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1. Introduction

We are concerned with the comparison principle for viscosity solutions of fully nonlinear elliptic partial differential
equations:

λu + F
(
x, Du, D2u

) + H(x, Du) = f (x) in R
N , (1)

where λ > 0, F : R
N × R

N × S N → R, H : R
N × R

N → R and f : R
N → R are given functions. Here S N denotes the set of

N × N symmetric matrices equipped with the standard order.
We will suppose that F satisfies the standard hypothesis called structure condition. In particular, F is degenerate elliptic,

that is

F (x, ξ, X) � F (x, ξ, Y ) when X � Y , x, p ∈ R
N , X, Y ∈ S N . (2)

On the contrary, we will suppose that the mapping ξ → H(x, ξ) has superlinear growth. A typical example is

H(x, ξ) = 〈
A(x)ξ, ξ

〉q/2
, (3)

where q > 1, and A : R
N → S N .
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When we consider unbounded solutions of PDEs with superlinear growth terms in Du, we may not expect solutions to
be unique in general. In fact, for N = 1, the equation

λu − u′′ + ∣∣u′∣∣2 = 0 in R (4)

admits at least two solutions; u1 ≡ 0 and u2(x) = − λ
4 x2 − 1

2 .
In [1], Alvarez introduced bounded-from-below solutions to avoid u2 in this case. He showed the uniqueness of strong

bounded-from-below solutions of

u − �u + |Du|q = f (x) in R
N . (5)

We will mention this result after introducing some notations in Section 2.
We also refer to [2] and [3] for comparison results, which yield the uniqueness among bounded-from-below viscosity

solutions of Hamilton–Jacobi equations.
On the other hand, the uniqueness of unbounded viscosity solutions has been studied under certain growth condition

on solutions. In this direction, H. Ishii [4] first established the comparison principle for unbounded viscosity solutions of
Hamilton–Jacobi equations. For nonlinear elliptic PDEs, Aizawa and Tomita [5,6], Crandall, Newcomb and Tomita [7] and
K. Ishii and Tomita [8] obtained comparison results for unbounded viscosity solutions satisfying certain growth condition.
However, unfortunately, we cannot apply these results to PDEs having variable coefficients to superlinear terms in Du. For
instance, it seems difficult to treat typical H as (3) unless A is constant.

To avoid this technical difficulty, we will adapt a “linearization” technique, which Da Lio and the second author [9] used
to show the uniqueness of unbounded viscosity solutions of parabolic Bellman equations with quadratic nonlinearity.

More recently, we are informed that Barles and Porretta [10] proved that (5) with q = 2 admits at most one bounded-
from-below solution if f is bounded from below. In the case of (4), u1 is the only bounded-from-below solution. However,
their proof seems to be specific to (4) since if we perturb this equation with a transport term as in

λu − u′′ + ∣∣u′∣∣2 + txu′ = 0 in R, (6)

then there are at least two solutions u1 ≡ 0 and u2(x) = − λ+2t
4 x2 − λ+2t

2λ
. Thus, for t < − λ

2 , u1 and u2 are bounded-from-
below solutions of (6).

In this paper, we study the comparison principle for viscosity solutions of (1) under certain growth condition on f
and solutions. We obtained two types of results depending on whether H(x, ξ) is convex in ξ or not. The convex case is
typically (3) with positive A(x) ∈ S N . Then we consider two nonconvex cases. The first one is when H(x, ξ) is convex in ξ

in some subset Ω0 ⊂ Ω and is concave in its complement. The second one is when H(x, ξ) is defined as a minimum of
convex Hamiltonians, that is,

H(x, ξ) = min
{

Hk(x, ξ)
∣∣ k = 1, . . . ,m

}
,

where ξ → Hk(x, ξ) is convex for x ∈ Ω . We will discuss a generalization of the above H , which appears in differential
games (see [11] for applications). Some applications to monotone systems of PDEs are also given.

Let us mention that we restrict ourselves to comparison principles since it is the main ingredient to obtain existence and
uniqueness in the theory of viscosity solutions.

This paper is organized as follows: In Section 2, we give our hypothesis on F and H . Section 3 is devoted to the case
when H is strictly convex in ξ . We then discuss on the case when H may be nonconvex in Section 4. In Section 5, we
extend our results to monotone systems.

2. Preliminaries

First of all, we recall the definition of viscosity solutions of general PDEs:

G
(
x, u, Du, D2u

) = 0 in R
N , (7)

where G : R
N × R × R

N × S N → R is continuous.

Definition 2.1. We call u : R
N → R a viscosity subsolution (resp., supersolution) of (7) if for φ ∈ C2(RN ),

G
(
x̂, u∗(x̂), Dφ(x̂), D2φ(x̂)

)
� 0

(
resp., G

(
x̂, u∗(x̂), Dφ(x̂), D2φ(x̂)

)
� 0

)
provided u∗ − φ (resp., u∗ − φ) attains its local maximum (resp., minimum) at x̂ ∈ R

N .
We also call u a viscosity solution of (7) if it is both a viscosity sub- and supersolution of (7).

