal degra-

dation (Chowdhury et al., 2011; Koivunen et al., 2012). Consistent

with these observations, we noted minor increases in HIF1a pro-

tein levels in hypoxic cells subjected to ablation of L2HGDH (with

consequent enhancement of hypoxia-induced L-2HG) (Fig-

ure 1C). However, it appears that reduced oxygen availability

(0.5%) is sufficient to impair the activity of EGLN prolyl hydroxy-

lases even in the absence of elevations in L-2HG (Figure 3C).

We found no absolute requirement for HIF1a in the hypoxic

production of L-2HG (Figures S2E, S2G, and S2H). Nonetheless,

HIF1a enhanced hypoxia-induced L-2HG in some contexts (Fig-

ure S2H), such as VHL-deficient RCC4 cells which display

enhanced LDHA levels in a HIF1a-dependent manner (Hu

et al., 2003). In contrast, the lack of effect in some cancer cell

lines (e.g., SF188) was consistent with the fact that knockdown

of HIF1a in these cells did not have a substantial effect on

LDHA expression (Figure S2F). Taken together, these findings

suggest that HIF1a can contribute to L-2HG production, but

that LDHA expression in the absence of HIF1a can be sufficient

for production of L-2HG in response to hypoxia.

TheActive Site of LDHACanAccommodateReduction of
a-KG to L-2HG
To better understand how LDHA might catalyze reduction of

a-KG to L-2HG, we performed molecular docking of putative

substrates to the active site of LDHA. The resulting docking

poses demonstrated that pyruvate is spatially coordinated by

hydrogen bonding to the carboxylic acid head group and adja-

cent carbonyl group (Figure S3A). Nucleophilic attack of pyru-

vate’s carbonyl carbon by the hydride group from NADH is
308 Cell Metabolism 22, 304–311, August 4, 2015 ª2015 Elsevier Inc
spatially restricted such that the reductive reaction exclusively

produces the L-(S)-enantiomer of lactate (Figure S3B). Likewise,

molecular docking of a-ketoglutarate showed that it could favor-

ably adopt a similar spatial coordination to pyruvate via identical

hydrogen bonding to the carboxylic acid head group and adja-

cent carbonyl group (Figure S3C). Analogous to the reduction

of pyruvate to L-lactate, nucleophilic attack of the carbonyl car-

bon of a-KG is spatially constrained such that L-2-hydroxygluta-

rate would be the exclusive end product of the reductive reaction

(Figure S3D). Taken together, these findings further support the

genetic data identifying LDHA as a major enzymatic source of

hypoxia-induced L-2HG (Figures 3C, 3D, S2B, and S2C).

L-2HG Mediates Enhanced H3K9me3 in Response to
Hypoxia
Biochemically, both D-2HG and L-2HG have been reported to

inhibit the Jumonji family histone lysine demethylase KDM4C, re-

sulting in aberrant accumulation of trimethylated histone 3 lysine

9 (H3K9me3) and impairment of normal cellular differentiation

(Chowdhury et al., 2011; Lu et al., 2012). In glioblastomas,

IDH1/2 mutation is associated with diffuse increases in

H3K9me3 throughout the tumor, whereas H3K9me3 shows

regional variations in tumors without IDH1/2 mutation (Venneti

et al., 2013). The above results suggest that the variability in

H3K9me3 staining in IDH1/2-wild-type glioblastomas might

correlate with regions of hypoxia. Therefore, we investigated

the correlation between HIF1a expression and H3K9me3 by

immunohistochemistry using 47 human glioblastoma samples

wild-type for IDH1/2 (Figures 4A and S4). HIF1a expression

and H3K9me3 were highly statistically correlated in these sam-

ples (p = 0.01) (Figure 4B).

These observations suggested that hypoxia-induced L-2HG

might mediate the enhancement of H3K9me3 observed in vasc-

ularly compromised regions of human glioblastoma. To test this

hypothesis, the human glioblastoma cell line SF188 was stably

infected with a lentivirus expressing L2HGDH or an empty lenti-

viral vector. SF188 glioblastoma cells infected with empty vector

exhibited increased global levels of H3K9me3 in response to

hypoxia (Figure 4C), consistent with the findings from the primary

glioblastoma specimens (Figures 4A, 4B, and S4). However,

when hypoxia-induced L-2HG was abrogated by overexpres-

sion of L2HGDH (Figure S4G), there was a substantial reduction

in hypoxia-induced H3K9me3 (Figure 4C). Conversely, ablation

of L2HGDH (with consequent increase of hypoxia-induced

L-2HG) resulted in increased H3K9me3 (Figure 4D). A similar

pattern, albeit less robust, was observed with H3K27me3. His-

tone demethylation assays were also performed in vitro to deter-

mine whether the effect on H3K9me3might bemediated through

direct inhibition of KDM4C by hypoxia-induced L-2HG. Addition

of purified KDM4C to histone substrates resulted in demethyla-

tion of H3K9me3 that was sensitive to inhibition by L-2HG, in a

dose-dependent manner (Figure 4E).

