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Abstract

In the first part of this paper we study the regularity properties of solutions to initial or boundary-value problems of Fredholm
integro-differential equations with weakly singular or other nonsmooth kernels. We then use these results in the analysis of a piecewise
polynomial collocation method for solving such problems numerically. Presented numerical examples display that theoretical results
are in good accordance with actual convergence rates of proposed algorithms.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study the convergence behavior of a piecewise polynomial collocation method for the numerical
solution of initial or boundary-value problems of the form

u(n)(t) =
n−1∑
i=0

ai(t)u
(i)(t) + f (t) +

∫ b

0

n−1∑
i=0

Ki(t, s)u
(i)(s) ds, (1.1)

n−1∑
i=0

[�ij u
(i)(0) + �ij u

(i)(b)] = 0, j = 1, . . . , n, (1.2)

where 0� t �b, b ∈ R = (−∞, ∞), b > 0, n ∈ N = {1, 2, . . .}, �ij , �ij ∈ R, i = 0, 1, . . . , n − 1; j = 1, . . . , n. We
assume that a0, . . . , an−1, f ∈ Cm,�[0, b], K0, . . . , Kn−1 ∈ Wm,�(�), m ∈ N, � ∈ R, −∞ < � < 1.

The set Cm,�[0, b], with m ∈ N, −∞ < � < 1, is defined as the collection of all continuous functions u : [0, b] → R

which are m times continuously differentiable in (0, b) and such that for all t ∈ (0, b) and i = 1, . . . , m the following
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estimate holds:

|u(i)(t)|�c

⎧⎪⎨
⎪⎩

1 if i < 1 − �,

1 + | log �(t)| if i = 1 − �,

�(t)1−�−i if i > 1 − �.

(1.3)

Here c = c(u) is a positive constant and

�(t) = min{t, b − t} (0 < t < b)

is the distance from t ∈ (0, b) to the boundary of the interval [0, b]. Equipped with the norm

‖u‖m,� = max
0� t �b

|u(t)| +
m∑

i=1

sup
0<t<b

(wi+�−1(t)|u(i)(t)|), u ∈ Cm,�[0, b], (1.4)

Cm,�[0, b] is a Banach space. Here

w�(t) =

⎧⎪⎨
⎪⎩

1 for � < 0,

(1 + | log �(t)|)−1 for � = 0,

�(t)� for � > 0,

with t ∈ (0, b). Note that Cm[0, b], the set of m times (m�1) continuously differentiable functions u : [0, b] → R,
belongs to Cm,�[0, b] for arbitrary � < 1. We define

C0,�[0, b] = C[0, b], −∞ < � < 1,

where C[0, b] is the Banach space of continuous functions u : [0, b] → R equipped with the usual norm ‖u‖C[0,b] =
max0�x �b|u(x)|.

The set Wm,�(�), with m ∈ N, −∞ < � < 1,

� = {(t, s) : 0� t �b, 0�s�b, t �= s},
consists of all m times continuously differentiable functions K : � → R satisfying for all (t, s) ∈ � and all non-negative
integers i and j such that i + j �m the condition

∣∣∣∣∣
(

�

�t

)i( �

�t
+ �

�s

)j

K(t, s)

∣∣∣∣∣ �c

⎧⎪⎨
⎪⎩

1 if � + i < 0,

1 + | log |t − s|| if � + i = 0,

|t − s|−�−i if � + i > 0,

(1.5)

where c = c(K) is a positive constant. For i = j = 0, condition (1.5) yields

|K(t, s)|�c

⎧⎪⎨
⎪⎩

1 if � < 0

1 + | log |t − s|| if � = 0

|t − s|−� if � > 0

⎫⎪⎬
⎪⎭ , (t, s) ∈ �.

Thus, a kernel K ∈ Wm,�(�) (m ∈ N, � < 1) is at most weakly singular for 0�� < 1; if � < 0, then K(t, s) is bounded
on � but its derivatives may have singularities as s → t . Most important examples of weakly singular kernels are given
by

K0(t, s) = �(t, s) log |t − s|, K�(t, s) = �(t, s)|t − s|−�, 0 < � < 1,

where � ∈ Cm([0, b] × [0, b]). Clearly, K0 ∈ Wm,0(�) and K� ∈ Wm,�(�), m ∈ N, 0 < � < 1.
A special case of {(1.1), (1.2)} with �ij =0, i=0, . . . , n−1; j =1, . . . , n, and Ki(t, s)=0 for s > t, i=0, . . . , n−1,

is a initial value problem for a Volterra integro-differential equation. Collocation methods for the numerical solution
of Volterra integro-differential equations are studied, for example, in [1–3,9,13–15].
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The numerical solution of Fredholm integro-differential equations with help of collocation methods in case of smooth
kernels is investigated in [4–6,8,10,12,17]. The solution of such equations by Galerkin method is studied in [18], by
Tau method in [7], by Taylor method in [11] and by the modified Adomian decomposition method in [19].

There is very little literature on the numerical solution of Fredholm integro-differential equations with weakly
singular kernels [17,18]. This is in remarkable contrast to the number of works on weakly singular Fredholm integral
equations, see, for example, [16] and the literature given therein. We refer also to [4,5] where the numerical solution
of Fredholm integro-differential equations with discontinuous kernels (but smooth solutions) is considered.

The main purpose of the present paper is to generalize the results obtained in [2,3,9] for first order Volterra integro-
differential equations to a wide class of arbitrary order Fredholm or Volterra integro-differential equations with weakly
singular or other nonsmooth kernels.

In the first part of this paper (Section 2) we study the regularity properties of the solution to {(1.1), (1.2)} in
case when the kernels K0(t, s), . . . , Kn−1(t, s) may be weakly singular at t = s and the derivatives of the functions
a0, . . . , an−1 and f may be unbounded on the interval [0, b]. Then we use these results in the analysis of a piecewise
polynomial collocation method for solving such equations numerically. Using special graded grids, we derive optimal
global convergence estimates and analyze the attainable order of global and local convergence of numerical solutions
for all values of the grading exponent of the underlying grid (Sections 4 and 5). In Section 3 we introduce some
auxiliary results which we need in the convergence analysis of proposed algorithms. In Section 6 we present some
numerical illustrations showing a good accordance with theoretical results. The main results of the paper are formulated
in Theorems 2.1, 4.1 and 5.1.

