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Abstract

Unique existence of analytically strong solutions to stochastic partial differential equations (SPDE) with
drift given by the subdifferential of a quasi-convex function and with general multiplicative noise is proven.
The proof applies a genuinely new method of weighted Galerkin approximations based on the “distance”
defined by the quasi-convex function. Spatial regularization of the initial condition analogous to the deter-
ministic case is obtained. The results yield a unified framework which is applied to stochastic generalized
porous media equations, stochastic generalized reaction–diffusion equations and stochastic generalized de-
generated p-Laplace equations. In particular, higher regularity for solutions of such SPDE is obtained.
© 2012 Elsevier Inc. All rights reserved.
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0. Introduction

We prove higher spatial regularity of solutions to SPDE and thereby obtain the unique exis-
tence of strong (in the analytic sense) solutions. In general, the regularity of solutions to SPDE
is worse than that of their deterministic counterparts. Therefore, instead of considering (analyt-
ically) strong solutions, usually weaker notions of solutions, like mild (see e.g. [9,22] and the
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references therein) or variational solutions (see e.g. [21,19,23] and the references therein) are
used. In this paper, we show that for SPDE with drift given by the subgradient of a quasi-convex
function and with sufficiently regular noise, i.e. equations of the form

dXt = −∂ϕ(Xt ) dt + Bt(Xt ) dWt , (0.0)

where ϕ : H → R̄ is a quasi-convex function on a Hilbert space H , it is in fact possible to
prove more regularity for the solutions and thereby to obtain (analytically) strong solutions. In
particular, our result apply to quasilinear SPDE and we prove that the solution X takes values in
D(−∂ϕ) almost surely.

The method we develop and employ to prove the regularity of solutions seems to be new even
in the deterministic case. As a special case our results fully contain the analogous results for the
deterministic case, in which it is well known that flows generated by gradient type PDE have
regularizing properties similar to analytic semigroups (cf. e.g. [2]). In this sense the regularity
properties obtained here are optimal.

We point out that our results yield a unified framework for quasilinear equations like stochastic
porous media equations (SPME) as well as for semilinear equations like stochastic reaction–
diffusion equations (SRDE). In contrast to our framework, truly quasilinear equations like SPME
cannot be treated in the mild approach, while SRDE with high order growth of the nonlinearity
do not fit into the variational framework.

In the case that both the method established here and the variational approach as presented
in [24] apply, our results show that variational solutions are in fact strong solutions.

Applications of our results to stochastic generalized porous media equations, stochastic gen-
eralized reaction–diffusion equations and stochastic generalized p-Laplace equations are given
in detail in Section 4, also including the case of a not necessarily bounded underlying domain
O ⊆Rd , and covering different types of boundary conditions.

We now comment on existing regularity results for SPDE and compare to the results estab-
lished in this paper. Concerning the regularity of solutions to linear SPDE a lot of work has been
done (cf. e.g. [10,11,26,27,18,9,7,8]). Applied to linear SPDE, as e.g.

dXt = (
�Xt + f (t)

)
dt + Bt dWt

our results recover regularity properties obtained in [10, Theorem 3.1] under the same conditions
as used in our paper, i.e. X0 ∈ H 1

0 (O) and Bt(ẽk) ∈ L2([0, T ] × Ω;H 1
0 (O)). Note that these

conditions are necessary at least for more regular solutions [10, Proposition 3.3].
Concerning higher regularity, i.e. X ∈ D((−A)γ ) for γ > 1

2 much less is known for general
nonlinear SPDE. In [15] semilinear equations with nonlinear diffusion and Lipschitz nonlinear
drift of the form

dXt = (
AXt + F(Xt )

)
dt + Bt(Xt ) dWt

are considered and under appropriate assumptions on the generator A and the diffusion part B it
is shown that for initial values X0 ∈ D((−A)γ ) the solution X also takes values in D((−A)γ ),
requiring γ ∈ [0, 3

4 ]. By use of the Lp-theory for SPDE in [29] higher regularity for solutions
to semilinear SPDE with nonlinear diffusion and regularization with respect to the initial value
by any order less than 1

2 of A is obtained. Assuming that the drift A + F is a subdifferential
of a quasi-convex function and under appropriate assumptions on the diffusion B (in particular
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trace class noise) these results are partially extended here by proving regularization of the initial
condition by a full order of A (i.e. X ∈ D(A) ⊆ H a.s.). We point out that in the linear case
A = −∂ϕ is self-adjoint, non-positive and thus an analytic operator.

The only reference known to the author concerning the regularity of solutions to general
quasilinear SPDE is [20]. For nonlinear SPDE fitting into the variational framework invariance
of certain subspaces S of the state space H is shown. Roughly speaking, this means that if the
initial condition X0 takes values in the subspace S then so does the solution X. Here, we obtain
much stronger regularity properties, namely invariance of the smaller space V , regularization of
initial data in H into V and more strikingly into D(A) ⊆ V almost surely. In the special case
of the SPME the regularity results in [20,25,16,6,5,13] are strengthened by the results given in
this paper. For more details on existing regularity results for solutions to concrete SPDE and
comparison to the results obtained here we refer to Section 4 below.

We now give a brief outline of the main idea of the proof. The regularity analysis of solutions
to deterministic PDE of gradient type (cf. e.g. [2], also for notation) is based on a chain rule for
absolutely continuous functions u ∈ W 1,2([0, T ];H) composed with a convex, lower semicon-
tinuous (l.s.c.) function ϕ : H → R̄ with u(t) ∈ D(∂ϕ) for almost every t ∈ [0, T ], stating that
ϕ ◦ u is absolutely continuous and

d

dt
ϕ ◦ u =

(
g(t),

du

dt
(t)

)
H

, (0.1)

were g(t) ∈ ∂ϕ(u(t)) almost surely. The main difficulty in the stochastic case thus stems from
the lack of a sufficiently general Itô formula justifying (0.1) in an integral sense for SPDE. The
deterministic chain rule mentioned above is easily proven by a Moreau–Yosida approximation ϕλ

of the convex function ϕ and by applying the classical chain rule. In the stochastic case, however,
this method fails due to the occurrence of the second derivative D2ϕλ of the Moreau–Yosida
approximation of ϕ in Itô’s formula. To proceed further, uniform bounds on D2ϕλ would have to
be shown, which seems to be difficult.

Therefore, we establish an alternative method of approximation which is not based on a reg-
ularization of ϕ so that only bounds on D2ϕ (not on its approximation D2ϕλ) are needed. For
an orthonormal basis ek of H the usual Galerkin approach is to project the equation from H to
a finite dimensional equation on Hn := span{e1, . . . , en} by applying the orthogonal projection
Pn : H → Hn. The key point of this approximation is that the orthogonal projection Pn preserves
the monotonicity of ∂ϕ on H . However, this projection is only based on the geometry of H and
does not fully reflect the geometry of the equation which is induced by the convex function ϕ. For
example, in general Pn is not bounded with respect to ϕ, i.e. ϕ(Pnh) � Cϕ(h), ∀h ∈ H and the
projection does not converge to the identity with respect to ϕ, i.e. ϕ(Pnh − h) �→ 0, for n → ∞
(for the moment assume ϕ(0) = 0). Therefore, for the approximation of the initial condition and
the noise we instead apply the best approximation Pϕ,n : H → Hn weighted by ϕ, i.e.

ϕ(Pϕ,nh − h) = inf
g∈Hn

ϕ(g − h).

The point is that this approximation respects ϕ in the sense that

ϕ(Pϕ,nh) � Cϕ(h), ∀h ∈ H

and the convergence Pϕ,nh → h holds with respect to ϕ, i.e.
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ϕ(Pϕ,nh − h) → 0,

ϕ(Pϕ,nh) → ϕ(h), ∀h ∈ H.

In Section 1 we will establish the framework and state the main results. If the initial condition
is contained in the domain of the quasi-convex function ϕ, Theorem 1.4 asserts the existence
of a unique strong solution to (0.0) and provides a-priori bounds for this solution. The proof is
given in Section 2. If the initial condition is not contained in the domain of ϕ but only X0 ∈
L2(Ω,F0;H) we first prove the unique existence of solutions in a limiting sense (Theorem 1.6)
and then identify these limit solutions as strong solutions to (0.0) in some generalized sense
(Theorem 1.8). In particular, regularization of the initial condition is shown. The proofs are given
in Section 3. The application of our results to SPME, SRDE and stochastic p-Laplace equations
is given in Section 4.

1. Setup and main results

Let H be a separable Hilbert space, V be a reflexive Banach space and S be a Banach space
(note that not necessarily S ⊆ H , nor S reflexive). Assume that there are dense embeddings
V ↪→ S,H and a constant C > 0 such that ‖ · ‖V � C(‖ · ‖S + ‖ · ‖H ). In the applications
(cf. Section 4) we always have V = “S ∩ H” in some appropriate sense. By reflexivity of V

this yields the Gelfand triple V ⊆ H ⊆ V ∗. In particular, V is separable and we can choose
{ek ∈ V | k ∈ N} to be an orthonormal basis of H such that V0 = span{e1, . . .} is dense in V .
Define Hn := span{e1, . . . , en}. Let U be another separable Hilbert space, (Ω,F,Ft ,P) be a
complete probability space with normal filtration Ft , Wt be a cylindrical Brownian motion on U

and B : [0, T ] × Ω × H → L2(U,H) be progressively measurable.
We now introduce the main assumptions under which we will prove the unique existence of

strong solutions to SPDE of the form

dXt = −∂ϕ(Xt ) dt + Bt(Xt ) dWt , on [0, T ]. (1.2)

Although some of the conditions might look unfamiliar at the first sight, all of them are easy to
prove in the applications (Section 4).

