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Abstract

A new approach to a solution of a nonlinear constrained mathematical programming prob
volving r-invex functions with respect to the same functionη is introduced. Anη-approximated
problem associated with an original nonlinear mathematical programming problem is presen
involvesη-approximated functions constituting the original problem. The equivalence betwee
tima points for the original mathematical programming problem and itsη-approximated optimization
problem is established underr-invexity assumption.
 2005 Elsevier Inc. All rights reserved.

Keywords:Mathematical programming;η-approximated optimization problem;r-invex function; Optimality

1. Introduction

We consider the nonlinear constrained mathematical programming problem

(P)

{
f (x) → min
subject to gj (x) � 0, j = 1, . . . ,m,

wheref :X → R andg :X → Rm are differentiable functions on a nonempty open
X ⊂ Rn.
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We denote the feasible set in (P) by

D := {
x ∈ X: gj (x) � 0, j = 1, . . . ,m

}
and consider a point̄x ∈ D. The basic problem in optimization is to find conditions un
which x̄ locally or globally optimizesf onD. The idea is to use properties of the object
function, constraint functions and the feasible set. Thus, optimality conditions forx̄ in
constrained mathematical programming problems can be formulated in several di
ways. Among the most used are those with convexity assumption imposed on all fun
involved in a constrained mathematical programming problem.

Convex programming is the most thoroughly studied area of nonlinear optimiz
(see, for example, [5,8,11]). The assumption of convexity imposed on functions inv
in constrained mathematical programming problems is important, because local and
optima coincide, so one talks only about an ‘optimization solution.’ Moreover, it is
known that, for constrained minimization program, saddle point of the Lagrangian
ways a global minimum of the problem and they are also equivalent under con
assumption and constraint qualification. Various optimality conditions can be derive
convex programming problems also from theorems of the alternative (for example, [

However, in the recent years to relax convexity assumptions imposed in theore
sufficient optimality conditions, various generalized convexity notions have been prop
One of such generalizations of convexity notion isr-convexity introduced by Avriel [4]
and Martos [10].r-convex functions include the class of convex functions, whereas
themselves, as a class of functions, are contained in the class of quasi-convex fun
Also the class of invex functions introduced by Hanson [7] is one of such generaliz
of convex functions. He considered differentiable functionsf :Rn → R for which there
exists vector-valued functionη :Rn × Rn → Rn such that, for allx,u ∈ Rn, the inequality

f (x) − f (u) � ∇f (u)η(x,u) (1)

holds. Hanson proved that if, in a mathematical programming problem with ineq
constraints, instead of the convexity assumption, the objective function and each
constraints function satisfy the inequality (1) with respect to the same functionη, then
the Karush–Kuhn–Tucker conditions (being necessary conditions for optimality) ar
sufficient conditions for optimality. Hanson’s work inspired others to further investiga
concerning invexity. Craven [6] was the first to introduce the term “invariant convex.”

Later, Antczak [3] introduced a new class of (nonconvex) differentiable functions
called themr-invex with respect toη. The class ofr-invex functions with respect toη is an
extension of the class ofr-convex functions introduced by Avriel [4] and Martos [10] a
invex functions with respect toη introduced by Hanson [7]. Antczak generalized Hanso
results for mathematical programming problems usingr-invexity and he proved sufficien
optimality conditions and Wolfe duality for constrained optimization problems involv
r-invex functions with respect to the same functionη. Further, Antczak [3] extended Mar
in’s results [9] and he used the so-called alternative approach to prove sufficient opti
conditions and duality (Wolfe type). In this way, he gave the conditions of ther-invexity
with respect toη of another type.

Considerable attention has been given recently to devising new methods which so
original mathematical programming problem and its duals by the help of some asso
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optimization problem. But in almost of these approaches the notion of convexity p
dominant role.

However, some new approaches of this type have been introduced lately, in wh
convexity assumption has been relaxed to various invexity notions.

In [1], Antczak introduced a new approach with a modified objective function for s
ing a differentiable multiobjective optimization problems involving invex functions.
obtained optimality conditions for Pareto optimality by constructing for a considered m
objective programming problem an equivalent vector minimization problem and then
an invexity concept in mathematical programming. Moreover, a definition of the so-c
η-Lagrange function in such vector optimization problem was given, for which mod
vector valued saddle points results were presented.