Here u∗ and u∗ denote upper and lower semicontinuous envelopes of u, respectively. We refer to [12–15] for their
definitions, and the basic theory of viscosity solutions.
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In order to explain our hypotheses below, we give a typical example:

u − Tr
(
σ(x)σ T (x)D2u

) + 〈
b(x), Du

〉 + 〈
A(x)Du, Du

〉 q
2 = f (x) (8)

in R
N , where σ , A : R

N → S N , and b : R
N → R

N are given functions. In this example, G(x, ξ, X) = F (x, ξ, X)+ H(x, ξ)− f (x)
with F (x, ξ, X) = −Tr(σ (x)σ T (x)X) + 〈b(x), ξ〉, and H(x, ξ) = 〈A(x)ξ, ξ〉q/2.

We denote by M the set of modulus of continuity; m ∈ M if m(s) → 0 as s → 0+ and m(s + t) � m(s) + m(t) for all
s, t > 0.

We present a list of hypothesis on F : The first one is a modification of the structure condition, under which we may
consider (8) when σ and b are locally Lipschitz continuous.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

For R > 0, there exists mR ∈ M such that

F
(
x, ε−1(x − y), X

) − F
(

y, ε−1(x − y), Y
)
� mR

(|x − y| + ε−1|x − y|2)
provided ε > 0, x, y ∈ B R and (X, Y ) ∈ S N × S N satisfies

−3

ε

(
I O
O I

)
�

(
X O
O −Y

)
� 3

ε

(
I −I

−I I

)
.

(9)

Here Br = {x ∈ R
N | |x| < r} and Br(x) = x + Br for r > 0 and x ∈ R

N . Notice that (9) implies the degenerate ellipticity (2).
We next suppose homogeneity of F in (ξ, X) ∈ R

N × S N :

F (x, θξ, θ X) = θ F (x, ξ, X) for θ � 0, x, ξ ∈ R
N , X ∈ S N . (10)

To state further hypotheses, we introduce two subsets of functions having superlinear growth of order r.
A continuous function h : R

N → R belongs to S S G±
r if and only if

lim inf|x|→∞
±h(x)

|x|r � 0.

Notice that h ∈ S S G+
r (resp., S S G−

r ) if, for any ε > 0, there exists Cε = Cε(h) > 0 such that

h(x) � −ε|x|r − Cε

(
resp., h(x) � ε|x|r + Cε

)
in R

N .

We define S S G r = S S G+
r ∩ S S G−

r . Notice that h ∈ S S G r if and only if

lim|x|→∞
|h(x)|
|x|r = 0.

A continuous function h : R
N → R belongs to S G±

r if and only if

lim inf|x|→∞
±h(x)

|x|r > −∞.

Notice that h ∈ S G+
r (resp., S G−

r ) if there exist positive constants ε = ε(h), C = C(h) such that

h(x) � −ε|x|r − C
(
resp., h(x) � ε|x|r + C

)
in R

N .

We define S G r = S G+
r ∩ S G−

r . Notice that, if a continuous function h belongs to S G r , then there exists M > 0 such that, for
all x ∈ R

N ,∣∣h(x)
∣∣ � M

(
1 + |x|r).

The next assumptions indicate that the coefficients to the second and first derivatives are in S S G 2 and S S G 1, respec-
tively. {

There exists σ0 : R
N → S N such that |σ0| ∈ S S G 1 and

F (x, ξ, X) − F (x, ξ, Y ) � −Tr
(
σ0(x)σ0(x)T (X − Y )

)
for x, ξ ∈ R

N , X, Y ∈ S N .
(11)

{
There exists b0 : R

N → R such that |b0| ∈ S S G 1 and∣∣F (x, ξ, X) − F (x, η, X)
∣∣ � b0(x)|ξ − η| for x, ξ,η ∈ R

N , X ∈ S N .
(12)

We shall write P (x, X) = −Tr(σ0(x)σ T (x)X).
0
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We next give a list of hypothesis on H : R
N × R

N → R:

ξ ∈ R
N → H(x, ξ) is convex for x ∈ R

N , (13)

which will be violated in Section 4 when we treat PDEs (8) with matrices A(·) which are not positive definite everywhere.
Under (13), we need to suppose strict positivity and boundedness of H with respect to x ∈ R

N . For a fixed q > 1,{
there exist δ ∈ C

(
R

N)
and C0 > 0 such that δ(x) > 0,

and δ(x)|ξ |q � H(x, ξ) � C0|ξ |q for x, ξ ∈ R
N ,

(14)

H(x, θξ) = θq H(x, ξ) for x, ξ ∈ R
N , θ � 0. (15)

We also suppose continuity of H in x ∈ R
N .{

For R > 0, there exists ωR ∈ M such that∣∣H(x, ξ) − H(y, ξ)
∣∣ � ωR

(|x − y|)|ξ |q for x, y ∈ B R and ξ ∈ R
N .

(16)

In the sequel, we denote by q′ the conjugate of q > 1;

1

q
+ 1

q′ = 1.

Now, we shall come back to the result in [1] for (5). Roughly speaking, the comparison result in [1] is as follows: if we
suppose that

f − g ∈ S S G q′ for a nonnegative convex function g : R
N → R,

then the uniqueness holds among strong solutions in W 2,N
loc (RN ) ∩ S S G+

q′ . Thus, if one restricts f to be nonnegative and
convex, then one does not need to suppose any growth condition on f to obtain the comparison principle. In this paper,
we generalize the uniqueness result by assuming only that f ∈ S S G+

q′ , i.e., f may have any growth from above and need
not be “close” to a convex function.