(A1) Let ϕ : S → R be a continuous function. Assume that there exists a convex, continuous,
subhomogeneous (i.e. ∃C > 0 such that ϕ̃(2x) � Cϕ̃(x) for all x ∈ S) function ϕ̃ : S →
R+ with bounded level-sets such that ϕ̃(vn) → 0 implies vn → 0 in S and that there are
constants C1 > 0, C2 ∈R so that

C1ϕ̃(v) − C2 � ϕ(v) � C2

(
ϕ̃(v) + 1

2
‖v‖2

H + 1

)
,

for all v ∈ V .

Condition (A1) is needed in order to include non-monotone perturbations of the drift, i.e.
cases in which ϕ is only quasi-convex.

Via the embeddings V ↪→ S,H we may define ϕλ(v) := ϕ(v) + λ
2 ‖v‖2

H and ϕ̃λ(v) := ϕ̃(v) +
λ‖v‖2 , for v ∈ V , λ ∈ R.
2 H
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(A2) Assume that ϕ is Gateaux differentiable on V with A := −Dϕ : V → V ∗ being hemicon-
tinuous and that ϕ ∈ C2(Hn) for all n ∈ N, such that there are constants 1 = p0 � p1 �
· · · � pN , N ∈N for which

∞∑
k=1

D2ϕ(x)(wk,wk) � C

(
1 + ϕ(x) +

N∑
i=0

( ∞∑
k=1

ϕ̃1(wk)
1
pi

)pi
)

,

for each sequence wk ∈ Hn, all x ∈ Hn and some constant C ∈ R (independent of n).

Roughly speaking, assumption (A2) means that the second derivative of ϕ can be controlled
by ϕ up to constants.

We can consider ϕ, ϕ̃, ϕ̃λ, ϕλ as functions on H by extending them by +∞ from V to H .

(A3) Assume that ϕ : H → R̄ is quasi-convex (i.e. ∃λ � 0 such that ϕλ is convex).

The notion of the subgradient is extended to quasi-convex functions in the obvious way. In
particular, we have ∂ϕ = ∂ϕλ − λId . We extend ∂ϕ : D(∂ϕ) ⊆ V → H by 0 to all H . Note that
D(∂ϕ) = {v ∈ V | Dϕ(v) ∈ H } and ∂ϕ = Dϕ|D(∂ϕ) (in particular ∂ϕ(v) is single-valued for all
v ∈ D(∂ϕ)). Boundedness of level-sets of ϕ̃ : V → R, reflexivity of V and weak l.s.c. of ϕλ imply

Remark 1.1. Assume (A1), (A3). Then ϕ, ϕ̃ : H → R̄ are lower semicontinuous.

(A4) (Weak coercivity): There exists a C ∈R such that

2
V ∗

〈−Dϕ(v), v
〉
V

� C
(
1 + ‖v‖2

H

)
,

for all v ∈ V .
(A5) (Lipschitz noise): There is a constant c � 0 such that

∥∥Bt(v) − Bt(w)
∥∥2

L2(U,H)
� c‖v − w‖2

H ,

for all v,w ∈ V .
(A6) (Regularity of the noise): There is an orthonormal basis ẽk of U , such that

∥∥Bt(v)
∥∥

L2,ϕ̃1
,(pi )

:=
N∑

i=0

( ∞∑
k=1

ϕ̃1
(
Bt(v)(ẽk)

) 1
pi

)pi

� C
(
ft + ϕ(v) + ‖v‖2

H

)
,

where pi are as in (A2), C > 0 is a constant and f ∈ L1([0, T ] × Ω) is an Ft -adapted
process.

Intuitively (A6) means that the Hilbert–Schmidt norm of Bt weighted by ϕ can be controlled
by ϕ up to constants. Because of this interpretation we choose the notation ‖ · ‖L2,ϕ̃1

,(pi ) although
this does not define a norm in the strict sense.

As mentioned above all these conditions are easily verified in the applications. Note that we
neither require strict coercivity of −Dϕ, nor the standard polynomial growth condition from the
variational approach. Therefore, the given framework applies to quasilinear equations like porous
media equations as well as to reaction–diffusion equations with high order reaction terms.
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Concerning the coercivity condition we note that since

V ∗
〈−Dϕ(v), v

〉
V

= −
V ∗

〈
Dϕλ(v) − Dϕλ(0), v − 0

〉
V

−
V ∗

〈
Dϕλ(0), v

〉
V

+ λ‖v‖2
H

� −
V ∗

〈
Dϕλ(0), v

〉
V

+ λ‖v‖2
H

we have

Remark 1.2 (Weak coercivity). Assume (A3) and 0 ∈D(∂ϕ). Then (A4) is satisfied.

Let us first state what we mean by a strong solution to (1.2).

Definition 1.3 (Strong solution). Let X0 ∈ L2(Ω,F0;H). An Ft -adapted, continuous process X

in H with X ∈ L2(Ω;C([0, T ];H)) and ∂ϕ(X) ∈ L2([0, T ]×Ω;H) is a strong solution to (1.2)
if P-a.s.

Xt = X0 −
t∫

0

∂ϕ(Xr) dr +
t∫

0

Br(Xr) dWr, ∀t ∈ [0, T ], (1.3)

as an equation in H .

Theorem 1.4. Assume (A1)–(A6). Then for each initial condition X0 ∈ L2(Ω,F0;H) satisfying
Eϕ(X0) < ∞ there is a unique strong solution X to (1.2) with

ϕ(X) + ‖X‖2
H ∈ L∞([0, T ];L1(Ω)

)
.

Let X
(i)
0 ∈ L2(Ω,F0;H) and let X(i) be corresponding strong solutions to (1.2), i = 1,2. Then

E sup
t∈[0,T ]

∥∥X
(1)
t − X

(2)
t

∥∥2
H

� CE
∥∥X

(1)
0 − X

(2)
0

∥∥2
H

. (1.4)

So far we have obtained strong solutions for initial conditions taking values in V ⊆ H .
By monotonicity it is possible to obtain solutions to (1.2) for arbitrary initial conditions X0 ∈
L2(Ω,F0;H) at least in a limit sense.

Definition 1.5. Let X0 ∈ L2(Ω,F0;H). We call an H -valued, Ft -adapted, continuous process
X ∈ L2(Ω;C([0, T ];H)) a limit solution to (1.2) if X(0) = X0 and if there exists an approxi-
mating sequence Xn ∈ L2(Ω;C([0, T ];H)) of strong solutions to (1.2) (with initial conditions
Xn

0 = Xn(0)) such that Xn → X in L2(Ω;C([0, T ];H)).

Theorem 1.6. Let (A1)–(A6) hold and X0 ∈ L2(Ω,F0;H). Then there exists a unique limit
solution X ∈ L2(Ω;C([0, T ];H)) to (1.2). For two limiting solutions X(i) with corresponding
initial conditions X

(i)
0 ∈ L2(Ω,F0;H), i = 1,2,

E sup
t∈[0,T ]

∥∥X
(1)
t − X

(2)
t

∥∥2
H

� CE
∥∥X

(1)
0 − X

(2)
0

∥∥2
H

, (1.5)

for some constant C � 0.



B. Gess / Journal of Functional Analysis 263 (2012) 2355–2383 2361
Note that we did not yet identify limit solutions in terms of some generalized notion of solu-
tion to (1.2). Moreover, uniqueness of limit solutions is only proven with respect to the specific
choice of approximation via strong solutions. Other approximation methods could yield solu-
tions in a limit sense which might be different from those obtained in Theorem 1.6. We thus aim
to introduce a generalized notion of a strong solution to (1.2) and to prove that the limit solutions
are in fact solutions to (1.2) in this generalized sense.

For comparison and to fix ideas let us recall the regularizing properties of deterministic gradi-
ent flows. Let ϕ : H → R̄ be a convex, l.s.c. function. For deterministic gradient flows in Hilbert
spaces it is well known (cf. e.g. [2, Theorem 1.10]) that even for initial conditions y0 ∈ D(ϕ)

(and f ∈ L2([0, T ];H)) there exists a unique mild solution y ∈ C([0, T ];H) to

dy

dt
+ ∂ϕ(y) = f (t), in (0, T )

y(0) = y0,

such that for each 0 < δ < T , y ∈ W 1,2([δ, T ];H), t
1
2

dy
dt

∈ L2([0, T ];H), ϕ(y) ∈ L1([0, T ]),
y(t) ∈D(∂ϕ) for a.e. t ∈ (0, T ) and

dy

dt
(t) + ∂ϕ

(
y(t)

) = f (t), a.e. t ∈ (0, T ). (1.6)

Since not necessarily dy
dt

∈ L1([0, T ];H) we cannot pass to the integrated form of (1.6) over
all [0, T ] and thus we cannot expect an analytically strong solution in the stochastic case. How-
ever, since dy

dt
∈ L1([δ, T ];H) for each δ > 0, we can expect the limit solution to be a strong

solution on each interval [δ, T ]. Using this property as a definition of a generalized strong solu-
tion, we may identify limit solutions as solutions to the SPDE (1.2) and thereby prove uniqueness
of limit solutions independent of the approximation. Moreover, we prove that limit solutions en-
joy regularizing properties analogous to the deterministic case.

Definition 1.7. Let X0 ∈ L2(Ω,F0;H). An H -valued, Ft -adapted, continuous process X ∈
L2(Ω;C([0, T ];H)) is said to be a generalized strong solution to (1.2) if X(0) = X0, ∂ϕ(X) ∈
L2([δ, T ] × Ω;H) and P-a.s.