Remark 1.1. For simplicity we confine ourselves to problem with homogenous conditions (1.2). But similar results
can be derived also in case of a equation (1.1) with nonhomogenous conditions

n−1∑
i=0

[�ij u
(i)(0) + �ij u

(i)(b)] = �j , j = 1, . . . , n, (1.6)

where �ij , �ij , �j ∈ R, i = 0, . . . , n − 1; j = 1, . . . , n. This follows from the observation that if u is the solution of
problem {(1.1), (1.6)}, then ũ=u−p is the solution of {(1.1), (1.2)} in which only the forcing function f (t) is replaced
by

f̃ (t) = f (t) − p(n)(t) +
n−1∑
i=0

ai(t)p
(i)(t) +

∫ b

0

n−1∑
i=0

Ki(t, s)p
(i)(s) ds, 0� t �b,

with a polynomial p(t) satisfying (1.6).

2. Smoothness of the solution

Consider the following two homogenous equations, corresponding to the initial Eq. (1.1):

u(n)(t) =
n−1∑
i=0

ai(t)u
(i)(t) +

∫ b

0

n−1∑
i=0

Ki(t, s)u
(i)(s) ds, 0� t �b, (2.1)

u(n)(t) = 0, 0� t �b. (2.2)

The existence and regularity of the solution of problem {(1.1), (1.2)} is described in the following theorem.

Theorem 2.1. Let n ∈ N, �ij , �ij ∈ R, i = 0, . . . , n − 1; j = 1, . . . , n. Assume that f, ai ∈ Cm,�[0, b], Ki ∈
Wm,�(�), i = 0, . . . , n − 1, m ∈ N, � ∈ R, −∞ < � < 1. Moreover, assume that both the homogenous problem
{(2.1), (1.2)} and the homogenous problem {(2.2), (1.2)} have only the trivial solution u=0. Then problem {(1.1), (1.2)}
possesses a unique solution u ∈ Cm+n,�−n[0, b] and for its derivatives u′, u′′, . . . , u(n) we have that
u(i) ∈ Cm+n−i,�−n+i[0, b], i = 1, . . . , n.
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For the proof of Theorem 2.1 we need the following auxiliary results.

Lemma 2.1. If m�k�0 and 	�� < 1, then Cm,	[0, b] ⊂ Ck,�[0, b] and

‖v‖k,� �c‖v‖m,	

for v ∈ Cm,	[0, b] with a constant c.

Lemma 2.2. If a, v ∈ Ck,�[0, b], k ∈ N, � < 1, then

‖av‖k,� �c‖a‖k,�‖v‖k,�

where c is a constant.

The statements of Lemmas 2.1 and 2.2 follow from the definition of the space Ck,�[0, b] and its norm (1.4).
Consider now an equation

u(n)(t) = v(t), 0� t �b, v ∈ L∞(0, b). (2.3)

If problem {(2.2), (1.2)} has only the trivial solution u = 0, then problem {(2.3), (1.2)} has a unique solution

u(t) =
∫ b

0
G(t, s)v(s) ds, t ∈ [0, b], (2.4)

where G(t, s) is the Green’s function of problem {(2.3), (1.2)}. The derivatives of the function u given by (2.4) can be
expressed in the form

u(i)(t) = (Jiv)(t), t ∈ [0, b], i = 0, . . . , n − 1, (2.5)

where

(Jiv)(t) =
∫ b

0

�iG(t, s)

�t i
v(s) ds, t ∈ [0, b], i = 0, . . . , n − 1. (2.6)

Actually, by (2.6) is defined n linear integral operators Ji : L∞(0, b) → C[0, b], i = 0, . . . , n − 1, associated with the
Green’s function G(t, s) of problem {(2.3), (1.2)}.

In the sequel for given Banach spaces E and F, we denote by L(E, F ) the Banach space of bounded linear operators
A : E → F with the norm ‖A‖L(E,F ) = sup{‖Az‖F : z ∈ E, ‖z‖E �1}.

Lemma 2.3. Let G(t, s) be the Green’s function of problem {(2.3), (1.2)} and let Ji (i =0, 1, . . . , n−1) be defined by
the formula (2.6). Assume that problem {(2.2), (1.2)} has only the trivial solution u= 0. Then Ji is linear and compact
as an operator from L∞(0, b) into C[0, b]. Moreover, Ji is a bounded operator from Ck,�[0, b] into Ck+n−i,�−n+i[0, b]
for every k ∈ N0 = {0, 1, . . .} and � ∈ R, � < 1.

Proof. Since the general solution of Eq. (2.2) is an arbitrary polynomial of degree n − 1, the Green’s function G(t, s)

for {(2.3), (1.2)} can be expressed both for t < s and for t > s as the polynomial of degree n− 1 with respect to t and s.
Moreover, �iG(t, s)/�t i , i=0, . . . , n−2, the derivatives of G(t, s) with respect to t, are continuous in �=[0, b]×[0, b]
and �n−1G(t, s)/�tn−1 is continuous and bounded in �. From this it follows that Ji, i = 0, . . . , n − 1, are (see [16])
linear and compact as operators from L∞(0, b) to C[0, b].

In order to prove the second assertion of Lemma we show that Ji (i = 0, . . . , n − 1) maps every bounded set of
Ck,�[0, b] into bounded set of Ck+n−i,�−n+i[0, b], k ∈ N0, � < 1. Let v ∈ Ck,�[0, b] be a function for which ‖v‖k,� �c0,
where c0 is a constant. Then

|v(i)(t)|�c0

⎧⎪⎨
⎪⎩

1 if i < 1 − �,

1 + | log �(t)| if i = 1 − �,

�(t)1−�−i if i > 1 − �,

(2.7)
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for t ∈ (0, b) and i = 0, . . . , k. From (2.5)–(2.7) we obtain that

|(Jiv)(j)(t)| = |u(i+j)(t)|�c0

∫ b

0

∣∣∣∣�
i+jG(t, s)

�t i+j

∣∣∣∣ ds�c0c1, (2.8)

where t ∈ [0, b], j = 0, . . . , n − i − 1, and c1 is a constant. For j �n − i we have