3. Comparison principle

We denote by USC(RN ) (resp. LSC(RN )) the set of upper (resp., lower) semicontinuous functions in R
N . We first establish

the comparison principle when given data are of S G q .

Theorem 3.1. Fix any λ > 0. Assume that (9)–(12) and (13)–(16) hold. Let u ∈ USC(RN ) ∩ S S G−
q′ and v ∈ LSC(RN ) ∩ S S G+

q′ be,

respectively, a viscosity subsolution and a viscosity supersolution of (1). If f ∈ S S G+
q′ , then for any λ > 0, we have u � v in R

N .

Proof. Step 1: Linearization procedure. For μ ∈ (0,1), it is easy to verify that uμ := μu is a viscosity subsolution of

λuμ + F
(
x, Duμ, D2uμ

) + μ1−q H(x, Duμ) = μ f (x) in R
N . (17)

We shall show that w = wμ := uμ − v is a viscosity subsolution of an extremal PDE

λw + P
(
x, D2 w

) − b0(x)|D w| − βμ|D w|q � (μ − 1) f (x) in R
N , (18)

where βμ := (
1−μ

2 )1−qC0 > 0.
For φ ∈ C2(RN ), we suppose that w − φ attains a local maximum at x̂ ∈ R

N . We may suppose that (w − φ)(x̂) = 0 >

(w − φ)(x) for x ∈ Br(x̂) \ {x̂} with a small r ∈ (0,1).
Let (xε, yε) ∈ B := Br(x̂) × Br(x̂) be a maximum point of uμ(x) − v(y) − (2ε)−1|x − y|2 − φ(y) over B . Since we may

suppose limε→0(xε, yε) = (x̂, x̂), and moreover limε→0(uμ(xε), v(yε)) = (uμ(x̂), v(x̂)), it follows that (xε, yε) ∈ int(B) for
small ε. Hence, in view of Ishii’s lemma (e.g. Theorem 3.2 in [12]), setting pε = ε−1(xε − yε), we find Xε, Yε ∈ S N such that
(pε, Xε) ∈ J 2,+uμ(xε), (pε − Dφ(yε), Yε − D2φ(yε)) ∈ J 2,−v(yε), and

−3

ε

(
I O
O I

)
�

(
Xε O
O −Yε

)
� 3

ε

(
I −I

−I I

)
.

Thus, from the definition, we have

λuμ(xε) + F (xε, pε, Xε) + μ1−q H(xε, pε) � μ f (xε)

and

λv(yε) + F
(

yε, pε − Dφ(yε), Yε − D2φ(yε)
) + H

(
yε, pε − Dφ(yε)

)
� f (yε).
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Since (11) and (12) imply

P
(

yε, D2φ(yε)
) − b0(yε)

∣∣Dφ(yε)
∣∣ � F (yε, pε, Yε) − F

(
yε, pε − Dφ(yε), Yε − D2φ(yε)

)
,

by (9), we have

λ
(
uμ(xε) − v(yε)

) + P
(

yε, D2φ(yε)
) − b0(yε)

∣∣Dφ(yε)
∣∣

� H
(

yε, pε − Dφ(yε)
) − μ1−q H(xε, pε) + μ f (xε) − f (yε) + mR

(|xε − yε| + ε−1|xε − yε|2
)
,

where R = r + |x̂|.
We shall estimate the first two terms in the right-hand side of the above. By (13), we have

H
(

yε, pε − Dφ(yε)
)
�

(
1 + μ

2

)1−q

H(yε, pε) +
(

1 − μ

2

)1−q

H
(

yε,−Dφ(yε)
)
.

Thus, due to (14) and (16), we find ωR ∈ M such that

H
(

yε, pε − Dφ(yε)
) − μ1−q H(xε, pε) � −

(
μ1−q −

(
1 + μ

2

)1−q)
δ(yε)|pε|q

+ μ1−qωR
(|xε − yε|

)|pε|q +
(

1 − μ

2

)1−q

H
(

yε,−Dφ(yε)
)
. (19)

Since the positivity of δ(x̂) implies μ1−qωR(|xε − yε|) � (μ1−q − (
1−μ

2 )1−q)δ(yε) for small ε > 0, we have

λ
(
uμ(xε) − v(yε)

) + P
(

yε, D2φ(yε)
) − b0(yε)

∣∣Dφ(yε)
∣∣ − βμ

∣∣Dφ(yε)
∣∣q

� μ f (xε) − f (yε) + mR
(|xε − yε| + ε−1|xε − yε|2

)
,

where βμ = (
1−μ

2 )1−qC0. Therefore, sending ε → 0 and using that (2ε)−1|xε − yε|2 → 0, we have

λw(x̂) + P
(
x̂, D2φ(x̂)

) − b0(x̂)
∣∣Dφ(x̂)

∣∣ − βμ

∣∣Dφ(x̂)
∣∣q � (μ − 1) f (x̂),

which proves that w is a viscosity subsolution of (18).

Step 2: Construction of smooth strict supersolutions of (18). Let Φ(x) = (1 − μ){C1 + α〈x〉q′ }, where 〈x〉 = (1 + |x|2)1/2, and
C1,α > 0 will be chosen later.