Xt = Xδ −
t∫

δ

∂ϕ(Xr) dr +
t∫

δ

Br(Xr) dWr, (1.7)

for all t ∈ [δ, T ] and all 0 < δ < T .

In order to prove regularity for the limit solution we need to require the following stronger
coercivity property:

(A4′) There exist constants C1 > 0, C2 ∈R such that

2
V ∗

〈−Dϕ(v), v
〉
V

� C2
(
1 + ‖v‖2

H

) − C1ϕ(v),

for all v ∈ V .
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Theorem 1.8. Assume (A1)–(A6), (A4′). Let X0 ∈ L2(Ω,F0;H) and X ∈ L2(Ω;C([0, T ];H))

be the corresponding limit solution. Then

ϕ(X) + ‖X‖2
H ∈ L1([0, T ] × Ω

)
,

t
1
2 ∂ϕ(Xt ) ∈ L2([0, T ] × Ω;H )

and X is the unique generalized strong solution to (1.2).

If the derivative A = −Dϕ : V → V ∗ satisfies additional coercivity and growth conditions
(cf. (K), (H1)–(H4) in [24]) the variational approach to SPDE can be used to prove the unique
existence of variational solutions to (1.2). In this case limit solutions and variational solutions
coincide and consequently Theorem 1.8 provides a regularity result for variational solutions.

Remark 1.9. Assume (K), (H1)–(H4) from [24] and let X(l), X(v) be limit (resp. variational)
solutions to (1.2). Then X(l) = X(v) up to indistinguishability.

2. Proof of Theorem 1.4

Note that (A1) implies that ϕ is bounded from below. Therefore, without loss of generality we
can assume ϕ � 0 in all proofs. In the following C denotes a constant which may change from
line to line. We first consider the case of additive, time-dependent noise.

2.1. Additive noise

Lemma 2.1 (Additive noise). Assume (A1)–(A6), X0 ∈ L2(Ω,F0;H) with Eϕ1(X0) < ∞ and
that Bt(v) ≡ Bt is independent of v ∈ V . Then there is a unique strong solution X to

dXt = −∂ϕ(Xt ) dt + Bt dWt , on [0, T ] (2.8)

satisfying

sup
t∈[0,T ]

E
(
ϕ(Xt) + ‖Xt‖2

H

) +E

T∫
0

∥∥∂ϕ(Xr)
∥∥2

H
dr

� C

(
Eϕ1(X0) + 1 +E

t∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
, (2.9)

for some C > 0. Let X
(i)
0 ∈ L2(Ω,F0;H) with Eϕ1(X

(i)
0 ) < ∞, B(i) : [0, T ] × Ω → L2(U,H)

be two progressively measurable processes satisfying (A5), (A6) and X(i) be the corresponding
strong solutions to (2.8). Then

E sup
t∈[0,T ]

∥∥X
(1)
t − X

(2)
t

∥∥2
H

� CE

(∥∥X
(1)
0 − X

(2)
0

∥∥2
H

+
T∫

0

∥∥B(1)
r − B(2)

r

∥∥2
L2(U,H)

dr

)
. (2.10)
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In order to prove the existence of solutions to (2.8) we consider finite dimensional ap-
proximations. Let Hn := span{e1, . . . , en} ⊆ V ⊆ S,H and let Pn : V ∗ → Hn be defined by
Pnh := ∑n

k=1 ekV ∗〈h, ek〉V . For λ > 0, ϕ̃λ is a continuous, subhomogeneous function with
bounded level-sets and ϕ̃λ(vn) → 0 implies vn → 0 in V . Moreover, ϕ̃1 is strictly convex and

C1ϕ̃(v) − C2 � ϕ(v) � C2
(
ϕ̃1(v) + 1

)
, (2.11)

for all v ∈ V . Since Hn is convex and locally compact, the ϕ̃1-best approximation map Pϕ,n :
V → Hn is well-defined by

ϕ̃1(v −Pϕ,nv) = inf
h∈Hn

ϕ̃1(v − h)

and is continuous (cf. [14, Theorems 5, 6, 8]). Since ϕ̃1 is subhomogeneous and 0 ∈ Hn, there is
a constant C > 0 (independent of n) such that

ϕ̃1(Pϕ,nv) � Cϕ̃1(v). (2.12)

Denote Xn
0 := Pϕ,nX0, let {ẽk | k ∈ N} be an orthonormal basis of U as in (A6) and consider the

approximating equation

Xn
t =Pϕ,nX0 −

t∫
0

PnDϕ
(
Xn

r

)
dr +

n∑
k=1

t∫
0

Pϕ,nBr(ẽk) dβk
r . (2.13)

By a standard existence result for finite dimensional monotone SDE there is a unique continuous
strong solution to (2.13) (cf. [23, Theorem 3.1.1.]). We now derive a-priori estimates for (2.13).

Lemma 2.2. Assume (A1)–(A6), X0 ∈ L2(Ω,F0;H) satisfying Eϕ1(X0) < ∞ and that Bt(v) ≡
Bt is independent of v ∈ V . Then there exists a constant C ∈R such that

sup
t∈[0,T ]

E
(
ϕ
(
Xn

t

) + ∥∥Xn
t

∥∥2
H

) +E

T∫
0

∥∥PnDϕ
(
Xn

r

)∥∥2
H

dr

� C

(
Eϕ1(X0) + 1 +E

t∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
. (2.14)

Proof. Since ϕ ∈ C2(Hn), we can apply Itô’s formula for the finite dimensional approximation.
We get

ϕ
(
Xn

t

) = ϕ
(
Xn

0

) −
n∑

i=1

t∫
0

(
PnDϕ

(
Xn

r

)
, ei

)2
H

dr +
n∑

i=1

n∑
k=1

t∫
0

Dϕ
(
Xn

r

)
(ei)

(
Pϕ,nBr(ẽk), ei

)
H

dβk
r

+ 1

2

n∑
k=1

t∫
D2ϕ

(
Xn

r

)(
Pϕ,nBr(ẽk),Pϕ,nBr(ẽk)

)
dr.
0
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Using (A2) and (2.12) we observe:

1

2

n∑
k=1

t∫
0

D2ϕ
(
Xn

r

)(
Pϕ,nBr(ẽk),Pϕ,nBr(ẽk)

)
dr

� 1

2

t∫
0

C

(
1 + ϕ

(
Xn

r

) +
N∑

i=0

( ∞∑
k=1

ϕ̃1
(
Pϕ,nBr(ẽk)

) 1
pi

)pi
)

dr

= C

t∫
0

(
1 + ϕ

(
Xn

r

) + ‖Br‖L2,ϕ̃1
,(pi )

)
dr.

By using a standard localization argument, (A6) and (2.12) we thus obtain

Ee−Ctϕ
(
Xn

t

) +E

t∫
0

e−Cr
∥∥PnDϕ

(
Xn

r

)∥∥2
H

dr � Eϕ
(
Xn

0

) + CE

t∫
0

e−Cr
(
1 + ‖Br‖L2,ϕ̃1

,(pi )

)
dr

� C

(
Eϕ̃1(X0) + 1 +E

t∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
.

The remaining bound for ‖Xn
t ‖2

H follows by applying Itô’s formula to ‖ · ‖2
H . �

Proof of Lemma 2.1. By Lemma 2.2 we know that Xn and PnDϕ(Xn) are uniformly bounded
in L2([0, T ]×Ω;H). By reflexivity of L2([0, T ]×Ω;H) we can thus find a subsequence (again
denoted by n), such that

i. Xn ⇀ X̄ in L2([0, T ] × Ω;H).
ii. PnDϕ(Xn

r ) ⇀ η in L2([0, T ] × Ω;H) and hence

·∫
0

PnDϕ
(
Xn

r

)
dr ⇀

·∫
0

ηr dr, in L2([0, T ] × Ω;H )
.

Since V0 ⊆ V is dense, ϕ̃1 : V → R is continuous, subhomogeneous and ϕ̃1(vn) → 0 implies
vn → 0 in V , we have

Remark 2.3. Pϕ,n(v)
n→∞−−−−→ v, for all v ∈ V .

Using (2.12) and dominated convergence implies Pϕ,nBt → Bt in L2([0, T ]×Ω;L2(U,H))

and Xn
0 =Pϕ,nX0 → X0 in L2(Ω;H). Hence

n∑
k=1

·∫
Pϕ,nBr(ẽk) dβk

r →
·∫
Br dWr, in L∞([0, T ];L2(Ω;H)

)
.

0 0
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Let Φ ∈ L2([0, T ] × Ω;H). Then

E

T∫
0

(X̄s,Φs)H ds = lim
n→∞E

T∫
0

(
Xn

s ,Φs

)
H

ds

= lim
n→∞E

T∫
0

(
Xn

0 −
s∫

0

PnDϕ
(
Xn

r

)
dr +

n∑
k=1

s∫
0

Pϕ,nBr(ẽk) dβk
r ,Φs

)
H

ds

= E

T∫
0

(
X0 −

s∫
0

ηr dr +
s∫

0

Br dWr,Φs

)
H

ds.

