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Abstract

A new approach to a solution of a nonlinear constrained mathematical programming problem in-
volving r-invex functions with respect to the same functigns introduced. Anp-approximated
problem associated with an original nonlinear mathematical programming problem is presented that
involvesn-approximated functions constituting the original problem. The equivalence between op-
tima points for the original mathematical programming problem angt#pproximated optimization
problem is established undefinvexity assumption.
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1. Introduction

We consider the nonlinear constrained mathematical programming problem

p f(x) = min
(P) subjectto g;(x) <0, j=1,...,m,

where f: X — R andg: X — R™ are differentiable functions on a nonempty open set
X C R".
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We denote the feasible set in (P) by
D = {xeX: g;i(x) <0, j=1,...,m}

and consider a point € D. The basic problem in optimization is to find conditions under
which x locally or globally optimizesf on D. The idea is to use properties of the objective
function, constraint functions and the feasible set. Thus, optimality conditions fior
constrained mathematical programming problems can be formulated in several different
ways. Among the most used are those with convexity assumption imposed on all functions
involved in a constrained mathematical programming problem.

Convex programming is the most thoroughly studied area of nonlinear optimization
(see, for example, [5,8,11]). The assumption of convexity imposed on functions involved
in constrained mathematical programming problems is important, because local and global
optima coincide, so one talks only about an ‘optimization solution.” Moreover, it is well
known that, for constrained minimization program, saddle point of the Lagrangian is al-
ways a global minimum of the problem and they are also equivalent under convexity
assumption and constraint qualification. Various optimality conditions can be derived for
convex programming problems also from theorems of the alternative (for example, [8]).

However, in the recent years to relax convexity assumptions imposed in theorems on
sufficient optimality conditions, various generalized convexity notions have been proposed.
One of such generalizations of convexity notion-isonvexity introduced by Avriel [4]
and Martos [10]r-convex functions include the class of convex functions, whereas they
themselves, as a class of functions, are contained in the class of quasi-convex functions.
Also the class of invex functions introduced by Hanson [7] is one of such generalizations
of convex functions. He considered differentiable functighsk” — R for which there
exists vector-valued functiom: R" x R" — R" such that, for alk, u € R", the inequality

f@) = f) =V funlx,u) 1

holds. Hanson proved that if, in a mathematical programming problem with inequality
constraints, instead of the convexity assumption, the objective function and each of the
constraints function satisfy the inequality (1) with respect to the same fungtitimen
the Karush—Kuhn—Tucker conditions (being necessary conditions for optimality) are also
sufficient conditions for optimality. Hanson’s work inspired others to further investigations
concerning invexity. Craven [6] was the first to introduce the teimadriant convex

Later, Antczak [3] introduced a new class of (honconvex) differentiable functions and
called themr-invex with respect t@. The class of-invex functions with respect tpis an
extension of the class efconvex functions introduced by Avriel [4] and Martos [10] and
invex functions with respect tp introduced by Hanson [7]. Antczak generalized Hanson's
results for mathematical programming problems usifigvexity and he proved sufficient
optimality conditions and Wolfe duality for constrained optimization problems involving
r-invex functions with respect to the same functipriFurther, Antczak [3] extended Mart-
in’s results [9] and he used the so-called alternative approach to prove sufficient optimality
conditions and duality (Wolfe type). In this way, he gave the conditions of {imeexity
with respect to; of another type.

Considerable attention has been given recently to devising new methods which solve the
original mathematical programming problem and its duals by the help of some associated
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optimization problem. But in almost of these approaches the notion of convexity plays a
dominant role.

However, some new approaches of this type have been introduced lately, in which the
convexity assumption has been relaxed to various invexity notions.

In [1], Antczak introduced a new approach with a modified objective function for solv-
ing a differentiable multiobjective optimization problems involving invex functions. He
obtained optimality conditions for Pareto optimality by constructing for a considered multi-
objective programming problem an equivalent vector minimization problem and then using
an invexity concept in mathematical programming. Moreover, a definition of the so-called
n-Lagrange function in such vector optimization problem was given, for which modified
vector valued saddle points results were presented.

Recently, Antczak [2] proposed a new approach for solving a scalar nonlinear con-
strained mathematical programming problem involving invex and/or generalized invex
functions. He showed one can obtain optimality conditions and duality results for a nonlin-
ear constrained mathematical programming problem involving invex functions with respect
to the same function by constructing for it an equivalent minimization problem. Further-
more, Antczak applied the introduced approach to solve original dual problems in the sense
of Mond-Weir.