Recently, Antczak [2] proposed a new approach for solving a scalar nonlinea
strained mathematical programming problem involving invex and/or generalized
functions. He showed one can obtain optimality conditions and duality results for a n
ear constrained mathematical programming problem involving invex functions with re
to the same functionη by constructing for it an equivalent minimization problem. Furth
more, Antczak applied the introduced approach to solve original dual problems in the
of Mond–Weir.

Our aim in the present paper is to further develop the introduced earlier by Antcz
proaches [2] for solving a nonlinear mathematical programming problem involvingr-invex
functions with respect to the same functionsη. The key technique for solving a nonlin
ear mathematical programming problem which is used here is a construction fo
equivalent optimization problem. This associatedη-approximated optimization proble
is obtained by a modification both the objective function and the constraint functions
given mathematical programming problem at an arbitrary but fixed feasible pointx̄. Then
the notion ofr-invexity is used to establish the equivalence between the original math
ical programming problem and its associated optimization problem. The key requir
we impose here is that the functionη should satisfy some restrictions weaker than
so-called Condition (A) introduced in [1]. It turns out that the equivalent associated
mization problem obtained in this approach is, in general, less complicated and its o
solutions are connected to the optimal points of the original minimization problem.

2. Preliminaries

In this section, we recall some definitions and preliminary results aboutr-invexity
that will be used throughout the paper. The concept of anr-invex function was given by
Antczak [3] as follows:

Definition 1. Let f :X → R be a differentiable function on a nonempty open setX ⊂ Rn.
Thenf is r-invex atu ∈ X onX with respect toη if, for all x ∈ X,

1

r
erf (x) � 1

r
erf (u)

(
1+ r∇f (u)η(x,u)

)
if r �= 0,

f (x) − f (u) � ∇f (u)η(x,u) if r = 0. (2)
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If the inequality (2) holds for anyu ∈ X thenf is r-invex onX with respect toη.

Lemma 2. If f is anr-invex function with respect toη on X, and if k is any positive rea
number, then the functionkf is r

k
-invex with respect toη onX.

More properties and characterizations ofr-invexity were studied by Antczak in [3].
It is well known (see, for example, [5,8]) that the Karush–Kuhn–Tucker condition

necessary conditions for optimality in a nonlinear mathematical programming proble

Theorem 3. Let x̄ be an optimal solution in(P)and let some suitable constraint qualific
tion (CQ) [5] be satisfied at̄x. Then there exists̄ξ ∈ Rm+ , ξ̄ � 0, such that

∇f (x̄) + ξ̄∇g(x̄) = 0, (3)

ξ̄j gj (x̄) = 0, j = 1, . . . ,m. (4)

We denote byJ (x̄) the set

J (x̄) := {j = 1, . . . ,m: ξ̄j �= 0}.

3. An η-approximated optimization problem and optimality conditions

Let x̄ be a feasible solution in (P). We consider the followingη-approximated optimiza
tion problem (Prη(x̄)) given by

(
Pr

η(x̄)
)




1

r
erf (x̄) + ∇f (x̄)η(x, x̄) → min,

subject to
1

r
ergj (x̄)

[
1+ r∇gj (x̄)η(x, x̄)

]
� 1

r
, j = 1, . . . ,m,

if r �= 0,

f (x̄) + ∇f (x̄)η(x, x̄) → min,

subject to gj (x̄) + ∇gj (x̄)η(x, x̄) � 0, j = 1, . . . ,m, if r = 0,

wheref,g,X are defined as in problem (P).
Let

Dr
η(x̄) =

{
x ∈ X: 1

r
ergj (x̄)[1+ r∇gj (x̄)η(x, x̄)] � 1

r
, j = 1, . . . ,m, if r �= 0,

x ∈ X: gj (x̄) + ∇gj (x̄)η(x, x̄) � 0, j = 1, . . . ,m, if r = 0,

denote the set of all feasible solutions in (Pr
η(x̄)).