Let now

Xt := X0 −
t∫

0

ηr dr +
t∫

0

Br dWr. (2.15)

Then X̄ = X dt ⊗ P-a.s. and Xt is an Ft -adapted, continuous process in H .
It remains to identify the limit η, i.e. we need to prove η = ∂ϕ(X) or equivalently η − λX =

∂ϕλ(X), almost surely. Let t ∈ (0, T ] and λ > 0 be such that ϕλ is convex. We define a mapping
Φλ,t : L2([0, t] × Ω;H) → R̄ by

Φλ,t (Z) :=
{
E

∫ t

0 e−2λrϕλ(Zr) dr, if ϕλ(Z) ∈ L1([0, t] × Ω),

+∞, otherwise.

Since ϕλ is convex, l.s.c. and non-negative, Φλ,t is a convex, l.s.c. function. We will show
e−2λ·(η· − λX·) ∈ ∂Φλ,T (X). We know:

ϕλ

(
Xn

r

)
� ϕλ(v) +

V ∗
〈
Dϕλ

(
Xn

r

)
,Xn

r − v
〉
V

= ϕλ(v) +
V ∗

〈
PnDϕλ

(
Xn

r

)
,Xn

r

〉
V

−
V ∗

〈
Dϕλ

(
Xn

r

)
, v

〉
V
,

for all v ∈ V , r ∈ [0, T ], ω ∈ Ω . For Z ∈ D(Φλ,t ) this implies

Φλ,t

(
Xn

)
� Φλ,t (Z) +E

t∫
0

e−2λr
(
PnDϕλ

(
Xn

r

)
,Xn

r

)
H

dr

−E

t∫
0

e−2λr
V ∗

〈
Dϕλ

(
Xn

r

)
,Zr

〉
V

dr. (2.16)

By Itô’s formula applied to ‖ · ‖2 we get
H
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Ee−2λt
∥∥Xn

t

∥∥2
H

= E
∥∥Xn

0

∥∥2
H

+E

t∫
0

e−2λr
(
2
(−PnDϕλ

(
Xn

r

)
,Xn

r

)
H

+ ‖Pϕ,nBr‖2
L2(U,H)

)
dr. (2.17)

Using this in (2.16), multiplying with a non-negative function Ψ ∈ L∞([0, T ]) and integrating
yields

T∫
0

ΨtΦλ,t

(
Xn

)
dt �

T∫
0

ΨtΦλ,t (Z)dt + 1

2

T∫
0

Ψt

(
E

∥∥Xn
0

∥∥2
H

+E

t∫
0

e−2λr‖Pϕ,nBr‖2
L2(U,H) dr

−Ee−2λt
∥∥Xn

t

∥∥2
H

)
dt

−
T∫

0

ΨtE

t∫
0

e−2λr
V ∗

〈
Dϕλ

(
Xn

r

)
,Zr

〉
V

dr dt. (2.18)

We have seen above that E‖Xn
0‖2

H → E‖X0‖2
H and Pϕ,nBr → Br in L2([0, T ]×Ω;L2(U,H)).

Since Xn
t ⇀ X in L2([0, T ] × Ω;H) and Φλ,t is weakly l.s.c., by (2.18) and dominated conver-

gence we obtain

T∫
0

ΨtΦλ,t (X)dt �
T∫

0

ΨtΦλ,t (Z)dt

+ 1

2

T∫
0

Ψt

(
E‖X0‖2

H +E

t∫
0

e−2λr‖Br‖2
L2(U,H) dr −Ee−2λt‖Xt‖2

H

)
dt

− lim sup
n→∞

T∫
0

ΨtE

t∫
0

e−2λr
V ∗

〈
Dϕλ

(
Xn

r

)
,Zr

〉
V

dr dt. (2.19)

Application of Itô’s formula to (2.15) and the function ‖ · ‖2
H yields

Ee−2λt‖Xt‖2
H = E‖X0‖2

H +E

t∫
0

e−2λr
(
2
(−(ηr + λXr),Xr

)
H

+ ‖Br‖2
L2(U,H)

)
dr. (2.20)

Eq. (2.19) becomes

T∫
0

ΨtΦλ,t (X)dt �
T∫

0

ΨtΦλ,t (Z)dt +
T∫

0

ΨtE

t∫
0

e−2λr (ηr + λXr,Xr)H dr dt

− lim sup
n→∞

T∫
ΨtE

t∫
e−2λr

V ∗
〈
Dϕλ

(
Xn

r

)
,Zr

〉
V

dr dt. (2.21)
0 0
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Define Zm := Pϕ,mZ. By (A1), ϕλ(Z
m) � C(1 + ϕ̃1(Z)) � C(1 + ϕλ(Z)) ∈ L1([0, T ] × Ω).

Hence, Zm ∈ D(Φλ,T ) and (2.21) can be applied. Recall PnDϕ(Xn) ⇀ η in L2([0, T ] × Ω;H)

and hence also in L2([0, t] × Ω;H). (2.21) applied to Z = Zm yields

T∫
0

ΨtΦλ,t (X)dt �
T∫

0

ΨtΦλ,t

(
Zm

)
dt +

T∫
0

ΨtE

t∫
0

e−2λr
(
ηr + λXr,Xr − Zm

r

)
H

dr dt.

Since Ψ ∈ L∞([0, T ]) was arbitrary nonnegative, consequently,

Φλ,T (X) � Φλ,T

(
Zm

) +E

T∫
0

e−2λr
(
ηr + λXr,Xr − Zm

r

)
H

dr. (2.22)

We now want to consider the limit m → ∞. By Remark 2.3 and dominated convergence we have
ϕ(Zm) → ϕ(Z) in L1([0, T ]×Ω) and Zm → Z in L2([0, T ]×Ω;H). Thus, also Φλ,T (Zm) →
Φλ,T (Z). Passing to the limit in (2.22) we arrive at

Φλ,T (X) � Φλ,T (Z) +E

T∫
0

e−2λr (ηr + λXr,Xr − Zr)H dr, (2.23)

i.e. e−2λ·(η· + λX·) ∈ ∂Φλ,T (X). The proof of

∂Φλ,T (X) = {
e−2λ·Y

∣∣ Y ∈ L2([0, T ] × Ω;H )
and Yt (ω) ∈ ∂ϕλ

(
Xt(ω)

)
, dt ⊗ P-a.s.

}
is similar to [2, Proposition 2.9, p. 75]. Therefore, η(t,ω) + λXt(ω) ∈ ∂ϕλ(Xt (ω)) and since
∂ϕ(Xt (ω)) is single-valued we conclude η(t,ω) = ∂ϕ(Xt (ω)), dt ⊗ P-almost surely. Thus

Xt = X0 −
t∫

0

∂ϕ(Xr) dr +
t∫

0

Br dWr, ∀t ∈ [0, T ],

P-almost surely.
Next we will prove (2.9). Since PnDϕ(Xn

r ) ⇀ ∂ϕ(X) in L2([0, T ] × Ω;H):

E

T∫
0

∥∥∂ϕ(Xr)
∥∥2

H
dr � lim inf

n→∞ E

T∫
0

∥∥PnDϕ
(
Xn

r

)∥∥2
H

dr

� C

(
Eϕ̃1(X0) + 1 +E

T∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
, (2.24)

where C ∈ R is the constant occurring in (2.14). For Z ∈ L2([0, T ] × Ω;H) and p > 1 let
Φλ,p(Z) := ∫ T

0 |Eϕλ(Zt )|p dt . Φλ,p is a convex, l.s.c. function, as ϕλ is. By Lemma 2.2 we
obtain
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∥∥Eϕλ(X·)
∥∥

Lp([0,T ]) = Φλ,p(X)
1
p � lim inf

n→∞ Φλ,p

(
Xn

) 1
p � T

1
p sup

t∈[0,T ]
Eϕλ

(
Xn

t

)

� C

(
Eϕ1(X0) + 1 +E

T∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
,

for some C ∈R. Since the right hand side is independent of p, X is continuous in H and Eϕλ(·) :
L2(Ω;H) → R̄ is l.s.c., this implies

sup
t∈[0,T ]

(
Eϕ(Xt) + ‖Xt‖2

H

)
� C

(
Eϕ1(X0) + 1 +E

T∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
,

for some C ∈R. Together with (2.24) this yields (2.9).
Next, we prove that X ∈ L2(Ω;C([0, T ];H)). Using Itô’s formula for Xn

t and ‖·‖2
H , applying

Burkholder’s inequality to the real-valued local martingale
∑n

k=1

∫ t

0 2(Xn
r ,Pϕ,nBr(ẽk))H dβk

r

and using Lemma 2.2, we conclude

1

2
E sup

t∈[0,T ]
∥∥Xn

t

∥∥2
H

� E
∥∥Xn

0

∥∥2
H

+E

T∫
0

C
(
fr + ∥∥Xn

r

∥∥2
H

)
dr � C

(
Eϕ̃1(X0) + 1

)
.

Since Xn ⇀ X in L2([0, T ] × Ω;H), this implies Xn ⇀ X in L2(Ω;Lp([0, T ];H)) with
‖X‖L2(Ω;Lp([0,T ];H)) � C(Eϕ̃1(X0) + 1), for every p > 2. By continuity of X in H this yields

‖X‖L2(Ω;C([0,T ];H)) � C
(
Eϕ̃1(X0) + 1

)
.

Inequality (2.10) is shown by first applying Itô’s formula to X
(1)
t − X

(2)
t and ‖ · ‖2

H , then

using Burkholder’s inequality for the real-valued local martingale
∫ t

0 (X
(1)
r − X

(2)
r , (B

(1)
r −

B
(2)
r ) dWr)H . �

2.2. General noise

By using a fixed point argument we will now generalize the above result to the case of not
necessarily additive noise.