Note that

D〈x〉q′ = q′〈x〉q′−2x and D2〈x〉q′ = q′〈x〉q′−4(〈x〉2 I + (
q′ − 2

)
x ⊗ x

)
.

Since σ0,b0 ∈ S S G 1 and f ∈ S S G+
q′ , for any ε, ε′ > 0, we can find Cε = Cε(σ0,b0) > 0 and Cε′ = Cε′ ( f ) > 0 (independent

of α > 0) such that

P
(
x, D2Φ

) − b0(x)|DΦ| + (1 − μ) f (x) � (1 − μ)
{−α

(
ε〈x〉q′ + Cε〈x〉q′−1) − ε′〈x〉q′ − Cε′

}
,

and

−βμ|DΦ|q � −(1 − μ)αqC ′
0〈x〉q(q′−1) = −(1 − μ)αqC ′

0〈x〉q′
,

where C ′
0 = 2q−1(q′)q . Hence, we have

λΦ + P
(
x, D2Φ

) − b0(x)|DΦ| − βμ|DΦ|q + (1 − μ) f (x)

� (1 − μ)
{
λC1 + α

(
λ − ε − Cε〈x〉−1 − αq−1C ′

0

)〈x〉q′ − ε′〈x〉q′ − Cε′
}
. (20)

Fix ε,α ∈ (0,1) such that ε � λ/4 and αq−1C ′
0 � λ/4. We then choose ε′ � λα/4 to estimate the right-hand side of the

above from below by

(1 − μ)

{
λC1 − Cε′ + α

(
λ

4
− Cε〈x〉−1

)
〈x〉q′

}
.

Hence, taking C1 = λ−1[Cε′ + max{Cε〈x〉q′−2 | 〈x〉 � 4Cε/λ}] + 1, we see that Φ satisfies

λΦ + P
(
x, D2Φ

) − b0(x)|DΦ| − βμ|DΦ|q > (μ − 1) f (x) in R
N . (21)
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Step 3: Conclusion. Since w ∈ S S G−
q′ , w − Φ takes its maximum at x̂ ∈ R

N . Thus, we have

λw(x̂) + P
(
x̂, D2Φ(x̂)

) − b0(x̂)
∣∣DΦ(x̂)

∣∣ − βμ

∣∣DΦ(x̂)
∣∣q � (μ − 1) f (x̂).

If (w − Φ)(x̂) � 0, then we get a contradiction to (21). Hence, we have

w(x) � (1 − μ)
(
C1 + α〈x〉q′)

for x ∈ R
N ,

which concludes the assertion in the limit μ ↗ 1. �
Note that, if we suppose σ0 ∈ S G 1 or b0 ∈ S G 1 in (11)–(12), then the comparison principle for (1) fails among solutions

in S G q′ in general. In fact, we recall the example (6) stated in the Introduction. In this example, b0 ∈ S G 1 but does not
belong to S S G 1 unless t = 0, and the comparison obviously fails since one does not have uniqueness.

Also, if we consider

u − (
1 + x2)u′′ + ∣∣u′∣∣2 = 0 in R, (22)

then it is easy to check that v1 ≡ 0 and v2(x) = 1
2 + 1

4 x2 are solutions of (22) in S G 2 but v2 /∈ S S G 2. This nonuniqueness
comes from σ0 ∈ S G 1.

In [8], they may suppose that given functions belong to S G 1 for the comparison principle. However, they need to suppose
that λ is large enough. We can extend their results following the above arguments.{

There exists σ0 : R
N → S N such that |σ0| ∈ S G 1 and

F (x, ξ, X) − F (x, ξ, Y ) � −Tr
(
σ0(x)σ0(x)T (X − Y )

)
for x, ξ ∈ R

N , X, Y ∈ S N .
(23)

{
There exists b0 : R

N → R such that |b0| ∈ S G 1 and∣∣F (x, ξ, X) − F (x, η, X)
∣∣ � b0(x)|ξ − η| for x, ξ,η ∈ R

N , X ∈ S N .
(24)

Theorem 3.2. Assume that (9)–(10), (23)–(24) and (13)–(16) hold. For f ∈ S G+
q′ , there exists λ0 = λ0(σ0,b0) > 0 (where σ0 , b0 are

the functions introduced in (23)–(24)) such that for λ � λ0 , if u ∈ USC(RN ) ∩ S S G−
q′ and v ∈ LSC(RN ) ∩ S S G+

q′ are, respectively,

a viscosity subsolution and a viscosity supersolution of (1), then u � v in R
N .

Proof. We do not need any change in Step 1 of proof of Theorem 3.1.
In view of (23) and (24), we can get (20) for some ε, ε′, Cε, Cε′ > 0 which are not necessary small. Therefore, we can

choose λ0 > 0 such that for λ � λ0, we can show Φ is a strict supersolution of (18). Notice that λ0 depends only on the
growth of σ0 and b0. The rest of the proof can be done by the same argument. �

In the above theorem, we need to assume that u,−v ∈ S S G−
q′ to be sure that w − Φ achieves a maximum in R

N (recall
that (1 − μ) in front of Φ is arbitrarily small). If we are concerned with PDEs (1) without superlinear terms, that is

λu + F
(
x, Du, D2u

) = f (x) in R
N , (25)

then we can obtain slightly stronger results.