(Jiv)(j)(t) = u(i+j)(t) = v(i+j−n)(t), t ∈ [0, b],
and it follows from (2.7) and (2.8) that

|(Jiv)(j)(t)|�c

⎧⎪⎨
⎪⎩

1 if j < 1 − (� − n + i),

1 + | log �(t)| if j = 1 − (� − n + i),

�(t)1−(�−n+i)−j if j > 1 − (� − n + i),

with a constant c = c0 max{1, c1} for all t ∈ (0, b) and all j = 0, . . . , k + n − i. This yields that Jiv belongs to a
bounded set of Ck+n−i,�−n+i[0, b]. �

Proof of Theorem 2.1. Using ai ∈ Cm,�[0, b] and Ki ∈ Wm,�(�) we define the operators Ai and Ti by settings

(Aiw)(t) = ai(t)w(t), t ∈ [0, b], i = 0, . . . , n − 1, (2.9)

(Tiw)(t) =
∫ b

0
Ki(t, s)w(s) ds, t ∈ [0, b], i = 0, . . . , n − 1. (2.10)

Clearly,

Ai, Ti ∈ L(C[0, b], C[0, b]), i = 0, . . . , n − 1. (2.11)

Consider the equation

v = T v + f , (2.12)

where

T =
n−1∑
i=0

(AiJi + TiJi), (2.13)

with Ji, i = 0, . . . , n− 1, defined by (2.6). It follows from Lemma 2.3 that Ji, i = 0, . . . , n− 1, are linear and compact
as operators from C[0, b] ⊂ L∞(0, b) into C[0, b]. This together with (2.11) and (2.13) yields that T is linear and
compact as operator from C[0, b] into C[0, b].

Eq. (2.12) is equivalent to problem {(1.1), (1.2)} in the following sense: if u ∈ Cn[0, b] is the solution of {(1.1), (1.2)}
then v = u(n) is the solution of (2.12); conversely, if v ∈ C[0, b] is the solution of (2.12) then u = J0v is the solution
of {(1.1), (1.2)}.

Further, since problem {(2.1), (1.2)} has only the trivial solution, equation v =T v has only the trivial solution v =0,
too. Thus, by the Fredholm alternative, the equation (2.12) has for every f ∈ Cm,�[0, b] ⊂ C[0, b] the unique solution
v ∈ C[0, b].

It follows from Lemmas 2.1–2.3 that

Ji ∈ L(Ck−1,�[0, b], Ck,�[0, b]), Ai ∈ L(Ck,�[0, b], Ck,�[0, b]) (2.14)

for i = 0, . . . , n − 1; k = 1, . . . , m. Since Ki ∈ Wm,�(�) ⊂ Wk,�(�), i = 0, . . . , n − 1; k = 1, . . . , m, then (see [16])
Ti ∈ L(Ck,�[0, b], Ck,�[0, b]). This together with (2.13) and (2.14) yields that

T ∈ L(Ck−1,�[0, b], Ck,�[0, b]), k = 1, . . . , m.
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Further, since f ∈ Cm,�[0, b] ⊂ Ck,�[0, b], k = 1, . . . , m, and v, the unique solution of equation (2.12), belongs to
C[0, b] = C0,�[0, b], then by induction we get that

v = T v + f ∈ C1,�[0, b], . . . , v = T v + f ∈ Cm,�[0, b].
Now we obtain from (2.4), (2.6) and Lemma 2.3 that

u = J0v, (2.15)

the unique solution of {(1.1), (1.2)}, belongs to Cm+n,�−n[0, b]. Moreover,

u(i) = Jiv ∈ Cm+n−i,�−n+i[0, b], i = 1, . . . , n − 1. �

3. Piecewise polynomial interpolation

For N ∈ N, let


N = {t0, . . . , t2N : 0 = t0 < t1 < · · · < t2N = b}
be a partion (a graded grid) of the interval [0, b] with the grid points

tj = b

2

(
j

N

)r

, j = 0, 1, . . . , N ,

tN+j = b − tN−j , j = 1, . . . , N , (3.1)

where the grading exponent r ∈ R, r �1. The number r ∈ [1, ∞) characterizes the nonuniformity of the grid 
N . If
r = 1, then the grid points (3.1) are distributed uniformly; for r > 1 the points (3.1) are more densely clustered near the
endpoints of the interval [0, b]. It is easy to see that

0 < tj − tj−1 � rb

2N
, j = 1, . . . , 2N .

For given integers m�0 and −1�d �m − 1, let S
(d)
m (
N) be the spline space of piecewise polynomial functions on

the grid 
N

S(d)
m (
N) = {v ∈ Cd [0, b] : v|�j

∈ �m, j = 1, . . . , 2N}, 0�d �m − 1,

S(−1)
m (
N) = {v : v|�j

∈ �m, j = 1, . . . , 2N}.
Here v|�j

is the restriction of v onto the subinterval �j =[tj−1, tj ], j =1, . . . , 2N , and �m denotes the set of polynomials

of degree not exceeding m. Note that the elements of S
(−1)
m (
N) may have jump discontinuities at the interior points

t1, . . . , t2N−1 of the grid 
N .
In every subinterval [tj−1, tj ], j = 1, . . . , 2N , we introduce m�1 interpolation points

tjk = tj−1 + k(tj − tj−1), k = 1, . . . , m; j = 1, . . . , 2N , (3.2)

where 1, . . . , m are some fixed parameters which do not depend on j and N and satisfy the conditions

0�1 < · · · < m �1. (3.3)

To a given continuous function v : [0, b] → R we assign a piecewise polynomial interpolation function PNv ∈
S

(−1)
m−1(
N) which interpolates v at the points (3.2):

(PNv)(tjk) = v(tjk), k = 1, . . . , m; j = 1, . . . , 2N .

Thus (PNv)(t) is independently defined in every subinterval [tj−1, tj ], j = 1, . . . , 2N , and may be discontinuous at
the interior points t1, . . . , t2N−1 of the grid 
N ; we may treat PNv as two-valued function at these points. Note that
in the case {1 = 0, m = 1} PNv is a continuous function on [0, b].
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We also introduce an interpolation operator PN which assigns to every continuous function v : [0, b] → R its
piecewise polynomial interpolation function PNv.

From results proved in [16, pp. 115–119], we obtain the following Lemmas 3.1–3.3.