Let X0 ∈ L2(Ω,F0;H) with Eϕ̃1(X0) < ∞, H := {X ∈ L∞([0, T ];L2(Ω;H)) | X

predictable}, λ > 0 such that ϕλ is convex, G := {X ∈ H | ϕλ(X) ∈ L1([0, T ] × Ω)} and Gτ :=
{X ∈ H | Φλ,T (X) := E

∫ T

0 ϕλ(Xr) dr � τ }, where τ ∈ R. Moreover, let B : [0, T ] × Ω × V →
L2(U,H) as in Theorem 1.4. Φλ,T : L2([0, T ] × Ω;H) → R̄ is l.s.c., since ϕλ is l.s.c. and
nonnegative. Thus, also Φλ,T : L∞([0, T ];L2(Ω;H)) → R̄ is l.s.c. and thereby Gτ is a closed
subset of H. For Y ∈ G we have ‖Bt(Yt )‖L2,ϕ̃1

,(pi ) � C(ft + ϕ(Yt ) + ‖Yt‖2
H ) ∈ L1([0, T ] × Ω).

Hence, we can apply Lemma 2.1 to obtain a unique strong solution X = F(Y ) to (2.8) with
Bt = Bt(Yt ), where F : G → G denotes the solution mapping. For Y ∈ Gτ , by Lemma 2.1
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Φλ,T

(
F(Y )

) = E

T∫
0

ϕλ(Xr) dr � T sup
r∈[0,T ]

Eϕλ(Xr) dr

� T C

(
Eϕ̃1(X0) + 1 + CE

T∫
0

fr dr + CE

T∫
0

ϕλ(Yr) dr

)

� T C
(
Eϕ̃1(X0) + 1 + τ

)
.

Note that C may depend on T but remains bounded for T bounded. For τ � 1 + Eϕ̃1(X0) we
obtain

Φλ,T

(
F(Y )

)
� (2CT )τ.

Hence, F : Gτ → Gτ if T � 1
2C

. Next, we prove that F : Gτ → Gτ is a contraction for T small
enough. Let Y (1), Y (2) ∈ Gτ . By Lemma 2.1 and (A5), we have

∥∥F
(
Y (1)

) − F
(
Y (2)

)∥∥2
H � E sup

t∈[0,T ]

∥∥F
(
Y (1)

)
t
− F

(
Y (2)

)
t

∥∥2
H

� CE

T∫
0

∥∥Br

(
Y (1)

) − Br

(
Y (2)

)∥∥2
L2(U,H)

dr

� CT
∥∥Y (1) − Y (2)

∥∥2
H,

for some constant C ∈ R. By Banach’s fixed point theorem there exists a unique X ∈ Gτ such that
F(X) = X, i.e. X is a strong solution of (1.2). Since the choice of T is independent of Eϕ̃1(X0),
a standard continuation argument yields the existence of a strong solution to (1.2) for all times.
Inequality (1.4) immediately follows from Lemma 2.1. This finishes the proof of Theorem 1.4.

3. Limit solutions

3.1. Proof of Theorem 1.6

Let X0 ∈ L2(Ω,F0;H) and define Gn := {h ∈ H | ϕ̃1(h) � n}. Since ϕ̃1 is convex and l.s.c.,
Gn is a convex, closed set in H . Therefore, the ‖ · ‖H -best-approximation map Pn : H → Gn is
well defined by

‖h − Pnh‖H = inf
g∈Gn

‖h − g‖H

and is continuous (cf. [28], [17, Proposition 2.4]). Set Xn
0 := PnX0. Hence, Eϕ̃1(X

n
0 ) � n and

there exists a unique strong solution Xn to (1.2) with initial condition Xn
0 . Moreover, ‖Xn

0‖H �
2‖X0‖H and Xn

0 (ω) → X0(ω), for each ω ∈ Ω , since the embedding
⋃

n∈N Gn = V ⊆ H is
dense. Thus, Xn

0 → X0 in L2(Ω;H). By Theorem 1.4 we conclude

E sup
∥∥Xn

t − Xm
t

∥∥2
H

� CE
∥∥Xn

0 − Xm
0

∥∥2
H

→ 0,

t∈[0,T ]
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for n,m → ∞, i.e. Xn
t is a Cauchy sequence in L2(Ω;C([0, T ];H)) and we obtain a limit

solution Xn → X ∈ L2(Ω;C([0, T ];H)). Inequality (1.5) obviously follows from (1.4).

3.2. Regularity of limit solutions (proof of Theorem 1.8)

For two generalized strong solutions X(i), i = 1,2, to (1.2) with the same initial condition, we
can apply Itô’s formula to ‖X(1) − X(2)‖2

H on [δ, T ] and use X ∈ C([0, T ];L2(Ω;H)) to prove
the uniqueness of generalized strong solutions to (1.2).

Lemma 3.1. Assume (A1)–(A6) and (A4′), X0 ∈ L2(Ω,F0;H) with Eϕ1(X0) < ∞ and that
Bt(v) ≡ Bt is independent of v ∈ V . Denote by X the strong solution to (2.8). Then

E

T∫
0

∥∥r
1
2 ∂ϕ(Xr)

∥∥2
H

dr � C

(
E‖X0‖2

H + 1 +E

T∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
,

for some constant C ∈ R.

Proof. We first consider the approximating solutions Xn to (2.13). Itô’s formula and (A4′)
yield

Ee−cT
∥∥Xn

T

∥∥2
H

� E
∥∥Xn

0

∥∥2
H

+E

T∫
0

e−cr
(
C2

(
1 + ∥∥Xn

r

∥∥2
H

)

− C1ϕ
(
Xn

r

) + C‖Br‖L2,ϕ̃1
,(pi ) − c

∥∥Xn
r

∥∥2
H

)
dr,

for any c > 0. Hence

E

T∫
0

ϕ
(
Xn

r

)
dr � C

(
E

∥∥Xn
0

∥∥2
H

+ 1 +E

T∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
. (3.25)

Let F(t, v) := tϕ(v) ∈ C2(R× Hn). By Itô’s formula and proceeding as in Lemma 2.2

tϕ
(
Xn

t

) =
t∫

0

rDϕ
(
Xn

r

)(−PnDϕ
(
Xn

r

))
dr +

n∑
k=1

t∫
0

rDϕ
(
Xn

r

)(
Pϕ,nBr(ẽk)

)
dβk

r +
t∫

0

ϕ
(
Xn

r

)
dr

+ 1

2

n∑
l=1

t∫
0

rD2ϕ
(
Xn

r

)(
Pϕ,nBr(ẽl),Pϕ,nBr(ẽl)

)
dr

� −
t∫

0

∥∥Pnr
1
2 Dϕ

(
Xn

r

)∥∥2
H

dr +
n∑

k=1

t∫
0

rDϕ
(
Xn

r

)(
Pϕ,nBr(ẽk)

)
dβk

r

+ C

t∫
ϕ
(
Xn

r

)
dr + C

t∫ (
1 + ‖Br‖L2,ϕ̃1

,(pi )

)
dr.
0 0
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Hence, applying (3.25) yields

E

T∫
0

∥∥Pnr
1
2 Dϕ

(
Xn

r

)∥∥2
H

dr � C

(
E

∥∥Xn
0

∥∥2
H

+ 1 +E

T∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
.

Now we pass to the limit n → ∞. Let G := L2([0, T ] × Ω;H) with norm ‖Z‖2
G :=

E
∫ T

0 r‖Zr‖2
H dr . Then PnDϕ(Xn) is bounded in G. Hence (for a subsequence)

PnDϕ
(
Xn

)
⇀ η̃

in G. For 0 < δ < T , ‖Z‖2
δ := E

∫ T

δ
r‖Zr‖2

H dr is an equivalent norm to ‖ · ‖L2([δ,T ]×Ω;H)

on L2([δ, T ] × Ω;H). Therefore, PnDϕ(Xn) ⇀ η̃ in L2([δ, T ] × Ω;H). By the proof of
Lemma 2.1 we know PnDϕ(Xn

r ) ⇀ ∂ϕ(X), in L2([0, T ] × Ω;H). We conclude η̃ = ∂ϕ(X),
dt ⊗ P-almost surely. In the proof of Lemma 2.1 it has been shown Xn

0 → X0 ∈ L2(Ω;H). By
weak lower semicontinuity of ‖ · ‖G we conclude

E

T∫
0

∥∥r
1
2 ∂ϕ(Xr)

∥∥2
H

dr � lim inf
n→∞ E

T∫
0

∥∥Pnr
1
2 Dϕ

(
Xn

r

)∥∥2
H

dr

� C

(
E‖X0‖2

H + 1 +E

t∫
0

‖Br‖L2,ϕ̃1
,(pi ) dr

)
,

for some C ∈R. �
Lemma 3.2. Assume (A1)–(A6) and (A4′). Let X0 ∈ L2(Ω,F0;H) such that Eϕ1(X0) < ∞ and
let X be the corresponding strong solution. Then

E

T∫
0

∥∥r
1
2 ∂ϕ(Xr)

∥∥2
H

dr � C

(
E‖X0‖2

H + 1 +E

T∫
0

fr dr

)
,

for some constant C ∈ R.