To prove some results in this paper we need some restrictions imposed on the funcη.
Antczak [1] introduced the following condition:

Condition (A). We denote byη(·, x̄) the functionx → η(x, x̄). It will be said thatη sat-
isfies Condition (A) (at the point̄x), whenη(·, x̄) is a differentiable function at the poin
x = x̄ with respect to the first component and satisfies the following conditions:η(x̄, x̄) = 0
andηx(x̄, x̄) = α · 1, whereηx(x̄, x̄) denotes the derivative ofη(·, x̄) at the pointx = x̄,
andα is some positive real number.
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Now, we show that the Karush–Kuhn–Tucker optimality conditions for the o
nal mathematical programming problem (P) and its associatedη-approximated problem
(Pr

η(x̄)) have the same form if, the functionη is assumed to satisfy Condition (A).
Indeed, the Karush–Kuhn–Tucker necessary optimality conditions for theη-approxi-

mated problem (Prη(x̄)) have the following form:

Theorem 4. Let x̄ be an optimal solution in(Pr
η(x̄)) and let some suitable constraint qua

ification (CQ) [5] be satisfied at̄x. Then there exists̄ξ ∈ Rm+ , ξ̄ � 0, such that

∇f (x̄) + ξ̄∇g(x̄) = 0, (5)

ξ̄j gj (x̄) = 0, j = 1, . . . ,m. (6)

Proof. The Karush–Kuhn–Tucker optimality conditions [8] for theη-approximated prob
lem (Pr

η(x̄)) have the following form:

(∇f (x̄) + ξ̄∇g(x̄)
)
ηx(x̄, x̄) = 0, (7)

ξ̄
(
gj (x̄) + ∇gj (x̄)η(x̄, x̄)

) = 0. (8)

The functionη is assumed to satisfy Condition (A). Therefore,η(x̄, x̄) = 0 andηx(x̄, x̄) =
α · 1. Thus, from (7) and (8) we obtain (5) and (6), respectively. This means that the n
sary optimality conditions (5)–(6) in problem (Pr

η(x̄)) are the same form as the necess
optimality conditions (3)–(4) in problem (P).

Remark 5. Condition (A) was introduced by Antczak in [1]. However, the modified C
dition (A) given above is weaker than Condition (A) in [1]. This follows from the fact
the second relation in it is weaker than in [1]. However, it turns out that the equiva
between the original mathematical programming problem (P) involvingr-invex functions
at x̄ onD with respect to the same functionη and its associatedη-approximated optimiza
tion problem (Prη(x̄)) can be proved without using Condition (A). In order to prove
equivalence it should be assumed only the first relation from Condition (A), that is
relationη(x̄, x̄) = 0. Note that this restriction imposed on the functionη, which is weaker
than Condition (A), extends the class of functionsη with respect to which all function
involved in (P) arer-invex at x̄ on D. It is useful, of course, from the practical point
view.

Now, we establish the equivalence between the optimization problems (P) and (Pr
η(x̄)),

that is, we prove that if,̄x is optimal solution in the original mathematical programm
problem (P), then it is also optimal in its associatedη-approximated optimization prob
lem (Pr

η(x̄)).

Theorem 6. Let x̄ be an optimal solution in problem(P). Moreover, we assume that som
suitable constraint qualification(CQ) [5] is satisfied atx̄. If η satisfies the conditio
η(x̄, x̄) = 0 thenx̄ is also optimal in problem(Pr

η(x̄)).
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Proof. By assumption,̄x is optimal (P) and some suitable constraint qualification (C
is satisfied at̄x. Then there exists̄ξ � 0 such that the Karush–Kuhn–Tucker conditio
(3)–(4) are fulfilled.

We proceed by contradiction. Letx̄ be not optimal in (Prη(x̄)). This implies that there
existsx̃ feasible for (Prη(x̄)) such that

1

r
erf (x̄) + ∇f (x̄)η(x̃, x̄) <

1

r
erf (x̄) + ∇f (x̄)η(x̄, x̄).

Thus

∇f (x̄)η(x̃, x̄) < 0. (9)

Using the feasibility of̃x in (Pr
η(x̄)) we have

1

r
ergj (x̄)

[
1+ r∇gj (x̄)η(x̃, x̄)

]
� 1

r
, j = 1, . . . ,m,

and so

1

r
e

r

ξ̄j
ξ̄j gj (x̄)

[
1+ r

ξ̄j

ξ̄j∇g(x̄)η(x̃, x̄)

]
� 1

r
, j ∈ J (x̄).