DISCUSSION

The above results demonstrate that production of 2HG can be

regulated in response to hypoxia. Contrary to expectations, the

stereoisomer of 2HG that accumulates in hypoxia was found to

be L-2HG rather than the D-2HG produced as a byproduct of
.
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Figure 4. L-2HG Is Necessary and Sufficient

for Enhanced Trimethylation of Histone 3

Lysine 9 in Response to Hypoxia

(A) HIF1a expression and H3K9me3 levels were

assessed by immunohistochemistry in human

glioblastoma specimens with (n = 26) or without

(n = 21) hypoxic regions captured in the biopsy.

Scale bars are shown in the bottom left of each

panel.

(B) Quantification of H3K9me3 staining intensity

(pixel units) within biopsies not expressing (�) or

expressing (+) HIF1a. Values represent mean ±

SD; *p = 0.01 determined by unpaired two-tailed

Student’s t test.

(C) SF188 glioblastoma cells stably infected

with empty lentiviral vector (Vector) or lentiviral

vector encoding L2HGDH were cultured for

48 hr in 21% or 0.5% O2, followed by histone

extraction and assessment of H3K9me3 by

western blot.

(D) SF188 glioblastoma cells stably infected with

lentiviruses expressing nontargeting shRNA (Cont)

or shRNAs targeting L2HGDH (L1, L3) were cultured in 21% or 0.5% O2, followed by histone extraction and assessment of H3K9me3 by western blot.

(E) Bulk histones were incubated with purified human KDM4C in a reaction mixture with a-KG (1 mM), as well as the indicated concentrations of L-2HG or D-2HG.

H3K9me3 was assessed by western blot with total H3 used as loading control. Panels in (C)–(E) show representative data from one of three independent

experiments. See also Figure S4.
either mutation in or reverse flux through IDH1/2 (Ward and

Thompson, 2012). L-2HG has been long believed to represent

a minor byproduct of ongoing cellular metabolism produced by

enzymes which use a-KG as an alternative ketoacid substrate

(Linster et al., 2013). Analyses of ketoacid reduction by purified

oxidoreductases have demonstrated that both LDH and MDH

enzymes can produce L-2HG from a-KG in vitro (Meister,

1950; Rzem et al., 2007; Schatz and Segal, 1969). The major

determinant of alternative substrate utilization in vitro is sub-

strate concentration. During normoxic cellular metabolism,

evidence suggests that the major source of L-2HG is from mito-

chondrial MDH using TCA cycle-generated a-KG as an alterna-

tive substrate (Rzem et al., 2007, 2015). The data presented

here confirm that MDH enzymes can contribute to L-2HG pro-

duction. However, inhibition ofMDH enzymeswas onlymodestly

able to reduce the L-2HG that accumulated when cells were

exposed to hypoxia. In contrast, ablation of LDHA suppressed

the majority of hypoxia-induced L-2HG.

Hypoxia induces a reprogramming of intermediate meta-

bolism which alters levels of enzymes and substrates that might

contribute to increased production of L-2HG (Bensaad and

Harris, 2014; Semenza, 2013). Under conditions of hypoxia,

glucose metabolism is redirected into anaerobic glycolysis,

with enhanced LDHA activity driven by both increased enzyme

levels and increased cytosolic reducing equivalents in the form

of NADH (Hu et al., 2003; Kucharzewska et al., 2015). While nor-

moxic cells utilize glutamine as the primary anapleurotic sub-

strate, hypoxia decreases oxidative TCA cycle activity, resulting

in cytosolic accumulation of glutamine-derived a-KG (Metallo

et al., 2012). Our findings indicate that the metabolic reprogram-

ming in hypoxic cells favors conversion of cytosolic glutamine-

derived a-KG into L-2HG via enzymatic reduction by LDHA.

Hence, lactate dehydrogenase makes a greater contribution to

hypoxia-induced L-2HG production than malate dehydroge-

nase. Consistent with in vitro data, the relative contributions of
Cel
LDH and MDH enzymes to L-2HG production will likely vary de-

pending on subcellular substrate levels and enzyme activities

present under different physiologic conditions.