Proof. Applying Itô’s formula for ‖ · ‖2
H to X and using (A4′), (A5) we obtain

Ee−cT ‖XT ‖2
H = E‖X0‖2

H −E

T∫
0

e−cr
(
C1ϕ(Xr) + (c − C)‖Xr‖2

H

)
dr +

T∫
0

e−CrC dr,

(3.26)

for any c > 0 and some C ∈ R large enough. Let H, G, F : G → G be as in Section 2.2 and
recall that X is constructed as a fixed point of the map F : G → G, mapping Y ∈ G to the unique
solution of (2.8) with Br = Br(Yr). By Lemma 3.1, (3.26) and (A6) we have
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E

T∫
0

∥∥r
1
2 ∂ϕ(Xr)

∥∥2
H

dr � C

(
E‖X0‖2

H + 1 +E

T∫
0

∥∥Br(Xr)
∥∥

L2,ϕ̃1
,(pi )

dr

)

� C

(
E‖X0‖2

H + 1 +E

T∫
0

C
(
fr + ϕ1(Xr)

)
dr

)

� C

(
E‖X0‖2

H + 1 +E

T∫
0

fr dr

)
,

for some constant C ∈R. �
Proof of Theorem 1.8. Let λ > 0 be such that ϕλ is convex. Since ϕλ is l.s.c., E

∫ T

0 ϕλ(·) dt :
L2([0, T ] × Ω;H) → R̄ is convex and weakly l.s.c. Let Xn denote an approximating sequence
of strong solutions for X. By (3.26) we have

E

T∫
0

ϕλ(Xr) dr � lim inf
n→∞ E

T∫
0

ϕλ

(
Xn

r

)
dr � C

(
E‖X0‖2

H + 1
)
.

Let 0 < δ < T . Since ϕλ(X) ∈ L1([0, T ] × Ω) there is a δ0 ∈ [0, δ] such that Eϕ1(Xδ0) < ∞.
Hence, there exists a unique strong solution X(δ0) to

Xt = Xδ0 −
t∫

δ0

∂ϕ(Xr) dr +
t∫

δ0

Br(Xr) dWr. (3.27)

Since every strong solution is a limit solution, the uniqueness of limit solutions implies
X(δ0) = X, on [δ0, T ]. By Lemma 3.2 and Fatou’s lemma we obtain

E

T∫
0

∥∥r
1
2 ∂ϕ(Xr)

∥∥2
H

dr � lim inf
δ0→0

E

T∫
δ0

∥∥r
1
2 ∂ϕ(Xr)

∥∥2
H

dr � C

(
E‖X0‖2

H + 1 +E

T∫
0

fr dr

)
.

In particular ∂ϕ(X) ∈ L2([δ, T ] × Ω;H) for all δ > 0 and X is a generalized strong solution
of (1.2). �

We now comment on the proof of Remark 1.9. Given a limit solution X(l) we consider the
corresponding approximating sequence X(l),n of strong solutions. The additional coercivity and
growth assumptions imply enough regularity for X(l),n to apply Itô’s formula [24, Theorem 4.2]
for the difference X(l),n − X(v) and the function ‖ · ‖2

H . Taking the limit n → ∞ then yields the
assertion.
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4. Applications

We now apply our results to stochastic generalized porous media equations, stochastic gen-
eralized reaction–diffusion equations and stochastic generalized p-Laplace equations, i.e. we
specify conditions on the coefficients of the drift so that (A1)–(A4) are satisfied and in case of
additive or linear multiplicative space–time noise we identify concrete conditions on the coeffi-
cients of the noise to satisfy (A5), (A6).

4.1. Stochastic generalized porous media equations

We consider stochastic generalized porous media equations (SPME) based on the setup es-
tablished in [24, Section 3]. Let (E,B,m) be a σ -finite measure space with countably gener-
ated σ -algebra B and let (L,D(L)) be a negative-definite, self-adjoint operator on L2(m) with
Ker(L) = {0}. We consider SPDE of the form

dXt = LΦ(Xt) dt + Bt(Xt ) dWt , (4.28)

where Φ ∈ C1(R),Φ(0) = 0 with

0 � Φ ′(r) � c2
(
1m(E)<∞ + |r|p−1),

−c21m(E)<∞ + c1|r|p+1 � Ψ (r) :=
r∫

0

Φ(s)ds, (4.29)

for some p � 1 and some constants c1 > 0, c2 ∈ R. In particular, the standard SPME on a not
necessarily bounded domain will be included in our general framework.

For comparison, we will now recall existing regularity results for the standard SPME, i.e.
for the case L = �, Φ(r) = |r|p−1r , E = O ⊆ Rd open, bounded with smooth boundary ∂O.
The abstract result on invariance of subspaces for SPDE given in [20] applied to the standard
SPME yields L2(O) invariance, i.e. if X0 ∈ L2(Ω;L2(O)) and B ∈ L2([0, T ]×Ω;L2(L

2(O)))

then the variational solution X to the standard SPME is a right continuous process in L2(O).
The same invariance result, but for a more general class of SPME had been obtained in [25] by

similar methods proving also |X| p−1
2 X ∈ L2([0, T ] × Ω;H 1

0 (O)) in case of the standard SPME.
For additive noise the same spatial regularity had been proved in [16] by different methods. For
more regular noise, namely B : H → L2(L

2(O);D((−�)γ )) for some γ > d
2 it has been shown

that
∫ ·

0 Φ(Xr) is P-a.s. weakly continuous in H 1
0 (O) for a large class of nonlinearities Φ [25].

To the author’s knowledge, highest known regularity for the solution of the standard SPME with

additive noise has been obtained in [6] proving |X|p−1X ∈ L
p+1
p ([0, T ];H 1,

p+1
p

0 (O)). Our results
strengthen these regularity results to

|X|p−1X ∈ L2([0, T ] × Ω;H 1
0 (O)

)
,

under appropriate assumptions on the noise. After this paper had been written, in [5,13] strong
solutions to SPME perturbed by linear multiplicative space–time noise have been constructed by
entirely different methods.
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We denote m(fg) := ∫
E

fg dm for fg ∈ L1(m), (f, g) := (f, g)L2(m) and ‖f ‖ := ‖f ‖L2(m).
Define D(E) := D(

√−L) and E(u, v) := (
√−Lu,

√−Lv), for u,v ∈ D(E). Let Fe denote the
abstract completion of D(E) with respect to ‖ · ‖2

Fe
:= E(·,·) and choose

H := F∗
e .

From now on we assume:

(L1) There exists a strictly positive function g ∈ L1(m) ∩ L∞(m) such that Fe ⊆ L1(g · m)

continuously.

Define

S := Lp+1(m),

which is a separable, reflexive Banach space. We now informally define V = S∩H , made precise
in the following sense:

V := {
u ∈ S

∣∣ ∃c > 0 such that m(uv) � c‖v‖Fe
, ∀v ∈Fe ∩ S∗},

with norm ‖ · ‖V := ‖ · ‖S + ‖ · ‖H . Assume

(N1) Fe ∩ S∗ ⊆Fe dense.
(N2) V ⊆ H,S dense.

As shown in [24] (N1) implies V ⊆ H continuously and that V is complete. Since V is isomor-
phic to a closed subspace of S × H , V is reflexive. We recall

Proposition 4.1. (See [24].) Let (E,D(E)) be a transient Dirichlet space. Then (L1), (N1), (N2)
hold.

Example 4.2. A lot of examples of transient Dirichlet spaces, for example with E being a man-
ifold are given in the literature. We now mention several examples for E = O ⊆ Rd being an
open set and m being the Lebesgue measure:

i. Let E be bounded and L be the Friedrichs extension of a symmetric, uniformly elliptic
operator of second order with Dirichlet boundary conditions.

ii. Let E =Rd+ = {ξ ∈ Rd | ξ1 � 0}, L = � with Neumann boundary conditions, d � 2.
iii. Let E =Rd , L = (−�)α with its standard domain and α ∈ (0, d

2 ) ∩ (0,1].

In all these cases, (D(E),E) defines a transient Dirichlet space and thus (L1), (N1), (N2) are
satisfied. For details and a proof we refer to [12].

For x ∈ S we define

ϕ(x) :=
∫

Ψ
(
x(ξ)

)
dm(ξ), ϕ̃ := 1

p + 1
‖ · ‖p+1

S .
E
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(A1) is obviously satisfied. We have ϕ, ϕ̃ ∈ C2(S) with

Dϕ(x)(h) =
∫
E

Φ(x)hdm, D2ϕ(x)(h,g) =
∫
E

Φ ′(x)hg dm.

We observe:

∞∑
k=1

D2ϕ(x)(wk,wk) =
∞∑

k=1

∫
E

Φ ′(x)|wk|2 dm

� C

∞∑
k=1

∫
E

(
1m(E)<∞ + |x|p−1)|wk|2 dm

=
(

1m(E)<∞ + 1

p + 1
‖x‖p+1

p+1

)
+ C

( ∞∑
k=1

‖wk‖2
p+1

) p+1
2

� C

(
1 + ϕ(x) +

∞∑
k=1

ϕ̃(wk)
2

p+1

) p+1
2

.

Hence, (A2) is satisfied with p1 = p+1
2 . Obviously ϕ : H → R̄ is convex, i.e. (A3) is satisfied.

For (A4), (A4′) note that Φ(r)r �
∫ r

0 Φ(s)ds � −c21m(E)<∞ + c1|r|p+1 and

V ∗
〈−Dϕ(v), v

〉
V

= −
∫
E

Φ(v)v dm �
∫
E

c21m(E)<∞ − c1|v|p+1 dm � C2 − C1ϕ̃(v).

We obtain:

Theorem 4.3. Assume (L1), (N1), (N2). Let X0 ∈ L2(Ω,F0;H) and B : [0, T ] × Ω × H →
L2(U,H) be progressively measurable and satisfy (A5), (A6). Then there exists a unique gener-
alized strong solution X ∈ L2(Ω;C([0, T ];H)) with X(0) = X0 to (4.28) with

E

T∫
0

‖Xt‖p+1
p+1 + t

∥∥Φ(Xt)
∥∥2
Fe

dt < ∞.