Using the Karush–Kuhn–Tucker condition (4) together withξ̄j � 0, j = 1, . . . ,m, we ob-
tain

ξ̄∇g(x̄)η(x̃, x̄) � 0. (10)

By (9) and (10), we get the inequality[∇f (x̄) + ξ̄∇g(x̄)
]
η(x̃, x̄) < 0,

which contradicts (3). Hence,x̄ is optimal in (Prη(x̄)). �
Remark 7. Note that we have established Theorem 6 without any assumption to w
class of functions all functions involved in problems (P) and (Pr

η(x̄)) belong. However, we
assume that a suitable constraint qualification (CQ) is fulfilled at the optimal solutionx̄ in
problem (P). It turns out that this assumption is essential to establish Theorem 6 and
not be omitted. To illustrate this fact we give the following example.

Example 8. We consider the following mathematical programming problem:

f (x) = log(x2 + x + 1) → min,

g(x) =
{

log(x2 + 1) if x � 0,

0 if x � 0.

Note that the set of all feasible solutionsD = {x ∈ R: x � 0}, and, moreover,f andg are
differentiable onR. Further,x̄ = 0 is optimal in the considered optimization problem (
If, for example, we set that

η(x, x̄) = x2 + x − x̄2 − x̄,

then it is not difficult to prove by Definition 1 that both the objective functionf and the
constraint functiong are 1-invex at̄x on D with respect toη. Using theη-approximation
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approach to solve this problem we have that the associatedη-approximated optimizatio
problem (P1η(x̄)) has the following form:

(P1
η(x̄))

{
x2 + x + 1→ min,

x ∈ R.

It is not difficult to see that theη-approximation approach introduced in this paper
larges the set of all feasible solutions fromD to D1

η(x̄) = R. Thus, the approximate
problem (P1η(x̄)) has the unbounded set of all feasible solutions and, therefore,x̄ is not

optimal in this problem (it is not difficult to see that the feasible solutionx = −1
2 is op-

timal in (P1
η(x̄))). This results follows from the fact that a suitable constraint qualifica

(for example, linear independence constraint qualification (LICQ) [5]) is not fulfilled a
optimal pointx̄ = 0 in the considered mathematical programming problem (P).

Now, if we assume that the objective functionf and the constraint functiong are r-
invex atx̄ on D with respect to the same functionη satisfying the conditionη(x̄, x̄) = 0,
then we establish that the optimal solutionx̄ in theη-approximated optimization proble
(Pr

η(x̄)) is also optimal in the original mathematical programming problem (P).

Theorem 9. Let x̄ be an optimal solution in problem(Pr
η(x̄)) and let some suitable con

straint qualification[5] be satisfied at̄x. We assume thatf and g are r-invex at x̄ on
D with respect to the same functionη satisfyingη(x̄, x̄) = 0. Thenx̄ is also optimal in
problem(P).

Proof. Sincex̄ is optimal in (Prη(x̄)) then the following inequality:

1

r
erf (x̄) + ∇f (x̄)η(x, x̄) � 1

r
erf (x̄) + ∇f (x̄)η(x̄, x̄) (11)

holds for allx ∈ Dr(x̄). Hence, the relationη(x̄, x̄) = 0 implies that the inequality

∇f (x̄)η(x, x̄) � 0 (12)

holds for allx ∈ Dr(x̄).
We now show thatD ⊂ Dr(x̄). By assumption,g is r-invex atx̄ onD with respect toη.

Then, by Definition 1, the inequality

1

r
erg(x) � 1

r
erg(x̄)

[
1+ r∇g(x̄)η(x, x̄)

]
is fulfilled for all x ∈ D. Sincex ∈ D theng(x) � 0. Thus,

1

r
� 1

r
erg(x̄)

[
1+ r∇g(x̄)η(x, x̄)

]
.