Our aim in the present paper is to further develop the introduced earlier by Antczak ap-
proaches [2] for solving a nonlinear mathematical programming problem involviimgex
functions with respect to the same functiopnsThe key technique for solving a nonlin-
ear mathematical programming problem which is used here is a construction for it an
equivalent optimization problem. This associatedpproximated optimization problem
is obtained by a modification both the objective function and the constraint functions in the
given mathematical programming problem at an arbitrary but fixed feasible politen
the notion ofr-invexity is used to establish the equivalence between the original mathemat-
ical programming problem and its associated optimization problem. The key requirement
we impose here is that the functionshould satisfy some restrictions weaker than the
so-called Condition (A) introduced in [1]. It turns out that the equivalent associated opti-
mization problem obtained in this approach is, in general, less complicated and its optimal
solutions are connected to the optimal points of the original minimization problem.

2. Preliminaries

In this section, we recall some definitions and preliminary results abdoexity
that will be used throughout the paper. The concept af-amvex function was given by
Antczak [3] as follows:

Definition 1. Let f : X — R be a differentiable function on a nonempty openXet R".
Then f is r-invex atu € X on X with respect to; if, for all x € X,
1

1 :
Ze T > 2T (L4 pV Fyn(x, w)) if r #£0,
r r

F@) = f) =V fn(x,u) if r =0. 2)
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If the inequality (2) holds for any € X then f is r-invex on X with respect to;.

Lemma 2. If f is anr-invex function with respect tp on X, and ifk is any positive real
number, then the functiaty is 7 -invex with respect tgq on X.

More properties and characterizations-aéhvexity were studied by Antczak in [3].
It is well known (see, for example, [5,8]) that the Karush—Kuhn-Tucker conditions are
necessary conditions for optimality in a nonlinear mathematical programming problem (P).

Theorem 3. Letx be an optimal solution ifP) and let some suitable constraint qualifica-
tion (CQ) [5] be satisfied at. Then there exists € R, & > 0, such that
Vf(x)+EVe[) =0, 3)
Eigj(x)=0, j=1,...,m. 4)

We denote by/ (x) the set
JE) :={j=1....,m: & #0}.

3. An p-approximated optimization problem and optimality conditions

Letx be a feasible solution in (P). We consider the followingpproximated optimiza-
tion problem (P (x)) given by

1 - .
= T® LV F(@)n(x, ¥) — min,
p

subject to }ergf@[1+rng()?)n(x,)E)] <=, j=1....m,
ifr£0,
fG) 4+ VIEGE)n(x, x) — min,
subjectto g;(x)+ Vg;()n(x,x)<0, j=1...,m, ifr=0,
where f, g, X are defined as in problem (P).
Let

S|

(Py(®)

D xeX: 2O+ rvg e, OI<E j=1...,m, ifr#0,
p(X) = i

x €X: gj(¥)+Vg;(®)m(x,x) <0,
denote the set of all feasible solutions i} (P)).

To prove some results in this paper we need some restrictions imposed on the fynction
Antczak [1] introduced the following condition:

=1, ....m, if r=0,

Condition (A). We denote by (-, x) the functionx — »n(x, x). It will be said thaty sat-
isfies Condition (A) (at the poing), whenn(-, x) is a differentiable function at the point
x = X with respect to the first component and satisfies the following conditigiisx) =0
andn, (x,x) =« - 1, wheren, (x, ) denotes the derivative of(-, x) at the pointx =,
andw is some positive real number.
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Now, we show that the Karush—Kuhn—Tucker optimality conditions for the origi-
nal mathematical programming problem (P) and its associgtgpproximated problem
(P, (X)) have the same form if, the functionis assumed to satisfy Condition (A).

Indeed, the Karush—Kuhn—-Tucker necessary optimality conditions fon-tqgproxi-
mated problem (RRx)) have the following form:

Theorem 4. Letx be an optimal solution imF’;()E)) and let some suitable constraint qual-
ification (CQ) [5] be satisfied at. Then there exists € R, &€ > 0, such that

V(&) +EVg(x)=0, (5)
Eigj(x)=0, j=1,...,m. (6)

Proof. The Karush—Kuhn—Tucker optimality conditions [8] for thepproximated prob-
lem (P,;()E)) have the following form:

(V@) +EVg(®) (¥, %) =0, ()
£(gj(®) + Vg; (), 5) =0. (8)

The functionn is assumed to satisfy Condition (A). Therefoy€y, x) = 0 andn, (x, x) =

« - 1. Thus, from (7) and (8) we obtain (5) and (6), respectively. This means that the neces-
sary optimality conditions (5)—(6) in problem(&)) are the same form as the necessary
optimality conditions (3)—(4) in problem (P).