Lemma 3.1. Let the interpolation nodes (3.2) with grid points (3.1) and parameters (3.3) be used. Then PN ∈
L(C[0, b], L∞(0, b)) and

‖PN‖L(C[0,b],L∞(0,b)) �c, N ∈ N,

with a positive constant c which is independent on N.

Lemma 3.2. Let v ∈ Cm,�[0, b], m ∈ N, � < 1, and let the interpolation nodes (3.2) with grid points (3.1) and
parameters (3.3) be used. Then the following estimates hold:

‖v − PNv‖∞ �c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−r(1−�) for 1�r <
m

1 − �
,

N−m(1 + log N) for r = m

1 − �
= 1,

N−m for r = m

1 − �
> 1 or r >

m

1 − �
, r �1;

∫ b

0
|v(t) − (PNv)(t)| dt �c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−r(2−�) for 1�r <
m

2 − �
,

N−m(1 + log N) for r = m

2 − �
�1,

N−m for r >
m

2 − �
, r �1.

Here c is a positive constant which is independent of N and

‖v − PNv‖∞ = max
1� j �2N

sup
tj−1<t<tj

|v(t) − (PNv)(t)|. (3.4)

Lemma 3.3. Let the conditions of Lemma 3.2 be fulfilled. Then

sup
tj−1<t<tj

|v(s) − (PNv)(s)|�c(tj − tj−1)
m

⎧⎪⎨
⎪⎩

1 if m < 1 − �,

1 + | log tj | if m = 1 − �,

t1−�−m
j if m > 1 − �,

for j = 1, . . . , N , and

sup
tj−1<t<tj

|v(s) − (PNv)(s)|�c(tj − tj−1)
m

⎧⎪⎨
⎪⎩

1 if m < 1 − �,

1 + | log(b − tj−1)| if m = 1 − �,

(b − tj−1)
1−�−m if m > 1 − �,

for j = N + 1, . . . , 2N , with a positive constant c which is independent of j and N.

4. Collocation method

We know from Section 2 that the solution of problem {(1.1), (1.2)} has the form u = J0v (see (2.15)), where v is the
solution of Eq. (2.12) and J0 is defined by the formula (2.6). This suggests to construct a collocation method for the
numerical solution of problem {(1.1), (1.2)} as follows.

We look for an approximate solution uN of {(1.1), (1.2)} in the form

uN(t) = (J0vN)(t), N ∈ N, (4.1)
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where vN satisfies the following conditions:

vN ∈ S
(−1)
m−1(
N), m ∈ N,

vN(tjk) =
n−1∑
i=0

ai(tjk)(JivN)(tjk) + f (tjk) +
∫ b

0

n−1∑
i=0

Ki(tjk, s)(JivN)(s) ds,

k = 1, . . . , m; j = 1, . . . , 2N . (4.2)

Here {Ji} and {tjk} are given by the formulas (2.6) and (3.2), respectively.

Remark 4.1. If vN ∈ S
(−1)
m−1(
N) then

u
(i)
N = JivN ∈ S

(n−i−1)
m+n−i−1(
N) ⊂ Cn−i−1[0, b], i = 0, . . . , n − 1.

If 1 = 0 and m = 0 (see (3.3)), then vN ∈ S
(0)
m−1(
N) ⊂ C[0, b] and

u
(i)
N = JivN ∈ S

(n−i)
m+n−i−1(
N) ⊂ Cn−i[0, b], i = 0, . . . , n − 1.

Last assertions follow from the equalities

u
(i)
N (t) = u

(i)
N (0) +

∫ t

0
u

(i+1)
N (s) ds, t ∈ [0, b], i = 0, . . . , n − 1.

Remark 4.2. The collocation conditions (4.2) form a system of equations whose exact form is determined by the choice
of a basis in S

(−1)
m−1(
N) (or in S

(0)
m−1(
N) if 1=0 and m=1). For instance, in each subinterval [tj−1, tj ], j=1, . . . , 2N ,

we may use the Lagrange fundamental polynomial representation

vN(t) =
m∑

k=1

cjk�jk(t), t ∈ [tj−1, tj ], j = 1, . . . , 2N ,

where cjk = vN(tjk) and

�jk(t) =
m∏

q=1,q �=k

t − tjq

tjk − tjq

, t ∈ [tj−1, tj ], k = 1, . . . , m; j = 1, . . . , 2N .

The conditions (4.2) then lead to a system of linear algebraic equations for the coefficients cjk, k = 1, . . . , m; j =
1, . . . , 2N .

In the sequel by c we denote positive constants which are independent of N and may be different in different
inequalities.

Theorem 4.1. Let the conditions of Theorem 2.1 be fulfilled and let the interpolation nodes (3.2) with the grid points
(3.1) and parameters (3.3) be used.

Then there exists an N0 ∈ N such that, for N �N0, and for every choice of collocation parameters 0�1 < · · · <
m �1, the settings (4.1) and (4.2) determine a unique approximation uN ∈ S

(n−1)
m+n−1(
N) to u, the exact solution of

the problem {(1.1), (1.2)}. The derivatives u
(i)
N of uN are approximations to u(i), i = 1, . . . , n. Moreover, if N �N0,

then the following error estimates hold:

max
0� i �n−1

‖u(i) − u
(i)
N ‖∞ �c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−r(2−�) for 1�r <
m

2 − �
,

N−m(1 + log N) for r = m

2 − �
�1,

N−m for r >
m

2 − �
, r �1;

(4.3)
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‖u(n) − u
(n)
N ‖∞ �c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−r(1−�) for 1�r <
m

1 − �
,

N−m(1 + log N) for r = m

1 − �
= 1,

N−m for r = m

1 − �
> 1 or r >

m

1 − �
, r �1;

(4.4)

max
k=1,...,m

j=1,...,2N

|u(n)(tjk) − u
(n)
N (tjk)|�c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−r(2−�) for 1�r <
m

2 − �
,

N−m(1 + log N) for r = m

2 − �
�1,

N−m for r >
m

2 − �
, r �1.

(4.5)

Here c is a positive constant which does not depend on N, u
(n)
N = vN is the solution of (4.2) and the norm ‖ · ‖∞ is

defined by the formula (3.4).