From the inequality above follows thatx ∈ Dr(x̄). Hence,D ⊂ Dr(x̄).
Suppose that̄x is not optimal in (P). Then there existsx̃ feasible in (P) such that

f (x̃) < f (x̄). (13)

By x̃ ∈ D and fromD ⊂ D(x̄) follows that x̃ is also feasible in (Prη(x̄)). By assumption
f is r-invex atx̄ onD. Hence, using Definition 1 together with (13), we get the inequa
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∇f (x̄)η(x̃, x̄) < 0

which contradicts (12). This means thatx̄ is optimal in (P). �
We denote by

fopt := f (x̄),

that is, the optimal value in the original mathematical programming problem (P), an
by f r

opt we denote the optimal value in its associatedη-approximated optimization problem
(Pr

η(x̄)).
In view of Theorems 6 and 9, if we assume that both the objective and the con

functions involved in problem (P) arer-invex at x̄ on the set of all feasible solutionsD
with respect to the same functionη, and, moreover, some suitable constraint qualifica
at x̄ and the relationη(x̄, x̄) = 0 are satisfied, then problems (P) and (Pr

η(x̄)) are equiv-
alent in the sense discussed above. Further, the optimal valuef r

opt in theη-approximated
optimization problem (Prη(x̄)) is equal to

f r
opt =

1

r
erfopt if r �= 0,

f r
opt = fopt if r = 0. (14)

Hence, the optimal value in the original mathematical programming problem (P) is
to

fopt = 1

r
log

(
rf r

opt

)
if r �= 0,

fopt = f r
opt if r = 0. (15)

Now, we give an example of a mathematical programming problem (P), which, by
the approach discussed in this paper, is transformed to an equivalent linear optim
problem (Prη(x̄)).

Example 10. We consider the following nonlinear mathematical programming proble

(P)




f (x1, x2) = log

(
ex1 + x2

1 − 1

2
sinx1 + ex2 − 1

2
arctan(sinx2) + x2

2 − 1

)
→ min,

g1(x1, x2) = log
(
x2

1ex2
1 − x2 + 1

)
� 0,

g2(x1, x2) = log
(
x2

2ex2
2 − x1 + 1

)
� 0.

Note thatD = {(x1, x2) ∈ R × R: 0 � x2
2ex2

2 � x1 ∧ 0 � x2
1ex2

1 � x2}, and x̄ = (0,0) is
optimal in the considered nonlinear mathematical programming problem (P). We se

η(x, x̄) =
[

η1(x, x̄)

η2(x, x̄)

]
=

[
x1 − x̄1
x2 − x̄2

]
. (16)

Then, it is not difficult to show by Definition 1 that both the objective functionf and the
constraints functionsg1 andg2 are 1-invex at̄x on D with respect to the same functionη
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defined above. Moreover, a suitable condition of regularity of constraints, for exampl
ear independence constraint qualification (LICQ) [5] is satisfied atx̄. Note that the function
η defined above satisfies the relationη(x̄, x̄) = 0. Now, using the approach discussed in
paper, we construct problem (P1

η(x̄)) by theη-approximation both the objective functio
f and the constraint functiong at x̄. Thus, we obtain the following linear optimizatio
problem:

(
P1

η(x̄)
) {

1+ 1

2
x1 + 1

2
x2 → min,

−x2 � 0, −x1 � 0.

It is not difficult to see, that̄x = (0,0) is also optimal in the above optimization proble
(P1

η(x̄)), that is, in theη-approximated optimization problem which is constructed b
modification of the objective function and the constraint function in the original prob
Since both the objective functionf and the constraint functiong are 1-invex at̄x onD with
respect toη, then the assumptions of Theorem 9 are fulfilled. Thus, by Theorems 6 a
x̄ is optimal in both optimization problems. Then, the optimal value in theη-approximated
optimization problem (P1η(x̄)) is equal tof 1

opt = 1. Since all functions involved in the con
sidered mathematical programming problem (P) are 1-invex atx̄ on D then using (15) we
are in position to calculate the optimal valuefopt in the original optimization problem (P
Thus, by (15),fopt = log(1) = 0.

Remark 11. Note that there exists more than one a functionη satisfying all conditions o
Theorems 6 and 9. In other words, there exists more than one associatedη-approximated
optimization problem (Pη(x̄)), which is equivalent to the original mathematical progra
ming problem (P). This property is useful from the practical point of view. Indeed
example, for the considered mathematical programming problem (P) from Examp
we set

η(x, x̄) =
[

η1(x, x̄)

η2(x, x̄)

]
=

[
ex1 − ex̄1

ex2 − ex̄2

]
.

Note that both the objective functionf and the constraints functionsg1 andg2 are 1-invex
at x̄ onD with respect toη given above. Then we construct the followingη-approximated
optimization problem:

(
P1

η(x̄)
) 

1+ 1

2
ex1 + 1

2
ex2 → min,

1− ex2 � 0, 1− ex1 � 0.