Remark 5. Condition (A) was introduced by Antczak in [1]. However, the modified Con-
dition (A) given above is weaker than Condition (A) in [1]. This follows from the fact that
the second relation in it is weaker than in [1]. However, it turns out that the equivalence
between the original mathematical programming problem (P) involwimyex functions

atx on D with respect to the same functigrand its associategtapproximated optimiza-

tion problem (P (x)) can be proved without using Condition (A). In order to prove this
equivalence it should be assumed only the first relation from Condition (A), that is, the
relationn(x, ¥) = 0. Note that this restriction imposed on the functigrwhich is weaker
than Condition (A), extends the class of functionsvith respect to which all functions
involved in (P) arer-invex atx on D. It is useful, of course, from the practical point of
view.

Now, we establish the equivalence between the optimization problems (P);aidl)(P
that is, we prove that ify is optimal solution in the original mathematical programming
problem (P), then it is also optimal in its associatedpproximated optimization prob-
lem (B, (x)).

Theorem 6. Let x be an optimal solution in probleifi?). Moreover, we assume that some
suitable constraint qualificatiofCQ) [5] is satisfied atx. If n satisfies the condition
n(x, x) = 0thenx is also optimal in problenQP’,]()E)).
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Proof. By assumptionk is optimal (P) and some suitable constraint qualification (CQ)
is satisfied afc. Then there exist§ > 0 such that the Karush—Kuhn—Tucker conditions
(3)—(4) are fulfilled.

We proceed by contradiction. L&tbe not optimal in (P(x)). This implies that there
existsx feasible for (P (x)) such that

1 1./
T LV FEnE X)) < =D L V@), 5).
r r

Thus

Vf(@)n, %) <O. 9)
Using the feasibility oft in (P (x)) we have

1 - 1
;erg-f(x)[l—l—rng()E)n(i,)E)]S;, j=1...,m,

and so

1 Fég@& - 1

Zeb S’g’(”[1+ _Lé‘ng()E)n()E,)E)} <=, jeJ@).

r éj r
Using the Karush—Kuhn—-Tucker condition (4) together v§ijth> 0,j=1,...,m,we ob-
tain

EVg(X)n(x,x) <O0. (10)
By (9) and (10), we get the inequality

[VF®) +EVe®]n(E, %) <0,
which contradicts (3). Hencg, is optimal in (B (x)). O

Remark 7. Note that we have established Theorem 6 without any assumption to which
class of functions all functions involved in problems (P) anf{{®) belong. However, we
assume that a suitable constraint qualification (CQ) is fulfilled at the optimal soluiion
problem (P). It turns out that this assumption is essential to establish Theorem 6 and it will
not be omitted. To illustrate this fact we give the following example.

Example 8. We consider the following mathematical programming problem:

fx)= IOg()c2 +x+1) — min,

_ Jlogx?2+1) ifx<0,
g(x)_{o if x > 0.
Note that the set of all feasible solutiohs= {x € R: x > 0}, and, moreoverf andg are
differentiable onR. Further,x = 0 is optimal in the considered optimization problem (P).
If, for example, we set that

n(x,x)=x>4+x—x’>—7x,
then it is not difficult to prove by Definition 1 that both the objective functipand the

constraint functiorg are 1-invex aft on D with respect ta;. Using then-approximation



T. Antczak / J. Math. Anal. Appl. 311 (2005) 313-323 319

approach to solve this problem we have that the associgtgabroximated optimization
problem (F%()E)) has the following form:

2 .
(P}]()E)) {x +x+1— min,
x €R.
It is not difficult to see that the-approximation approach introduced in this paper en-
larges the set of all feasible solutions fra to D,}(;E) = R. Thus, the approximated

problem (F%()E)) has the unbounded set of all feasible solutions and, therefoienot
optimal in this problem (it is not difficult to see that the feasible solutioa —% is op-
timal in (P%()E))). This results follows from the fact that a suitable constraint qualification
(for example, linear independence constraint qualification (LICQ) [5]) is not fulfilled at the
optimal pointx = 0 in the considered mathematical programming problem (P).