The variational solution to (4.28) as obtained in [24, Theorem 3.9] coincides with the strong
solution obtained here. If additionally E‖X0‖p+1

p+1 < ∞, then X is a strong solution of (4.28)
with

sup
t∈[0,T ]

E‖Xt‖p+1
p+1 +E

T∫
0

∥∥Φ(Xt)
∥∥2
Fe

dt < ∞.
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Remark 4.4. Theorem 4.3 can easily be generalized to SPDE of the form

dXt = L

(
N∑

i=1

Φi(Xt )

)
dt + Bt(Xt ) dWt ,

where Φi ∈ C1(R) are as in (4.29) with p = pi .

Remark 4.5. In the variational setup [24] applied to the standard SPME with Dirichlet boundary
conditions, it is not clear in which sense the variational solution satisfies the boundary conditions
since these are not explicitly incorporated in the space V nor in H . A partial solution to this
problem has been suggested in [25] by proving

∫ t

0 Φ(Xr)dr ∈ H 1
0 (O) almost surely. By Theo-

rem 4.3 the variational solution coincides with the generalized strong solution and thus is shown
to satisfy the boundary conditions in the strong sense that Φ(Xt) ∈ H 1

0 (O) almost surely.

We now give explicit examples of noise satisfying (A5), (A6). In [16] the standard
porous medium equation perturbed by additive Wiener noise is considered, i.e. B(u) :=∑∞

k=1 gk(ẽk, u)U . The unique existence of a variational solution X ∈ L2(Ω;L∞([0, T ];L2(O)))

satisfying |X| p−2
2 X ∈ L2([0, T ] × Ω;H 1

0 (O)) is proven under the assumptions X0 ∈
L2(Ω;L2(O)), gk ∈ L2([0, T ] × Ω × O) progressively measurable and either O ⊆ Rd open,
bounded with smooth boundary and E

∫ T

0

∑∞
k=1 ‖gk‖2

2 < ∞ or O = Rd and

E(
∫ T

0

∑∞
k=1 ‖gk‖2

2)
p
2 < ∞.

Remark 4.6. Assume gk ∈ L2([0, T ] × Ω;H) progressively measurable and

E

T∫
0

( ∞∑
k=1

‖gk‖2
p+1 + ‖gk‖

4
p+1
H

) p+1
2

< ∞.

Then B(u) := ∑∞
k=1 gk(ẽk, u)U satisfies (A5), (A6).

For stochastic porous media equations, the case of random linear multiplicative space–time
perturbations has been intensively studied in the literature (cf. e.g. [3–5,13]). In the setup
E = O ⊆ Rd open, bounded with smooth boundary, d � 3, L = � on L2(O) with Dirichlet
boundary conditions, Φ ∈ C1(R) as above, B(v)(h) := ∑∞

k=1 μkẽkv(ẽk, h)L2(O), where μk ∈R,
ẽk an orthonormal basis of eigenvectors of −� on L2(O), λk the corresponding eigenvalues,
S = V = Lp+1(O) and H = (H 1

0 (O))∗, the unique existence of variational solutions for ini-
tial values x ∈ H has been proven in [3] under the assumption

∑∞
k=1 λ2

kμ
2
k < ∞. For the sake

of simplicity and comparability we will now restrict to this setup. Using ‖ẽk‖∞ � Cλk and
‖ẽkv‖2

H � Cλ2
k‖x‖2

H (cf. [3, p. 189]) it follows

Remark 4.7. Assume

∞∑
k=1

μ
4

p+1
k λ

4
p+1
k < ∞.

Then B(v)(h) := ∑∞
μkẽkv(ẽk, h)L2(O) satisfies (A5), (A6).
k=1
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4.2. Stochastic generalized reaction–diffusion equations

We will now consider stochastic generalized reaction–diffusion equations of the form

dXt =
(

LXt +
N∑

i=1

fi(Xt )

)
dt + Bt(Xt ) dWt , (4.30)

where the operator L will be specified below and fi ∈ C1(R), with

f ′
i (t) � c2,

∣∣f ′
i (t)

∣∣ � c2
(
1m(E)<∞ + |t |ri−2),

c2
(−1m(E)<∞ − |t |ri ) � Fi(t), Fi(t), fi(t)t � −c1|t |ri + c21m(E)<∞, (4.31)

for some constants c1, c2 > 0, rN � · · · � r1 � 2, F ′
i = fi and all t ∈ R.

For example, let m(E) < ∞ (w.l.o.g. N = 1) and f1 : R → R be a polynomial of odd degree
with negative leading coefficient, i.e. f1(t) = ∑n

i=1 ait
pi , 1 � p1 � · · · � pn, pn odd and an < 0.

Then (4.31) is satisfied with r1 := pn + 1 � 2. For m(E) = ∞ we can consider reaction terms
given by a polynomial f (t) = ∑N

i=1 ait
pi with odd orders 1 � p1 � · · · � pN and with negative

coefficients ai < 0, by letting fi(t) = ait
pi .

Let (E,B,m) be as in Section 4.1 and (L,D(L)) be a non-negative, self-adjoint operator
on L2(m) with corresponding closed, symmetric form (E,D(E)). Recall that F1 := D(E) is a
separable Hilbert space with respect to the inner product E1(g,h) := E(g,h) + (g,h). Define

H = L2(m),

S = V =F1 ∩ Lr1(m) ∩ · · · ∩ LrN (m).

Completeness of V follows from the embedding of V into the space of all equivalence classes
of B/B(R)-measurable functions L0(E,B,m) with the topology of convergence in measure.
Hence, V is isomorphic to a closed subspace of the reflexive space F1 × Lr1(m) × · · · × LrN (m)

and thus is reflexive. We assume

(N1′) V ⊆ H dense.

Set

ϕ(v) := 1

2
E(v, v) −

N∑
i=1

∫
E

Fi(v) dm, ϕ̃(v) := 1

2
E(v, v) +

N∑
i=1

∫
E

|v|ri dm,

for v ∈ V . (A1) immediately follows since the mappings v �→ ∫
E

Fi(v) dm,
∫
E

|v|ri dm are in
C2(Lri (m)) and by using (4.31). (A3) follows from F ′′

i � c2. For (A2) we note ϕ, ϕ̃ ∈ C2(S),
with

Dϕ(v)(w1) = E(v,w1) −
N∑

i=1

∫
fi(v)w1 dm,
E
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D2ϕ(v)(w1,w2) = E(w1,w2) −
N∑

i=1

∫
E

f ′
i (v)w1w2 dm.

We observe

∞∑
k=1

∫
E

f ′
i (v)wkwk dm �

∥∥f ′
i (v)

∥∥ ri
ri−2

( ∞∑
k=1

∥∥w2
k

∥∥ ri
2

)

� C

(∥∥f ′
i (v)

∥∥ ri
ri−2
ri

ri−2
+

( ∞∑
k=1

∥∥w2
k

∥∥ ri
2

) ri
2
)

� C

(
1 + ϕ̃(v) +

( ∞∑
k=1

ϕ̃(wk)
2
ri

) ri
2
)

, (4.32)

for some constant C > 0. Hence

∞∑
k=1

D2ϕ(x)(wk,wk) �
∞∑

k=1

E(wk,wk) +
∞∑

k=1

N∑
i=1

∫
E

f ′
i (v)wkwk dm

�
∞∑

k=1

E(wk,wk) + C

N∑
i=1

(
1 + ϕ̃(v) +

( ∞∑
k=1

ϕ̃(wk)
2
ri

) ri
2
)

� C

(
1 + ϕ̃(v) +

N∑
i=0

( ∞∑
k=1

ϕ̃(wk)
1
pi

)pi
)

,

for some constant C > 0, i.e. (A2) is satisfied with pi = ri
2 . (A4) follows from (4.31).

Theorem 4.8. Assume (N1′). Let X0 ∈ L2(Ω,F0;H) and B : [0, T ] × Ω × H → L2(U,H) be
progressively measurable and satisfy (A5), (A6). Then there exists a unique generalized strong
solution X ∈ L2(Ω;C([0, T ];H)) with X(0) = X0 to (4.30) with

E

T∫
0

(
‖Xt‖2

F1
+

N∑
i=1

‖Xt‖ri
ri

)
+ t

(∥∥∥∥∥LXt +
N∑

i=1

fi(Xt )

∥∥∥∥∥
2

2

)
dt < ∞.

If E(‖X0‖2
F1

+ ∑N
i=1 ‖X0‖ri

ri ) < ∞, then Xt is the unique strong solution with

sup
t∈[0,T ]

E

(
‖Xt‖2

F1
+

N∑
i=1

‖Xt‖ri
ri

)
+E

T∫
0

∥∥∥∥∥LXt +
N∑

i=1

fi(Xt )

∥∥∥∥∥
2

2

dt < ∞.

In the special case E = O ⊆ Rn open, bounded, L = � on L2(O) with Dirichlet boundary
conditions we can assume without loss of generality N = 1 and define f := f1 with r := r1.
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Remark 4.9. Let X0 ∈ L2(Ω,F0;H) and B : [0, T ] × Ω × H → L2(U,H) be progressively
measurable and satisfy (A5), (A6). Let Xt be the unique generalized strong solution of

dXt = (
�Xt + f (Xt )

)
dt + Bt(Xt ) dWt .