Proof. The collocation conditions (4.2) have the operator equation representation

vN = PNT vN + PNf , (4.6)

where T is given by the formula (2.13) and PN is defined in Section 3. It follows from (2.11) and Lemma 2.3 that T is
linear compact as an operator from L∞(0, b) into C[0, b]. On the basis of Lemmas 3.1 and 3.2 we now obtain that (cf.
[2])

‖T − PNT ‖L(L∞(0,b),L∞(0,b)) → 0 as N → ∞. (4.7)

Since equation v =T v has in L∞(0, b) only the trivial solution v =0, then there exists an inverse operator (I −T )−1 ∈
L(L∞(0, b), L∞(0, b)) where I is the identity operator. This together with (4.7) yields that there exists a number
N0 ∈ N such that for N �N0 the operator (I − PNT ) is invertible in L∞(0, b) and

‖(I − PNT )−1‖P(L∞(0,b),L∞(0,b)) �c, N �N0. (4.8)

Thus, since f ∈ C[0, b], then for N �N0 Eq. (4.6) possesses a unique solution vN ∈ L∞(0, b). Actually (see (4.6)),
vN ∈ S

(−1)
m−1(
N). Using vN we find for N �N0 a unique uN ∈ S

(n−1)
m+n−1(
N) in the form (4.1).

It follows from (2.12) and (4.6) that

(I − PNT )(v − vN) = v − PNv. (4.9)

On the basis of (4.8) we obtain from (4.9) that

‖v − vN‖∞ �c‖v − PNv‖∞, N �N0. (4.10)

Due to Theorem 2.1 v =u(n) ∈ Cm,�[0, b]. Now (4.10) together with v =u(n) and Lemma 3.2 yields the estimate (4.4).
Further, from (2.5) and (4.1) we obtain that

u(i)(t) − u
(i)
N (t) = (Ji(v − vN))(t), t ∈ [0, b], i = 0, . . . , n − 1. (4.11)

From (2.6) it follows that

max
0� t �b

|(Ji(v − vN))(t)|�c

∫ b

0
|v(s) − vN(s)| ds, i = 0, . . . , n − 1. (4.12)



262 A. Pedas, E. Tamme / Journal of Computational and Applied Mathematics 197 (2006) 253–269

Using (2.11), (2.13), (4.12) and Lemma 3.1 we obtain that

‖PNT (v − PNv)‖∞ �c

∫ b

0
|v(s) − (PNv)(s)| ds, N �N0. (4.13)

Since

(I − PNT )−1 = I + (I − PNT )−1PNT , N �N0,

we get from (4.9) that

v − vN = v − PNv + (I − PNT )−1PNT (v − PNv), N �N0.

This together (4.8) and (4.13) yields

|v(t) − vN(t)|� |v(t) − (PNv)(t)| + c

∫ b

0
|v(s) − (PNv)(s)| ds,

where t ∈ [0, b], N �N0. Thus, we get from (4.11) and (4.12) that

‖u(i) − u
(i)
N ‖∞ �c

∫ b

0
|v(s) − (PNv)(s)| ds, i = 0, . . . , n − 1, N �N0.

This together with v ∈ Cm,�[0, b] and Lemma 3.2 yields the estimate (4.3).
Let us prove the estimate (4.5). From (2.12) and (4.6) we obtain that

(I − PNT )(vN − PNv) = PNT (PNv − v). (4.14)

Using (4.8) and (4.13) we get from (4.14) the estimate

‖vN − PNv‖∞ �c

∫ b

0
|v(s) − (PNv)(s)| ds, N �N0. (4.15)

Further, we have u(n) = v ∈ Cm,�[0, b] and

|vN(tjk) − v(tjk)|�‖vN − PNv‖∞, k = 1, . . . , m; j = 1, . . . , 2N . (4.16)

This together with (4.15) and Lemma 3.2 yields the estimate (4.5). �

5. Superconvergence phenomenon

It follows from Theorem 4.1 that for method {(4.1), (4.2)} for every choice of collocation parameters 0�1 < · · ·
< m �1 a convergence of order O(N−m) can be expected, using sufficiently large values of the grid parameter r. In
the following we show that assuming a little more regularity of functions f, ai , Ki , i = 0, 1, . . . , n − 1, by a careful
choice of parameters 1, . . . , m it is possible to prove a faster convergence of method {(4.1), (4.2)}.

Theorem 5.1. Let in problem {(1.1), (1.2)} n ∈ N, f, ai ∈ Cm+1,�[0, b], Ki ∈ Wm+1,�(�), i = 0, . . . , n − 1;
m ∈ N, � ∈ R, −∞ < � < 1; �ij , �ij ∈ R, i = 0, . . . , n − 1; j = 1, . . . , n. Assume that both the homogeneous
problem {(2.1), (1.2)} and homogeneous problem {(2.2), (1.2)} have only the trivial solution u = 0. Moreover, let the
interpolation nodes (3.2) with grid points (3.1) and parameters (3.3) be used and the parameters 1, . . . , m in (3.3)
be chosen so that the quadrature approximation

∫ 1

0
g(s) ds ≈

m∑
k=1

wkg(k), 0�1 < · · · < m �1, (5.1)

with appropriate weights wk = w
(m)
k , k = 1, . . . , m, is exact for all polynomials g of degree m.
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Then the statements of Theorem 4.1 are valid. Moreover, for all N �N0 the following estimates hold:

max
k=1,...,m
j=1,...,2N

|u(n)(tjk) − u
(n)
N (tjk)|�c�N(m, �, r), (5.2)

max
i=0,...,n−1

‖u(i) − u
(i)
N ‖∞ �c�N(m, �, r). (5.3)

Here c is a positive constant which is independent of N, the norm ‖ · ‖∞ is given by the formula (3.4) and

�N(m, �, r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N−r(2−�) for 1�r <
m + 1

2 − �
,

N−m−1(1 + log N) for r = m + 1

2 − �
�1,

N−m−1 for r >
m + 1

2 − �
, r �1.

(5.4)

Proof. We know from the proof of Theorem 4.1 that Eq. (4.6) has a unique solution vN ∈ S
(−1)
m−1(
N) for N �N0.