Now, if we assume that the objective functighand the constraint functiog arer-
invex atx on D with respect to the same functignsatisfying the conditiom(x, x) = 0,
then we establish that the optimal solutiin the n-approximated optimization problem
(P, (%)) is also optimal in the original mathematical programming problem (P).

Theorem 9. Let x be an optimal solution in problerﬂ?{?(i)) and let some suitable con-
straint qualification[5] be satisfied afk. We assume thaf and g are r-invex atx on
D with respect to the same functionsatisfyingn(x, x) = 0. Thenx is also optimal in
problem(P).

Proof. Sincex is optimal in (F,(x)) then the following inequality:

1 .- 1 .-

—e IO+ V@, B > —e D+ V f@n(E D) (11)
holds for allx € D" (x). Hence, the relation(x, ¥) = 0 implies that the inequality

Vixn(x,x) =20 (12)
holds for allx € D" (x).

We now show thaD C D" (k). By assumptiong is r-invex atx on D with respect to;.
Then, by Definition 1, the inequality
1 1
Ze"8W > ZeO[14 Vg (¥)n(x, )]
r r

is fulfilled for all x € D. Sincex € D theng(x) < 0. Thus,

1.1 ..
=2 ZeI[L+rVg(@)n(x, 1))
r r

From the inequality above follows thate D" (x). Hence,D C D" (x).
Suppose that is not optimal in (P). Then there existdeasible in (P) such that

f(x) < f(x). (13)

By x € D and fromD C D(x) follows thatx is also feasible in (Rx)). By assumption,
f isr-invex atx on D. Hence, using Definition 1 together with (13), we get the inequality
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Vi@, x) <0
which contradicts (12). This means thais optimal in (P). O

We denote by
Jopt:= f(X),

that is, the optimal value in the original mathematical programming problem (P), and also
by fopt We denote the optimal value in its associategpproximated optimization problem
(P, (X)-

In view of Theorems 6 and 9, if we assume that both the objective and the constraint
functions involved in problem (P) areinvex atx on the set of all feasible solutiond
with respect to the same functian and, moreover, some suitable constraint qualification
atx and the relatiom (x, x) = 0 are satisfied, then problems (P) an¢(@®) are equiv-
alent in the sense discussed above. Further, the optimal yglui the n-approximated
optimization problem (R(x)) is equal to

1 .
fop= 2o i r 0,

Hence, the optimal value in the original mathematical programming problem (P) is equal
to

1 .
fopt= . log(r forpt) if r£0,
fopt = f(;pt |f r = 0 (15)

Now, we give an example of a mathematical programming problem (P), which, by using
the approach discussed in this paper, is transformed to an equivalent linear optimization
problem (P (x)).

Example 10. We consider the following nonlinear mathematical programming problem:

1 . 1 .
fx1,x2) = |Og<ex1 +x2 - 5 sinxy +e*2 — > arctan(sinx,) + x2 — 1)
P) — min,
2
g1(x1, x2) = log(xZe*1 — x2 + 1)

g2(x1, x2) = log(x2e*> — x1 + 1)

Note thatD = {(x1,x2) € R x R: 0< x%e"g <x1A0KL xfex% < x2}, andx = (0,0) is
optimal in the considered nonlinear mathematical programming problem (P). We set

o mex) [ [x—x
n(x’x)_[nz(x,f)}_[xz—iz]' (16)

Then, it is not difficult to show by Definition 1 that both the objective functjpand the
constraints functiong; andg» are 1-invex aft on D with respect to the same functign
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defined above. Moreover, a suitable condition of regularity of constraints, for example, lin-
ear independence constraint qualification (LICQ) [5] is satisfiad Bbte that the function

n defined above satisfies the relatiptx, x) = 0. Now, using the approach discussed in the
paper, we construct problem#ﬁ)) by the n-approximation both the objective function

f and the constraint functiog at x. Thus, we obtain the following linear optimization
problem:

1 1 .
n

—x2<0, —x1<0.
It is not difficult to see, that = (0, 0) is also optimal in the above optimization problem
(P,ll(i)), that is, in then-approximated optimization problem which is constructed by a
modification of the objective function and the constraint function in the original problem.
Since both the objective functighand the constraint functiopare 1-invex ak on D with
respect to;, then the assumptions of Theorem 9 are fulfilled. Thus, by Theorems 6 and 9,
X is optimal in both optimization problems. Then, the optimal value intagproximated
optimization problem (E’(;E)) is equal tofolptz 1. Since all functions involved in the con-
sidered mathematical programming problem (P) are 1-invéxaamt D then using (15) we
are in position to calculate the optimal valiig, in the original optimization problem (P).
Thus, by (15),fopt = log(1) = 0.