The selective accumulation of L-2HG in hypoxia underscores

the importance of distinguishing between 2HGenantiomeric spe-

cies (Terunumaet al., 2014). L-2HGhasbeenshown to functionas

a competitive inhibitor of the EGLNprolyl hydroxylases, thus pro-

moting HIF1a accumulation and hypoxic adaptation (Koivunen

et al., 2012). In contrast, D-2HG functions as a substrate of

EGLN prolyl hydroxylases, promoting hydroxylation and degra-

dation of HIF1a, thus impeding hypoxic adaptation. Taken

together, the present results favor a supportive role for hypoxia-

induced L-2HG in reinforcing the HIF1a axis and maintaining

cellular adaptation to hypoxia, properties not shared by D-2HG.

In contrast to their disparate roles in regulating EGLN-depen-

dent proline hydroxylation of HIF1a, both L-2HG and D-2HG

function as inhibitors of histone demethylases (Chowdhury

et al., 2011; Lu et al., 2012; Xu et al., 2011). We found that hyp-

oxia-induced levels of L-2HG, similar to oncogenic levels of

D-2HG, result in enhanced repressive histone methylation.

Consistent with this finding, Shim et al. (2014) have recently

shown that loss of L2GHDH during cancer progression results

in accumulation of L-2HG and alterations in repressive histone

methylation similar to those observed here in response to

hypoxia. Finally, our results studying biopsies from patients

with glioblastomas suggest that hypoxic induction of L-2GH

may contribute to the development of epigenetic heterogeneity

in this tumor type. Whether these results apply to other tumor

types will be the subject of future investigations.
EXPERIMENTAL PROCEDURES

Cell Culture

Adherent cell lines SF188, SF-XL (SF188 cells with stable expression of Bcl-

XL), HEK293T, SH-SY5Y, SV40-immortalized MEFs, and RCC4 were
l Metabolism 22, 304–311, August 4, 2015 ª2015 Elsevier Inc. 309



maintained in high glucose DMEM, while hematopoietic cell lines 32D and

FL5.12 were maintained in RMPI, with 10% FBS, glucose 25 mM, glutamine

4 mM, penicillin 100 units/ml, and streptomycin 100 mg/ml and split every

2–3 days before reaching confluency. For hypoxia experiments, cells were

cultured in a hypoxia chamber (Coy) at 0.5% oxygen for 24–48 hr prior to har-

vest. See Supplemental Experimental Procedures for detailed information

regarding siRNAs, shRNAs, and western blotting.

Metabolite Extraction and GC-MS Analysis

Metabolites were extracted, derivatized, and analyzed by GC-MS as previ-

ously described (Carey et al., 2015). See Supplemental Experimental Proce-

dures for details. For chiral derivatization, cells were harvested in 80%

methanol without internal standard. Methanol-extracted metabolites were

dried in an evaporator (Genevac EZ-2 Elite), resuspended in water, run over

AG 1-X8 anion exchange columns (Bio-Rad), eluted by 3N HCl, divided into

four fractions, spiked with D-(R)-2HG and/or L-(S)-2HG standards (Sigma) or

left unspiked, dried in an evaporator, sequentially derivatized with R(�)-2-

butantol (Sigma) then acetic anhydride (Sigma) with heating to 95�C, dried
under nitrogen flow, resuspended in ethyl acetate, and analyzed by GC-MS.

2HG was identified as m/z 173 with confirmatory ions m/z 187, 229, 260.

Chiral derivatization by this method allows for separation of L-2HG and

D-2HG enantiomers by gas chromatography with L-2HG eluting at a

shorter retention time than D-2HG. Figure S1F presents an example of the

mass spectra used to identify chiral-derivatized 2HG species. Peak identity

was confirmed by the presence of specific secondary ions in the electron

impact (EI) spectra and retention time of authentic D-2HG and L-2HG

standards.

Human Glioblastoma Specimens and Immunohistochemical

Analysis

Human glioblastoma biopsy specimens were obtained from the University of

Pennsylvania following approval from the institutional review board. All cases

were contained in a previously well-characterized tissue microarray, and

immunohistochemical studies and quantification were performed as previ-

ously described (Venneti et al., 2013). See Supplemental Experimental Proce-

dures for details.

Statistical Analyses

Error bars represent standard deviation of the mean (SD) as indicated in figure

legends. Comparisons were made using unpaired Student’s t tests (deter-

mined with GraphPad Prism) where indicated.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article at http://dx.doi.org/10.

1016/j.cmet.2015.06.023.
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