From (4.14), (4.8) and Lemma 3.1 it follows the estimate

‖vN − PNv‖∞ �c‖T (v − PNv)‖∞, N �N0, (5.5)

where v is the solution of Eq. (2.12).
Using (2.6) and integration by parts we obtain that

(Ji(v − PNv))(t) =
∫ b

0

�iG(t, s)

�t i
[v(s) − (PNv)(s)] ds

= �iG(t, b)

�t i

∫ b

0
[v(�) − (PNv)(�)] d�

−
[
�iG(t, t + 0)

�t i
− �iG(t, t − 0)

�t i

] ∫ t

0
[v(�) − (PNv)(�)] d�

−
∫ b

0

�i+1G(t, s)

�t i�s

∫ s

0
[v(�) − (PNv)(�)] d� ds, t ∈ [0, b], i = 0, . . . , n − 1.

Thus, we get

max
0� t �b

|(Ji(v − PNv))(t)|�c max
0� t �b

∣∣∣∣
∫ t

0
[v(�) − (PNv)(�)] d�

∣∣∣∣ ,

i = 0, . . . , n − 1. (5.6)

From (5.6), (2.11) and (2.13) it follows

‖T (v − PNv)‖∞ �c max
0� t �b

∣∣∣∣
∫ t

0
[v(�) − (PNv)(�)] d�

∣∣∣∣ . (5.7)

From Theorem 2.1 we get that v = u(n) ∈ Cm+1,�[0, b]. Using this we can show that

max
0� t �b

∣∣∣∣
∫ t

0
[v(�) − (PNv)(�)] d�

∣∣∣∣ �c�N(m, �, r), (5.8)

where �N(m, �, r) is given by the formula (5.4). This together with (4.16), (5.5) and (5.7) yields (5.2).
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In order to prove (5.8) we choose m + 1 parameters 0� ̃1 < ̃2 < · · · < ̃m+1 �1 such that {1, . . . , m} ⊂
{̃1, . . . , ̃m+1} and set

t̃jk = tj−1 + ̃k(tj − tj−1), k = 1, . . . , m + 1; j = 1, . . . , 2N ,

where {tj } are given by the formulas (3.1). Moreover, we introduce an operator P̃N which assign to every continuous

function z : [0, b] → R its piecewise polynomial interpolation function P̃Nz ∈ S
(−1)
m (
N) such that

(P̃Nz)(t̃jk) = z(t̃jk), k = 1, . . . , m + 1; j = 1, . . . , 2N .

Due to Lemma 3.2
∫ b

0
|v(�) − (P̃Nv)(�)| d��c�N(m, �, r). (5.9)

Further, the quadrature approximation (5.1) is exact for all polynomials of degree not exceeding m. This yields that the
equality

∫ tj

tj−1

g(�) d� = (tj − tj−1)

m∑
k=1

wkg(tjk), j = 1, . . . , 2N ,

holds for all polynomials g of degree not exceeding m. Therefore
∫ tj

tj−1

(PNv)(�) d� =
∫ tj

xj−1

(P̃Nv)(�) d�, j = 1, . . . , 2N ,

and ∣∣∣∣
∫ tj

0
[v(�) − (PNv)(�)] d�

∣∣∣∣ =
∣∣∣∣
∫ tj

0
[v(�) − (P̃Nv)(�)] d�

∣∣∣∣

�
∫ b

0
|v(�) − (P̃Nv)(�)| d�, j = 1, . . . , 2N .

This together with (5.9) yields

max
1� j �2N

∣∣∣∣
∫ tj

0
[v(�) − (PNv)(�)] d�

∣∣∣∣ �c�N(m, �, r). (5.10)

Fix t ∈ [0, b] and let j ∈ {1, . . . , 2N} such that t ∈ [tj−1, tj ]. Actually, we consider only the case if j ∈ {1, . . . , N}.
For j ∈ {N + 1, . . . , 2N} the argument is analogous. Due to Lemma 3.3

∣∣∣∣∣
∫ t

tj−1

[v(�) − (PNv)(�)] d�

∣∣∣∣∣ �c(tj − tj−1)
m+1

⎧⎪⎨
⎪⎩

1 if m < 1 − �,

1 + | log tj | if m = 1 − �,

t1−�−m
j if m > 1 − �.

For j = 1, . . . , N we have

tj = b

2

(
j

N

)r

, 0 < tj − tj−1 � br

2
j r−1N−r � br

2N
,

(tj − tj−1)
m+1t1−�−m

j �cjr(2−�)−m−1N−r(2−�)

�c

{
N−r(2−�) if r(2 − �) < m + 1,

N−m−1 if r(2 − �)�m + 1.
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Therefore,
∣∣∣∣∣
∫ t

tj−1

[v(�) − (PNv)(�)] d�

∣∣∣∣∣ �c�N(m, �, r), t ∈ [tj−1, tj ]. (5.11)

This together with (5.10) yields (5.8) implying the estimate (5.2).
Let us prove the statement (5.3). As well we have deduced the estimate (5.6) we get also

‖u(i) − u
(i)
N ‖∞ = max

0� t �b
|(Ji(v − vN))(t)|

�c max
0� t �b

∣∣∣∣
∫ t

0
[v(�) − vN(�)] d�

∣∣∣∣ , i = 0, . . . , n − 1.

In the following we prove that

max
0� t �b

∣∣∣∣
∫ t

0
[v(�) − vN(�)] d�

∣∣∣∣ �c�N(m, �, r) (5.12)

and so we get the estimate (5.3).
Fix t ∈ [0, b], let j ∈ {1, . . . , 2N} be such that t ∈ [tj−1, tj ]. We have

∣∣∣∣
∫ t

0
[v(�) − vN(�)] d�

∣∣∣∣ �
∣∣∣∣
∫ tj−1

0
[v(�) − vN(�)] d�

∣∣∣∣ +
∣∣∣∣∣
∫ t

tj−1

[v(�) − vN(�)] d�

∣∣∣∣∣ . (5.13)

For the first term of the right-hand side of (5.13) we get

∣∣∣∣
∫ tj−1

0
[v(�) − vN(�)] d�

∣∣∣∣ �
∣∣∣∣
∫ tj−1

0
[v(�) − (P̃Nv)(�)] d�

∣∣∣∣ +
∣∣∣∣
∫ tj−1

0
[(P̃Nv)(�) − vN(�)] d�

∣∣∣∣

�
∫ b

0
|v(�) − (P̃Nv)(�)| d� +

j−1∑
i=1

(ti − ti−1)

m∑
k=1

|wk||v(tik) − vN(tik)|.