Remark 11. Note that there exists more than one a functjosatisfying all conditions of
Theorems 6 and 9. In other words, there exists more than one assogiapgdoximated
optimization problem (R(x)), which is equivalent to the original mathematical program-
ming problem (P). This property is useful from the practical point of view. Indeed, for
example, for the considered mathematical programming problem (P) from Example 10,
we set

o mG,x) | | et — e’fl
”(’“””‘[m(x»f)]‘[exz—exz '
Note that both the objective functighand the constraints functiogg andg, are 1-invex

atx on D with respect to; given above. Then we construct the followingapproximated
optimization problem:

1.1, _

(P},()E)) 1+ Ee 1+Ee 2 — min,
1-e2<0, 1-e1<0.

Hence, in fact, we constructed for the original mathematical programming problem (P)

more than one an associateeapproximated optimization problem 3{&)). Moreover,

any constructed associateeapproximated optimization problemﬂﬂa)) is equivalent in

the sense discussed in the paper. This property is, of course, important from the practical

point of view.

In the following example, we show that the assumption-@fivexity imposed on the
objective functionf and the constraint functiog is consistent and it will not be omitted
to prove that the optimal solutiohin problem (P (x)) is also optimal in (P).
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Example 12. We consider the following optimization problem (P):

log(arctarix? + 1) + 2) — min,
P I 4 2
og(x*—x“+1) <0.

Note thatD = {x € R: —1 < x < 1} and, moreovery = 0 is optimal in the considered
nonlinear mathematical programming problem. It is not difficult to show that there is no
a functionn with respect to which both the objective function and the constraint function
arer-invex atx on D. Indeed, the constraint functiop is not r-invex atx on D with
respect to any function and any real numbet. It follows from the fact that its stationary
pointx = 0 is not a minimum point (see [3, Theorem 34]). Therefore, there does not exist
an n-approximated optimization problem associated with the mathematical programming
problem considered in this example.

Remark 13. The assumption that a functignsatisfies the relation(x, x) = 0 is essential
to confirm the equivalence between problems (P) afjdx{#} in the sense discussed in the
paper.

In the next example, we consider the case when the relatiorix) = 0 is not satisfied.
We show that in this case there is no equivalence between (P) atd)Ralthough the all
functions involved in the considered mathematical programming problem (P}iavex
with respect to the same functigrat x on the set all feasible solutions.

Example 14. We consider the following mathematical programming problem:

f(x1,x2) = |Og(4x% — x% + 2) — min,
12 .2
(r1—D+x5+1 <
3
Note that the set of all feasible solutiofis= {(x1,x2) € R? (x1 — 1)? + x3 < 2}, and
x1=(0,1) andx? = (0, —1) are optimal in the considered optimization problem. Further,

it can be proved by Definition 1 that andg are 1l-invex atc on D with respect to the
same functiom defined by

_ 2,12
1 [mee,eh] [ xitax5+2
n(x,x7) = -1 | = .
(x xl) 12,12
n2(x, _§x1+2x2

0.

g(x1, x2) =log

Note that the relatiom(x, x) = O is not satisfied. For the considered mathematical pro-
gramming problem we construct its associatgdpproximated optimization problem
(PL(xh) in the form

1 1+ x2 — x2 — min,
Ea) (Mo
(x1, x2) € R-.
It is not difficult to see thak® = (0, 1) is not optimal in this optimization problem (the
optimization problem above has an unbounded set of all feasible solution). Thus, the con-
sidered optimization problems are no equivalent in the sense discussed in the paper. This
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follows from the fact that the function, with respect to which both the objective func-
tion f and the constraint functiog are 1-invex ate! on D, does not satisfy the relation
n(x, x)=0.

Further, if we set

_ 2,12
G )—62)=|:771(x7x2)i|: Xtz t2
7 na(x, X2) —3x2—1x2 |

then it is not difficult to show thaf andg are 1-invex with respect tg at x2 on D. How-
ever, the functiom defined above does not satisfy the relatigi, x) = 0. We construct
the associateg-approximated optimization problem#ﬁz)):

_2 l—x%—x%—) min,
(Py%) { (x1,%2) € R

It is not difficult to see thak? = (0, —1) is not optimal in this optimization problem (the

optimization problem above has an unbounded set of all feasible solution). Thus, the con-

sidered optimization problems (P) anc%(E’Z)) are no equivalent in the sense discussed in
the paper.
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