Proposition 3.3. Assume that (9)–(12) hold. Let u ∈ USC(RN )∩ S G−
q′ and v ∈ LSC(RN )∩ S G+

q′ be, respectively, a viscosity subsolution

and a viscosity supersolution of (25). If f ∈ S S G+
q′ , then u � v in R

N .

Proof. Following the argument in the proof of Theorem 3.1, we verify that w := u − v is a viscosity subsolution of

λw + P
(
x, D2 w

) − b0(x)|D w| = 0 in R
N . (26)

Now, setting Φ(x) = α〈x〉q′ + C1 for α, C1 � 1, we see that Φ satisfies

λΦ(x) + P
(
x,Φ(x)

) − b0(x)
∣∣DΦ(x)

∣∣ � (λC1 − Cε) + α〈x〉q′(
λ − ε〈x〉−2 − εα−1), (27)

where ε > 0 is small enough so that the second term of the right-hand side is positive. We then choose C1 � Cε/λ to show
that Φ is a strict supersolution of (26). Since we may take α large enough so that w − Φ attains its maximum at a point
in R

N , we conclude the proof. �



116 S. Koike, O. Ley / J. Math. Anal. Appl. 381 (2011) 110–120
Finally, we treat the case when given functions are in S G 1.

Proposition 3.4. Assume that (9)–(10) and (23)–(24) hold. For f ∈ S G+
q′ , there exists λ0 = λ0(σ0,b0) > 0 (where σ0 , b0 are the

functions introduced in (23)–(24)) such that for λ � λ0 , if u ∈ USC(RN ) ∩ S G−
q′ and v ∈ LSC(RN ) ∩ S G+

q′ are, respectively, a viscosity

subsolution and a viscosity supersolution of (25), then u � v in R
N .

Proof. As above, we can show (27) but ε > 0 may not be small. However, again, for large λ > λ0 > 0, where λ0 depends
only on the growth of σ0 and b0, we can show that Φ is a strict supersolution of (26) when α, C1 are large numbers. Thus,
we can conclude the proof even for w ∈ S G−

q′ . �
4. Nonconvex H

In this section, we deal with some case when (13) is not satisfied.
We denote by Γ ⊂ R

N the zero-level set of H(·, ξ) for all ξ ∈ R
N ;

Γ = {
x ∈ R

N
∣∣ H(x, ξ) = 0 for any ξ ∈ R

N}
.

Our assumptions are as follows. For σ0 in (11) and b0 in (12),

Γ ⊂ {
x ∈ R

N
∣∣ σ0(x) = 0, b0(x) = 0

}
. (28)

Assumption (28) is a kind of degeneracy condition on the coefficients of F .⎧⎪⎪⎪⎨
⎪⎪⎪⎩

There exist open sets Ω± ⊂ R
N , δ± ∈ C

(
R

N)
and

C±
0 > 0 such that R

N = Γ ∪ Ω+ ∪ Ω−, δ±(x) > 0,

δ±(x)|ξ |q � ±H(x, ξ) � C±
0 |ξ |q for x ∈ Ω±, ξ ∈ R

N ,

and ξ → ±H(x, ξ) are convex for x ∈ Ω±.

(29)

It means that we can divide R
N \ Γ into two open subsets: Ω+ where H(x, ·) is convex and Ω− where H(x, ·) is concave.

When A(x) = a(x)I in (8) for some a : R
N → R, Ω± = {x ∈ R

N | ±a(x) > 0}, and Γ = {x ∈ R
N | a(x) = 0}.

We also suppose that σ0 in (11) and b0 in (12) satisfy that

σ0,b0 ∈ W 1,∞
loc

(
R

N)
. (30)

Finally, we need some degeneracy condition for H on Γ .{
For each x0 ∈ Γ , there exist r, C1 > 0 such that∣∣H(x, ξ)

∣∣ � C1|x − x0|q|ξ |q for x ∈ Br(x0).
(31)

Theorem 4.1. Assume that (9)–(12), (15)–(16) and (28)–(31) hold. Let u ∈ USC(RN ) ∩ S S G−
q′ and v ∈ LSC(RN ) ∩ S S G+

q′ be, respec-

tively, a viscosity subsolution and a viscosity supersolution of (1). If f ∈ S S G+
q′ , then u � v in R

N .

Proof. We first notice that the comparison principle holds if ξ → H(x, ξ) is concave instead of (13). In fact, we may take
wμ = u − μv for μ ∈ (0,1), and then we can follow the argument in the proof of Theorem 3.2.

Step 1: u � f /λ � v on Γ . We only prove the first inequality since the second one can be shown similarly. For x0 ∈ Γ , let
xε ∈ B1(x0) be the maximum point of u(x) − f (x0) − (2ε)−1|x − x0|2 over B1(x0). It is easy to see that limε→0 xε = x0;
xε ∈ B1(x0) for small ε > 0.

It follows that we can write the viscosity inequality for the subsolution u of (1) at xε (see e.g. [12]): for any ε > 0, there
exists Xε ∈ S N such that

(pε, Xε) ∈ J 2,+u(xε), with Xε � 3

ε
I, (32)

where pε = ε−1(xε − x0). We have

λu(xε) − P(xε, Xε) − b0(xε)|pε| + H(xε, pε) � f (xε).