This together with (5.2) and (5.9) yields that

∣∣∣∣
∫ tj−1

0
[v(�) − vN(�)] d�

∣∣∣∣ �c�N(m, �, r). (5.14)

It remains to estimate the second term of the right-hand of (5.13). We have

∣∣∣∣∣
∫ t

tj−1

[v(�) − vN(�)] d�

∣∣∣∣∣ �
∣∣∣∣∣
∫ t

tj−1

[v(�) − (PNv)(�)] d�

∣∣∣∣∣
+

∫ t

tj−1

|(PNv)(�) − vN(�)| d�, t ∈ [tj−1, tj ]. (5.15)

By (5.5), (5.7) and (5.8) we get

∫ t

tj−1

|(PNv)(�) − vN(�)| d��(t − tj−1)‖PNv − vN‖∞ �c�N(m, �, r), t ∈ [tj−1, tj ].

This together with the estimates (5.11), (5.15), (5.14) and (5.13) yields (5.12) and therefore also (5.3). �
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Table 1
Results in case 1 = 0.1 and 2 = 0.9

N r = 1 (�(0)
1 = 2.83) r = 1.4 (�(0)

1.4 = 4) r = 2 (�(0)
2 = 4)

�(0)
N

�(0)
N

�(0)
N

�(0)
N

�(0)
N

�(0)
N

4 7.1E − 4 4.03 7.6E − 4 4.01 1.2E − 3 3.74
8 1.8E − 4 4.00 1.9E − 4 4.02 2.9E − 4 3.94

16 4.4E − 5 3.99 4.7E − 5 4.01 7.4E − 5 3.99
32 1.1E − 5 3.99 1.2E − 5 4.00 1.8E − 5 4.00
64 2.8E − 6 3.99 3.0E − 6 4.00 4.6E − 6 4.00

N r = 1 (�(1)
1 = 2.83) r = 1.4 (�(1)

1.4 = 4) r = 2 (�(1)
2 = 4)

�(1)
N

�(1)
N

�(1)
N

�(1)
N

�(1)
N

�(1)
N

4 8.5E − 3 2.66 6.1E − 3 3.23 6.2E − 3 3.42
8 3.2E − 3 2.70 1.8E − 3 3.39 1.7E − 3 3.71

16 1.2E − 3 2.74 5.1E − 4 3.51 4.3E − 4 3.86
32 4.2E − 4 2.77 1.4E − 4 3.59 1.1E − 4 3.93
64 1.5E − 4 2.79 3.9E − 5 3.65 2.8E − 5 3.96

N r = 1 (�(2)
1 = 1.41) r = 1.4 (�(2)

1.4 = 1.62) r = 2 (�(2)
2 = 2)

�(2)
N

�(2)
N

�(2)
N

�(2)
N

�(2)
N

�(2)
N

4 3.2E − 1 1.44 2.4E − 1 1.65 1.6E − 1 2.03
8 2.2E − 1 1.42 1.5E − 1 1.63 7.9E − 2 2.01

16 1.6E − 1 1.42 9.0E − 2 1.63 3.9E − 2 2.00
32 1.1E − 1 1.42 5.6E − 2 1.63 2.0E − 2 2.00
64 7.9E − 2 1.41 3.4E − 2 1.62 9.8E − 3 2.00

6. Numerical experiments

Let us consider the following boundary value problem:

u′′(t) = √
tu′(t) + f (t) +

∫ 1

0
|t − s|−1/2u(s) ds, t ∈ [0, 1],

u(0) = u(1) = 0. (6.1)

Here the forcing function f is selected so that

u(t) = t5/2 + (1 − t)5/2 − 1

is the exact solution of problem (6.1). Actually, this is a problem of the form {(1.1), (1.2)} where

n = 2, b = 1, a0(t) = 0, a1(t) = √
t, K0(t, s) = |t − s|−1/2, K1(t, s) = 0,

f (t) = − 5
2 t2 + 5

2

√
t(1 − t)3/2 − �(t) − �(1 − t)

with

�(t) = 5

16
�t3 + 1

24

√
1 − t(8 + 10t + 15t2) + 5

16
t3 ln

1

t
(2 − t + 2

√
1 − t) − 23

4

√
t .

It is easy to check that a1, f ∈ Cm,�[0, 1] and K0 ∈ Wm,�(�) with � = 1/2 and arbitrary m ∈ N.
Problem (6.1) is solved numerically by collocation method {(4.1), (4.2)} in case m = 2. In Tables 1–4 some of the

results obtained for different values of parameters N, r, 1 and 2 are presented. The quantities �(i)N (i = 0, 1, 2) are the
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Table 2
Results in case 1 = 0.1 and 2 = 0.9 at collocation points

N r = 1 (�1 = 2.83) r = 1.4 (�1.4 = 4) r = 2 (�2 = 4)

�N �N �N �N �N �N

4 7.4E − 3 2.44 5.1E − 3 3.04 4.9E − 3 3.27
8 2.9E − 3 2.57 1.6E − 3 3.28 1.3E − 3 3.64

16 1.1E − 3 2.66 4.6E − 4 3.44 3.5E − 4 3.83
32 4.0E − 4 2.71 1.3E − 4 3.54 9.0E − 5 3.91
64 1.4E − 4 2.75 3.6E − 5 3.61 2.3E − 5 3.96

Table 3
Results in case 1 = (3 − √

3)/6 and 2 = (3 + √
3)/6

N r = 1 (�(0)
1 = 2.83) r = 1.4 (�(0)

1.4 = 4.29) r = 2 (�(0)
2 ≈ 8)

�(0)
N

�(0)
N

�(0)
N

�(0)
N

�(0)
N

�(0)
N

4 5.2E − 5 5.62 1.6E − 5 12.0 3.6E − 5 10.3
8 9.2E − 6 5.62 1.3E − 6 12.4 2.8E − 6 12.9

16 1.6E − 6 5.63 1.2E − 7 11.3 2.0E − 7 14.3
32 2.9E − 7 5.64 1.0E − 8 11.3 1.3E − 8 15.1
64 5.1E − 8 5.65 9.1E − 10 11.3 8.3E − 10 15.5