Hence, in fact, we constructed for the original mathematical programming proble
more than one an associatedη-approximated optimization problem (P1

η(x̄)). Moreover,
any constructed associatedη-approximated optimization problem (P1

η(x̄)) is equivalent in
the sense discussed in the paper. This property is, of course, important from the p
point of view.

In the following example, we show that the assumption ofr-invexity imposed on the
objective functionf and the constraint functiong is consistent and it will not be omitte
to prove that the optimal solution̄x in problem (Prη(x̄)) is also optimal in (P).
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Example 12. We consider the following optimization problem (P):

(P)

{
log

(
arctan(x2 + 1) + 2

) → min,

log(x4 − x2 + 1) � 0.

Note thatD = {x ∈ R: −1 � x � 1} and, moreover,̄x = 0 is optimal in the considere
nonlinear mathematical programming problem. It is not difficult to show that there
a functionη with respect to which both the objective function and the constraint func
are r-invex at x̄ on D. Indeed, the constraint functiong is not r-invex at x̄ on D with
respect to any functionη and any real numberr . It follows from the fact that its stationar
point x̄ = 0 is not a minimum point (see [3, Theorem 34]). Therefore, there does not
anη-approximated optimization problem associated with the mathematical program
problem considered in this example.

Remark 13. The assumption that a functionη satisfies the relationη(x̄, x̄) = 0 is essentia
to confirm the equivalence between problems (P) and (Pr

η(x̄)) in the sense discussed in t
paper.

In the next example, we consider the case when the relationη(x̄, x̄) = 0 is not satisfied
We show that in this case there is no equivalence between (P) and (Pr

η(x̄)), although the al
functions involved in the considered mathematical programming problem (P) arer-invex
with respect to the same functionη at x̄ on the set all feasible solutions.

Example 14. We consider the following mathematical programming problem:

f (x1, x2) = log
(
4x2

1 − x2
2 + 2

) → min,

g(x1, x2) = log
(x1 − 1)2 + x2

2 + 1

3
� 0.

Note that the set of all feasible solutionsD = {(x1, x2) ∈ R2: (x1 − 1)2 + x2
2 � 2}, and

x̄1 = (0,1) andx̄2 = (0,−1) are optimal in the considered optimization problem. Furt
it can be proved by Definition 1 thatf andg are 1-invex atx̄ on D with respect to the
same functionη defined by

η(x, x̄1) =
[

η1(x, x̄1)

η2(x, x̄1)

]
=

[
x2

1 + 1
2x2

2 + 2

−1
2x2

1 + 1
2x2

2

]
.

Note that the relationη(x̄, x̄) = 0 is not satisfied. For the considered mathematical
gramming problem we construct its associatedη-approximated optimization problem
(P1

η(x̄
1)) in the form

(
P1

η(x̄
1)

) {
1+ x2

1 − x2
2 → min,

(x1, x2) ∈ R2.

It is not difficult to see that̄x1 = (0,1) is not optimal in this optimization problem (th
optimization problem above has an unbounded set of all feasible solution). Thus, th
sidered optimization problems are no equivalent in the sense discussed in the pap
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follows from the fact that the functionη, with respect to which both the objective fun
tion f and the constraint functiong are 1-invex at̄x1 on D, does not satisfy the relatio
η(x̄, x̄) = 0.

Further, if we set

η(x, x̄2) =
[

η1(x, x̄2)

η2(x, x̄2)

]
=

[
x2

1 + 1
2x2

2 + 2

−1
2x2

1 − 1
2x2

2

]
,

then it is not difficult to show thatf andg are 1-invex with respect toη at x̄2 onD. How-
ever, the functionη defined above does not satisfy the relationη(x̄, x̄) = 0. We construc
the associatedη-approximated optimization problem (P1

η(x̄
2)):

(
P1

η(x̄
2)

) {
1− x2

1 − x2
2 → min,

(x1, x2) ∈ R2.

It is not difficult to see that̄x2 = (0,−1) is not optimal in this optimization problem (th
optimization problem above has an unbounded set of all feasible solution). Thus, th
sidered optimization problems (P) and (P1

η(x̄
2)) are no equivalent in the sense discusse

the paper.
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