By (30) and (31), we can find some constants Cσ ,1, Cb,1, C1 > 0 such that, for ε small enough, we have∣∣σ0(xε)
∣∣ � Cσ ,1|xε − x0|,

∣∣b0(xε)
∣∣ � Cb,1|xε − x0|, and

∣∣H(xε, pε)
∣∣ � C1|xε − x0|q|pε|q.
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It follows that there exists C > 0 such that

λu(xε) − C
(
ε−1|xε − x0|2 + ε−q|xε − x0|2q) � f (xε).

Since limε→0 ε−1|xε − x0|2 = 0 and limε→0 u(xε) = u(x0), letting ε → 0, we get

λu(x0) � f (x0).

Step 2: Comparison on Ω+ ∪ Γ . We can proceed exactly as in the convex case (Step 1 in the proof of Theorem 3.1) to prove
that wμ = μu − v (for 0 < μ < 1) is a subsolution of (18) in Ω+ . Define Φ = (1 − μ)(C1 + α〈x〉q′

) with the same choice of
constant α, C1 as before. Notice that, with this choice, λΦ � (μ − 1) f in R

N .
Consider supΩ+∪Γ (wμ − Φμ). Since wμ ∈ S S G−

q′ , this supremum is finite and is achieved at a point x which belongs to

the closed set Ω+ ∪ Γ . We distinguish two cases.
At first, if x ∈ Ω+ , then, arguing as in the convex case (Step 2 in the proof of Theorem 3.1) we can write the viscosity

inequality for wμ using Φ as a test-function to show that the supremum is nonpositive.
Now, if x ∈ Γ , then, from Step 1, we get u(x) � f (x)/λ � v(x) and therefore wμ(x) � (μ − 1) f (x)/λ � Φ(x); thus the

supremum is nonpositive. In both cases, wμ − Φ � 0. Letting μ ↗ 1, we conclude u � v in Ω+ ∪ Γ .

Step 3: Conclusion. To get the comparison in Ω− ∪ Γ , we use the fact that we are in the concave case in Ω− . As noticed
before, we can prove u � v in Ω− ∪ Γ . �

In the Introduction, we give a nonconvex H : Ω × R
N → R defined by

H(x, ξ) = min
{

Hk(x, ξ)
∣∣ k = 1,2, . . . ,m

}
, (33)

where Hk is convex in ξ and m ∈ N. We shall denote by A the set {1,2, . . . ,m}.

Theorem 4.2. Assume that (9)–(12) hold, that H in (1) is given by (33) and that (13)–(16) hold for each Hk with common δ ∈ C(RN ),
C0 > 0 and ωR ∈ M for k ∈ A. Let u ∈ USC(RN ) ∩ S S G−

q′ and v ∈ LSC(RN ) ∩ S S G+
q′ be, respectively, a viscosity subsolution and a

viscosity supersolution of (1). If f ∈ S S G+
q′ , then for any λ > 0, we have u � v in R

N .

Proof. It is enough to verify Step 1 in the proof of Theorem 3.1. More precisely, we only need to check if (19) holds. We
shall use the same notation as in the proof of Theorem 3.1. For any ε > 0, we can choose kε ∈ A such that

H(xε, pε) = Hkε (xε, pε).

Hence, we have

H
(

yε, pε − Dφ(yε)
) − μ1−q H(xε, pε)

� Hkε

(
yε, pε − Dφ(yε)

) − μ1−q Hkε (xε, pε)

� −
(
μ1−q −

(
1 + μ

2

)1−q)
δ(yε)|pε|q + μ1−qωR

(|xε − yε|
)|pε|q +

(
1 − μ

2

)1−q

C0
∣∣Dφ(yε)

∣∣.
Therefore, since the remaining proof is the same as in the proof of Theorem 3.1, we conclude the proof. �

We shall generalize the above H .
Let A and B be compact metric spaces. For α ∈ A, β ∈ B, we consider continuous functions σ ,τ : R

N × A × B →
M(N,n), where M(N,n) denotes the set of N × n real-valued matrices. For α ∈ A, β ∈ B, a,b ∈ R

n , x, ξ ∈ R
N , we define

Hα,a
β,b : R

N × R
N → R by

Hα,a
β,b (x, ξ) = 2

〈
σ(x,α,β)a − τ (x,α,β)b, ξ

〉 − |a|2 + |b|2.
We next set

Hβ,b(x, ξ) = sup
α∈A,a∈Rn

Hα,a
β,b (x, ξ)

= sup
α∈A

{∣∣σ T (x,α,β)ξ
∣∣2 − 2

〈
τ (x,α,β)b, ξ

〉} + |b|2

for β ∈ B, b ∈ R
n and x, ξ ∈ R

N . Finally, set
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H(x, ξ) = inf
β∈B,b∈Rn

Hβ,b(x, ξ)

= inf
β∈B

sup
α∈A

{∣∣σ T (x,α,β)ξ
∣∣2 − ∣∣τ T (x,α,β)ξ

∣∣2}
. (34)

Defining S(x,α,β) = σ(x,α,β)σ T (x,α,β), T (x,α,β) = τ (x,α,β)τ T (x,α,β) ∈ S N , for x ∈ R
N and (α,β) ∈ A × B, we give a

condition on S , T so that H satisfies (14).⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

There are δ ∈ C
(
R

N)
and C0 > 0 such that

(i) δ(x) > 0 for x ∈ R
N ,

(ii) for any x ∈ R
N and β ∈ B, there exists αβ,x ∈ A satisfying S(x,αβ,x, β) − T (x,αβ,x, β) � δ(x)I,

(iii) for any x ∈ R
N , there exists βx ∈ B satisfying sup

α∈A

∣∣S(x,α,βx)
∣∣ � C0.