N r = 1 (�(1)
1 = 2.83) r = 1.4 (�(1)

1.4 = 4.29) r = 2 (�(1)
2 ≈ 8)

�(1)
N

�(1)
N

�(1)
N

�(1)
N

�(1)
N

�(1)
N

4 1.4E − 3 2.84 5.8E − 4 4.36 5.1E − 4 6.63
8 5.0E − 4 2.82 1.4E − 4 4.30 7.2E − 5 7.16

16 1.8E − 4 2.82 3.2E − 5 4.29 9.6E − 6 7.48
32 6.2E − 5 2.83 7.4E − 6 4.29 1.2E − 6 7.70
64 2.2E − 5 2.83 1.7E − 6 4.29 1.6E − 7 7.84

N r = 1 (�(2)
1 = 1.41) r = 1.4 (�(2)

1.4 = 1.62) r = 2 (�(2)
2 = 2)

�(2)
N

�(2)
N

�(2)
N

�(2)
N

�(2)
N

�(2)
N

4 4.0E − 1 1.43 3.0E − 1 1.64 2.0E − 1 2.01
8 2.8E − 1 1.42 1.9E − 1 1.63 1.0E − 1 2.00

16 2.0E − 1 1.42 1.2E − 1 1.62 5.0E − 2 2.00
32 1.4E − 1 1.42 7.1E − 2 1.62 2.5E − 2 2.00
64 1.0E − 1 1.41 4.4E − 2 1.62 1.2E − 2 2.00

Table 4
Results in case 1 = (3 − √

3)/6 and 2 = (3 + √
3)/6 at collocation points

N r = 1 (�1 = 2.83) r = 1.4 (�1.4 = 4.29) r = 2 (�2 ≈ 8)

�N �N �N �N �N �N

4 1.3E − 3 2.67 5.6E − 4 4.07 4.0E − 4 6.56
8 4.8E − 4 2.74 1.3E − 4 4.18 5.4E − 5 7.36

16 1.7E − 4 2.78 3.2E − 5 4.24 7.0E − 6 7.68
32 6.2E − 5 2.80 7.4E − 6 4.27 9.0E − 7 7.83
64 2.2E − 5 2.82 1.7E − 6 4.28 1.1E − 7 7.91
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approximate values of the norms ‖u(i)
N − u(i)‖∞ (i = 0, 1, 2) calculated as follows:

�(i)N = {max |u(i)
N (�jk) − u(i)(�jk)| : k = 0, . . . , 10; j = 1, . . . , 2N}.

Here i = 0, 1, 2 and

�jk = tj−1 + k

10
(tj − tj−1), k = 0, . . . , 10; j = 1, . . . , 2N ,

with grid points {tj }, defined by the formula (3.1).
In Tables 2 and 4 the errors

�N = {max |u′′
N(tjk) − u′′(tjk)| : k = 1, 2; j = 1, . . . , 2N}

of u′′
N = vN at the collocation points (3.2) for m = 2 are presented. In Tables also the ratios

�(i)
N = �(i)N/2/�

(i)
N , i = 0, 1, 2, �N = �N/2/�N ,

characterizing the observed convergence rate, are presented. Moreover, in order to facilitate the comparison of numerical
experiments with theoretical results we have in tables used the notations �(i)

r (i =0, 1, 2) and �r for the ratios regarding
the theoretical rate of convergence of proposed algorithms established by Theorems 4.1 and 5.1. These ratios are defined
in the following way. It follows from (4.3) and (4.5) for n = 2, m = 2, � = 1/2 and N �N0 that

max
i=0,1

‖u(i) − u
(i)
N ‖∞ ��r (N),

max
k=1,2;j=1,...,2N

‖u′′(tjk) − u′′
N(tjk)‖��r (N),

where

�r (N) = c

⎧⎪⎨
⎪⎩

N−3r/2 if 1�r < 4/3,

N−2(1 + log N) if r = 4/3,

N−2 if r > 4/3.

Define the ratios �(0)
r , �(1)

r and �r associated with �r (N) by

�(0)
r = �(1)

r = �r = �r (N/2)/�r (N).

Thus, for N �N0,

�(0)
r = �(1)

r = �r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

23r/2 if 1�r < 4/3,

22
(

1 + log(N/2)

1 + log N

)
if r = 4/3,

22 if r > 4/3.

In a similar way we introduce the ratio �(2)
r associated with the error estimate (4.4) for 1�r < 4: �(2)

r = 2r/2.
From this it follows that in Tables 1 and 2

�(0)
1 = �(1)

1 = �1 = 23/2 ≈ 2.83,

�(0)
r = �(1)

r = �r = 22 = 4 for r > 4/3,

�(2)
r = 2r/2 for 1�r �2.

In Tables 3 and 4 results for Gaussian parameters 1 = (3 − √
3)/6 and 2 = (3 + √

3)/6 are presented. Since the
corresponding Gaussian quadrature formula (5.1) for m = 2 is exact for all polynomials of degree 3, we can apply
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Theorem 5.1. In a similar way as above we introduce the ratios �(0)
r , �(1)

r and �r associated with the error estimates
(5.2) and (5.3) for n = 2, m = 2, � = 1/2 and N �N0:

�(0)
r = �(1)

r = �r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

23r/2 if 1�r < 2,

23
(

1 + log(N/2)

1 + log N

)
if r = 2,

23 if r > 2.

From this it follows that in Tables 3 and 4

�(0)
r = �(1)

r = �r = 23r/2 for 1�r < 2,

�(0)
2 = �(1)

2 = �2 = 23(1 + log(N/2))(1 + log N)−1 ≈ 8, N �N0.

Note that Theorem 5.1 does not refine the estimate for the error ‖u′′ − u′′
N‖∞. Therefore we apply the estimate (4.4)

that holds for all values of parameters 0�1 < 2 �1. Thus, in Table 3 we have used the same values for �(2)
r as in

Table 1.
From Tables 1–4 we can see that in most cases the numerical results are in good accordance with the theoretical

estimates of Theorems 4.1 and 5.1. In Tables 1 and 3 only the decrease of �(0)
N in some cases is considerable faster than

it is indicated by the error estimates (4.3) and (5.3). This phenomenon is worth examining independently.
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