Then

E

T∫
0

‖Xt‖2
H 1

0
+ ‖Xt‖r

r + t
(‖Xt‖2

H 2 + ‖Xt‖2(r−1)
2(r−1)

)
dt < ∞.

and if E(‖X0‖2
H 1

0
+ ‖X0‖r

r ) < ∞ then X is a strong solution with

sup
t∈[0,T ]

E
(‖Xt‖2

H 1
0

+ ‖Xt‖r
r

) +E

T∫
0

‖Xt‖2
H 2 + ‖Xt‖2(r−1)

2(r−1)
dt < ∞.

Remark 4.10. Extending our results to additive inhomogeneities is immediate. Applied to equa-
tions of the form

dXt = (
�Xt + f (t)

)
dt + Bt dWt

our results then yield X ∈ L2([0, T ] × Ω;H 2(O)) ∩ L∞([0, T ];L2(Ω;H 1
0 (O))) which has

also been shown in [10, Theorem 3.1] under the same compatibility relations used here, i.e.
X0 ∈ H 1

0 (O) and Bt(ẽk) ∈ L2([0, T ] × Ω;H 1
0 (O)). Note that in [10, Proposition 3.3] these

compatibility conditions have been shown to be necessary at least for more regular solutions.

For ease of notation and comparability to existing results, we now restrict to the case E =
O ⊆Rn open, bounded, L = � on L2(O) with Dirichlet boundary conditions.

Remark 4.11.

i. Assume gk ∈ L2([0, T ] × Ω ×O) progressively measurable and

E

T∫
0

( ∞∑
k=1

‖gk‖
4

rN

H 1
0

+ ‖gk‖
2r1
rN
rN

) rN
2

< ∞.

Then Bt(u) := ∑∞
k=1 gk(ẽk, u)U satisfies (A5), (A6).

ii. Assume

∞∑
k=1

μ

4
rN

∧ 2r1
rN

k λ

4
rN

∧ 2r1
rN

k < ∞,

where μk ∈ R, ẽk ∈ H
1,∞
0 (O) is an orthonormal basis of L2(O) and λk := ‖ẽk‖∞ +

‖∇ ẽk‖∞. Then B(v)(h) := ∑∞
k=1 μkẽkv(ẽk, h)L2(O) satisfies (A5), (A6).
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4.3. Stochastic generalized degenerate p-Laplace equations

We now consider a class of stochastic generalized degenerated p-Laplace equations with re-
action term of polynomial growth, thus partially generalizing the results from Section 4.2. More
explicitly, we consider equations of the form

dXt =
(

div
(
Φ(∇Xt)

) +
n∑

i=1

fi(Xt )

)
dt + Bt(Xt ) dWt , (4.33)

on an open set O ⊆Rd with smooth boundary ∂O, fi ∈ C1(R) as in Section 4.2 with (E,B,m) =
(O,B(O), dx) and with one of the following boundary conditions:

i. Dirichlet boundary conditions and O such that Poincaré’s inequality holds (cf. [1, Theo-
rem 6.28]).

ii. Neumann boundary conditions and O bounded and convex.

We assume, Φ = ∇Ψ : Rd → Rd for some convex function Ψ ∈ C2(Rd ;R) satisfying

Φ(0) = ∇Ψ (0) = 0,∥∥D2Ψ (x)
∥∥
Rd×Rd � c2

(
1|O|<∞ + |x|m−2),

−c21|O|<∞ + c1|x|m � Ψ (x),

for some m � 2 and some constants c1, c2 > 0. This implies −Φ(x) · x � −c1|x|m + c21|O|<∞
and Ψ (x) � c2(1|O|<∞ + |x|m), for some constants c1, c2 > 0.

In case of Neumann boundary conditions, if m � rn the convexity of O can be dropped and if
m ∈ [r1, rn] also boundedness of O is not needed.

In the special case of the standard p-Laplace equation (i.e. Φ(r) = |r|m−2r) with low or-
der reaction terms (i.e. ri � m), Neumann boundary conditions on a bounded, convex set O,
B ∈ L2([0, T ] × Ω;L2(L

2(O);H 1(O))) and X0 ∈ L2(Ω;H 1(O)), the abstract invariance re-
sult obtained in [20] can be applied to prove that Xt is a right-continuous process in H 1(O)

with E supt∈[0,T ] ‖Xt‖2
H 1(O)

< ∞. Applied to the standard p-Laplace equation with Neumann

boundary conditions for X0 ∈ L2(Ω;H) we (partially) strengthen this to

E

T∫
0

t
∥∥div

(|∇Xt |m−2∇Xt

)∥∥2
2 dt < ∞,

and for X0 ∈ Lm(Ω;W 1,m(O)) we get

sup
t∈[0,T ]

E‖Xt‖m
W 1,m(O)

+E

T∫ ∥∥div
(|∇Xt |m−2∇Xt

)∥∥2
2 dt < ∞.
0
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In the following, we will consider the case of Dirichlet boundary conditions. Neumann boundary
conditions can be treated analogously. Let H = L2(O), S = W

1,m
0 (O) ∩ Lr1(O) ∩ · · · ∩ Lrn(O)

and V = S ∩ H . Let Fi ∈ C2(R) such that F ′
i = fi and set

ϕ(v) :=
∫
O

Ψ (∇v)dξ −
n∑

i=1

∫
O

Fi(v) dξ, ϕ̃(v) := 1

m

∫
O

|∇v|m dξ +
n∑

i=1

∫
O

|v|ri dξ,

for v ∈ S. We have ϕ, ϕ̃ ∈ C2(S) with

Dϕ(v)(w) =
∫
O

Φ(∇v)(∇w)dξ −
n∑

i=1

∫
O

fi(v)w dξ,

D2ϕ(v)(w1,w2) =
∫
O

D2Ψ (∇v)(∇w1,∇w2) dξ −
n∑

i=1

∫
O

f ′
i (v)w1w2 dξ.

Using this, convexity of Ψ and (4.31), (A1), (A3), (A4) and (A4′) are easily verified. For (A2)
we consider the case m > 2 (for m = 2 proceed similarly). First, note

∞∑
k=1

∫
O

D2Ψ (∇v)(∇wk,∇wk)dξ �
∥∥D2Ψ (∇v)

∥∥
m

m−2

∞∑
k=1

∥∥|∇wk|2
∥∥

m
2

� C

(
1 + ‖∇v‖m

m +
( ∞∑

k=1

‖∇wk‖2
m

)m
2
)

� C

(
1 + ϕ(v) +

( ∞∑
k=1

ϕ̃(wk)
2
m

)m
2
)

,

for some constant C > 0. Taking into account (4.32) we obtain

∞∑
k=1

D2ϕ(x)(wk,wk) � C

(
1 + ϕ(v) +

( ∞∑
k=1

ϕ̃(wk)
2
m

)m
2

+
n∑

i=1

( ∞∑
k=1

ϕ̃(wk)
2
ri

) ri
2
)

,

for some constant C > 0. Thus, (A2) is satisfied with {pi} = { ri
2 } ∪ {m

2 }, N = n + 1.

Theorem 4.12. Let X0 ∈ L2(Ω,F0;H) and B : [0, T ] × Ω × H → L2(U,H) be progressively
measurable and satisfy (A5), (A6). Then there exists a unique generalized strong solution X ∈
L2(Ω;C([0, T ];H)) with X(0) = X0 to (4.33) with

E

T∫ (
‖Xt‖m

W
1,m
0 (O)

+
n∑

i=1

‖Xt‖ri
ri

)
+ t

(∥∥∥∥∥divΦ(∇Xt) +
n∑

i=1

fi(Xt )

∥∥∥∥∥
2

2

)
dt < ∞.
0
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If E(‖X0‖m

W
1,m
0 (O)

+ ∑n
i=1 ‖X0‖ri

ri ) < ∞, then Xt is the unique strong solution with

sup
t∈[0,T ]

E

(
‖Xt‖m

W
1,m
0 (O)

+
n∑

i=1

‖Xt‖ri
ri

)
+E

T∫
0

∥∥∥∥∥divΦ(∇Xt) +
n∑

i=1

fi(Xt )

∥∥∥∥∥
2

2

dt < ∞.

For the standard p-Laplace equation on a bounded set O ⊆ Rd with Dirichlet boundary con-
ditions (w.l.o.g. n � 1) this means

t
1
2
∥∥div

(|∇Xt |m−2∇Xt

)∥∥
2 + t

1
2
∥∥f1(Xt )

∥∥
2 ∈ L2([0, T ] × Ω

)
and if E(‖X0‖m

W
1,m
0 (O)

+ ‖X0‖r1
r1) < ∞, then Xt is the unique strong solution with

∥∥div
(|∇Xt |m−2∇Xt

)∥∥
2 + ∥∥f1(Xt )

∥∥
2 ∈ L2([0, T ] × Ω

)
.

Remark 4.13.

i. Assume gk ∈ L2([0, T ] × Ω ×O) progressively measurable and

E

T∫
0

( ∞∑
k=1

‖gk‖
1∧ 2m

rN

W
1,m
0 (O)

+ ‖gk‖
2
m

∧ 4
rN

rN

) rN
2 ∨m

< ∞.

Then Bt(u) := ∑∞
k=1 gk(ẽk, u)U satisfies (A5), (A6).

ii. Assume

∞∑
k=1

(μkλk)
1∧ 4

m
∧ 4

rn < ∞,

where μk ∈ R, ẽk ∈ H
1,∞
0 (O) is an orthonormal basis of L2(O) and λk := ‖ẽk‖∞ +

‖∇ ẽk‖∞. Then B(v)(h) := ∑∞
k=1 μkẽkv(ẽk, h)L2(O) satisfies (A5), (A6).
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