(35)

Assuming that S, T : R
N × A × B → S N satisfy (35), we easily verify that the above H satisfies (14) and (15) with q = 2.

In fact, for x, ξ ∈ R
N , we choose βx = βx,ξ ∈ B such that H(x, ξ) = supα∈A{|σ T (x,α,βx)ξ |2 − |τ T (x,α,βx)ξ |2}. Thus, by (35),

we can find αx = αx,ξ ∈ A such that

H(x, ξ) �
∣∣σ T (x,αx, βx)ξ

∣∣2 − ∣∣τ T (x,αx, βx)ξ
∣∣2

= 〈(
S(x,αx, βx) − T (x,αx, βx)

)
ξ, ξ

〉
� δ(x)|ξ |2.

The other inequality is trivial by (iii) of (35). Furthermore, assuming that⎧⎪⎨
⎪⎩

for R > 0, there are C R > 0 and ω̂R ∈ M such that

(i)
∣∣σ(x,α,β)

∣∣ + ∣∣τ (x,α,β)
∣∣ � C R for x ∈ B R and (α,β) ∈ A × B,

(ii)
∣∣σ(x,α,β) − σ(y,α,β)

∣∣ + ∣∣τ (x,α,β) − τ (y,α,β)
∣∣ � ω̂R

(|x − y|) for x, y ∈ B R and (α,β) ∈ A × B,

(36)

we can show that (16) holds with some ωR ∈ M.
Now, we can state the comparison principle for the above H in (1). Since we can prove it with the same argument as in

the proof of Theorem 4.2, we leave it to the readers.

Corollary 4.3. Assume that (9)–(12) hold, that H in (1) is given by (34) and that (35), (36) hold. Let u ∈ USC(RN ) ∩ S S G−
2 and

v ∈ LSC(RN ) ∩ S S G+
2 be, respectively, a viscosity subsolution and a viscosity supersolution of (1). If f ∈ S S G+

2 , then for any λ > 0,
we have u � v in R

N .

In particular, we shall suppose that σ and τ are, respectively, independent of α and β . Then, it is easy to see

H(x, ξ) = min
β∈B

∣∣σ T (x, β)ξ
∣∣2 − min

α∈A

∣∣τ T (x,α)ξ
∣∣2

.

Since it is straightforward to restate the hypotheses (35) and (36) in this case, we leave it to the readers.

Remark 4.4. We may give some generalizations of Theorems 4.1 and 4.2 to PDEs with coefficients in S G instead of S S G as
it was done at the end of Section 3.

5. Monotone systems

In this section, we establish the comparison principle to monotone systems of elliptic PDEs, which were introduced
in [16].

For a given integer m � 2, we set A = {1,2, . . . ,m}. We consider systems of PDEs: for k ∈ A,

Fk
(
x, u, Duk, D2uk

) + Hk(x, Duk) = fk(x) in R
N , (37)

where u = (u1, u2, . . . , um) : R
N → R

m is an unknown function, and Fk : R
N × R

m × R
N × S N → R, Hk : R

N × R
N → R,

fk : R
N → R (k ∈ A) are given functions.

First of all, we recall the definition of viscosity solutions of general systems of PDEs: for k ∈ A,

Gk
(
x, u, Duk, D2uk

) = 0 in R
N , (38)

where Gk : R
N × R

m × R × R
N × S N → R is continuous.
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Definition 5.1. We call u = (uk) : R
N → R

m a viscosity subsolution (resp., supersolution) of (38) if for φ ∈ C2(RN ) and k ∈ A,

Gk
(
x̂, u∗(x̂), Dφ(x̂), D2φ(x̂)

)
� 0

(
resp., Gk

(
x̂, u∗(x̂), Dφ(x̂), D2φ(x̂)

)
� 0

)
provided (uk)

∗ − φ (resp., (uk)∗ − φ) attains its local maximum (resp., minimum) at x̂ ∈ R
N .

We also call u a viscosity solution of (38) if it is both a viscosity sub- and supersolution of (38).

We will suppose that F := (F1, F2, . . . , Fm) is monotone as in [16]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

There exists λ > 0 such that

if r = (rk), s = (sk) ∈ R
m, (x, ξ, X) ∈ R

N × R
N × S N and

max
k∈A

(rk − sk) = r j − s j � 0 for j ∈ A,

then F j(x, r, ξ, X) − F j(x, s, ξ, X) � λ(r j − s j).

(39)

We will suppose that every Fk = Fk(x, r, ξ, X) in F = (Fk) satisfies (9) with a modulus mR,k uniformly for |r| � R; moreover
it satisfies (11) and (12) with some σk ∈ S S G 1 and bk ∈ S S G 1, respectively. Assumption (10) is replaced with

F (x, θr, θξ, θ X) = θ F (x, r, ξ, X) for θ � 0, x, ξ ∈ R
N , r ∈ R

m, X ∈ S N . (40)

We set Pk(x, X) = −Tr(σk(x)σ T
k (x)X). In the same way, we will assume that Hk satisfies (13)–(16) with common δ ∈ C(RN ),

q > 1, and ωR (though we may allow them to depend on k ∈ A).

Theorem 5.2. Assume that (39), (9), (40), (11) and (12) hold for Fk and (13)–(16) hold for Hk (k ∈ A).
Let uk ∈ USC(RN ) ∩ S S G−

q′ and vk ∈ LSC(RN ) ∩ S S G+
q′ , u = (uk) and v = (vk) be, respectively, a viscosity subsolution and a

viscosity supersolution of (37). If fk ∈ S S G+
q′ for k ∈ A, then uk � vk in R

N for k ∈ A.

Proof. First of all, by (10), (13) and (15), we verify that uμ = (uμ,k) = (μuk) (μ ∈ (0,1)) is a viscosity subsolution of

Fk
(
x, uμ, Duμ,k, D2uμ,k

) + μ1−q Hk(x, Duμ,k) � μ fk(x) in R
N .

Step 1: Linearization. Set w(x) = maxk∈A(uμ,k − vk)(x) for x ∈ R
N . We shall verify that w is a viscosity subsolution of

λw + min
k∈A

{
Pk

(
x, D2 w

) − bk(x)|D w| − βμ|D w|q − (μ − 1) fk(x)
} = 0

in R
N , where βμ = (

1−μ
2 )1−qC0. We argue as in the proof of Theorem 3.1 assuming that, for a fixed φ ∈ C2(RN ), w − φ

attains a strict local maximum at x̂ ∈ R
N . Setting B := Br(x̂) × Br(x̂), up to extract subsequences, we can suppose that

max
x,y∈B

max
k∈A

{
uμ,k(x) − vk(y) − (2ε)−1|x − y|2 − φ(y)

}
= uμ, j(ε)(xε) − v j(ε)(yε) − (2ε)−1|xε − yε|2 − φ(yε) (41)

xε, yε → x̂ and uμ, j(ε)(xε) − v j(ε)(yε) → w(x̂). Moreover, since the set A is finite, we may suppose that j(ε) = j is inde-
pendent of ε.

As in the proof of Theorem 3.1, since there are X j,ε, Y j,ε ∈ S N such that (pε, X j,ε) ∈ J 2,+u j(xε), (pε − Dφ(yε), Y j,ε −
D2φ(yε)) ∈ J 2,−v j(yε), and the matrix inequalities in (9) hold with (X j,ε, Y j,ε), we have

F j
(

yε, uμ(xε), pε, Y j,ε
)
� F j

(
xε, uμ(xε), pε, X j,ε

) + mR
(|xε − yε| + ε−1|xε − yε|2

)
, (42)

where R = r + |x̂|.
Moreover, by (11) and (12), we have

F j
(

yε, v(yε), pε − Dφ(yε), Y j,ε − D2φ(yε)
)

� F j
(

yε, v(yε), pε, Y j,ε
) − P j

(
yε, D2φ(yε)

) + b j(yε)
∣∣Dφ(yε)

∣∣. (43)

From (41), we note that

max
k∈A

(
uμ,k(xε) − vk(yε)

) = uμ, j(xε) − v j(yε)

and therefore, by (39), we have

λ
(
uμ, j(xε) − v j(yε)

)
� F j

(
yε, uμ(xε), pε, Y j,ε

) − F j
(

yε, v(yε), pε, Y j,ε
)
. (44)
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On the other hand, from the definition, we have

F j
(
xε, uμ(xε), pε, X j,ε

) + μ1−q H(xε, pε) � μ f j(xε),

and

F j
(

yε, v(yε), pε − Dφ(yε), Y j,ε − D2φ(yε)
) + H(yε, pε) � f j(yε).

Thus, following the same calculations for H j as in Theorem 3.1, by (42), (43) and (44), we have

λ
(
uμ, j(xε) − v j(yε)

) + P j
(

yε, D2φ(yε)
) − b j(yε)

∣∣Dφ(yε)
∣∣ − βμ

∣∣Dφ(yε)
∣∣q − μ f j(xε) + f j(yε)

� mR
(|xε − yε| + ε−1|xε − yε|2

)
(45)

for small enough ε > 0. Hence, sending ε → 0 in (45), we obtain the desired extremal PDE

λw(x̂) + min
k∈A

{
Pk

(
x̂, D2φ(x̂)

) − bk(x̂)
∣∣Dφ(x̂)

∣∣ − βμ

∣∣Dφ(x̂)
∣∣q − (μ − 1) fk(x̂)

}
� 0.

Step 2: Conclusion. Consider the same function Φ from the proof of Theorem 3.1. We can choose the constant α, C0 > 0 in
order that Φ is a strict supersolution of the previous extremal PDE. The conclusion follows. �
Remark 5.3. As in the previous sections, we may give some generalizations of Theorem 4.1 to PDEs with coefficients in S G
instead of S S G and for nonconvex Hamiltonians Hk satisfying assumptions like (28)–(31) on some subsets Ω±

k , Γk . The
proof combines techniques developed in Sections 3 and 4, so we skip it.
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