TCT-201
Intravascular ultrasound (IVUS) validation of non-invasive and invasive measures of carotid stenosis severity in the CARUS Registry. [Carotid Artery intravasulaR Ultrasound academic registRy]

Piotr Musialek1, Łukasz Tekieli2, Piotr Pieniazek3, Anna Kablałk-Ziemieibicka2, Adam Mażurek2, Mariusz Trzyńska2, Wiesława Tracza2, Piotr Podolec2
1Jagiellonian University Institute of Cardiology, John Paul II Hospital, Krakow, Poland, Krakow, Poland, 2Jagiellonian University, Krakow, Poland, 3Jagiellonian University Institute of Cardiology, Krakow, Poland, 4John Paul II Hospital, Krakow, Poland

Background: Carotid revascularization guidelines denote the internal carotid artery (ICA) stenosis severity -taken together with ipsilateral brain ischaemia symptoms- as the key clinical decision-making determinant.

Methods: To validate non-invasive (duplex Doppler velocities - PSV and EDV; CT angiography area stenosis, AngioCT) and invasive (classic quantitative angiography QA diameter stenosis, DS, and densitometric stenosis severity, QA-DENSITOM) ICA imaging modalities against the vascular imaging gold standard, IVUS. Index ICAs were IVUS-imaged (unprotected 107; proximal EPD-51, distal EPD-132) in 290 consecutive patients (age 47-83y, 187 men, 104 asymptomatic and 186 symptomatic) referred for carotid revascularization decision-making.

Results: By unvariable model, PSV (AUC 0.77, cutoff 2.58m/s, PPV 0.64, NPV 0.80), EDV (AUC 0.74, cutoff 0.75mm/s, PPV 0.57, NPV 0.80), AngioCT (AUC 0.79, cutoff 72%, PPV 0.61, NPV 0.85), DS (AUC 0.80, cutoff 61%, PPV 0.65, NPV 0.82), and QA-DENSITOM (AUC 0.88, cutoff 74%, PPV 0.79, NPV 0.86) all predicted patients (age 47-83y, 187 men, 104 asymptomatic and 186 symptomatic) referred for carotid revascularization decision-making.

Conclusions: These findings are consistent with an important role of non-invasive angiography rather than isolated duplex Doppler as a gate-keeper for invasive evaluation. On QA, densitometric ICA stenosis severity evaluation outperforms other parameters.

TCT-202
Effect of Contralateral Occlusion on Index Internal Carotid Artery (ICA) Duplex Doppler Velocities: Quantitative Analysis Using Intravascular Ultrasound (IVUS) to Match Index ICA Stenosis Severity

Piotr Musialek1, Łukasz Tekieli2, Piotr Pieniazek3, Anna Kablałk-Ziemieibicka2, Tadeusz Przewlocki2, Karolina Dzierwa2, Mariusz Trzyńska2, Krzysztof Zmudka2, Wiesława Tracza2, Piotr Podolec2
1Jagiellonian University Institute of Cardiology, John Paul II Hospital, Krakow, Poland, Krakow, Poland, 2Jagiellonian University, Krakow, Poland, 3Jagiellonian University Institute of Cardiology, Krakow, Poland

Background: Contralateral ICA occlusion may result in a compensatory increase in the index ICA flow. Nevertheless, current guidelines on duplex Doppler velocities application to evaluate ICA stenosis severity do not correct for contralateral ICA occlusion.

Methods: 51 subjects [age 63(58.5-71) y; median(IQR), 32 men] with contralateral ICA occlusion were identified in database of 322 ICA IVUS studies in 295 consecutive patients referred for carotid revascularization decision-making. Nearest neighbor search algorithm was used to pair each patient with contralateral ICA occlusion with a same-gender subject with contralateral ICA patent and close-to-identical index ICA stenosis severity by IVUS criteria. A satisfactory match was found for 94.1% subjects with contralateral ICA occlusion (48 subject pairs).

Results: Index ICA IVUS minimal lumen area was 7.5(5.8-9.5) vs. 7.2(5.9-7.4) mm², reference area was 23.4(19.7-27.2) vs. 22.8(19.8-26.6)mm², and area stenosis was 69.5(55.3-77.5) vs. 69(54.9-77.3)% (p<0.06 for all) and those measures were highly correlated between the paired subjects (r=0.99, r=0.95, and r=0.84 respectively, p<0.001 for all). Mean index ICA velocity overestimation in subjects with contralateral ICA occlusion was 0.5mm/s for PSV and 0.2mm/s for EDV (95%CI 0.26-0.85 and 0.17-0.36mm/s respectively, p<0.01 for both) (Fig) and its magnitude was not related to index ICA stenosis severity (r=0.13, p=0.29 for ΔPSV and r=0.02, p=0.89 for ΔEDV).

Conclusions: Use of uncorrected velocity criteria can lead to overestimation of ICA stenosis severity in a significant proportion of patients with contralateral ICA occlusion.

TCT-203

Piotr Musialek1, Władysław Dobrowski2, Łukasz Tekieli2, Piotr Pieniazek2, Adam Mażurek2, Mariusz Trzyńska2, Piotr Podolec2
1Jagiellonian University Institute of Cardiology, John Paul II Hospital, Krakow, Poland, Krakow, Poland, 2Jagiellonian University Institute of Cardiology, Krakow, Poland, 3Jagiellonian University, Krakow, Poland

Background: Virtual histology intravascular ultrasound (VH-IVUS) enables high resolution (axial=120µm) atherosclerotic plaque imaging. Current VH image analysis methodology has several limitations related largely to employing semi-quantitative/qualitative image evaluation algorithms. Reproducibility of quantitative carotid VH-IVUS image analysis is not established.

Methods: In 21 consecutive patients with significant carotid atherosclerosis (age 52-83 years, men-76%, recently symptomatic lesion-43%, angiographic diameter stenosis 48-87%) we used two 20MHz IVUS transducers (EagleEye, Volcano Corp) to image the lesion. Inter-transducer and inter-observer reproducibility was evaluated for measuring (QIVUS 2.0 software, Medis) the plaque peak total content of necrotic core (NC), fibrofatty, (FF), fibrotic, (FT), and calcific, (Ca), component (absolute and per cross-sectional plaque area proportionate content) as well as several novel VH-IVUS plaque parameters such as minimal fibrous cap (FC) thickness (if >120µm); mean confluent necrotic core (cNC) area, angle and thickness, and peak Ca area and arc.

Results: NC ranged 1.5-12.5mm² (71-1.542%), FF 3.3-28.2mm² (17.1-78.2%), pFFT 7.5-33.2mm² (47.3-81.9%), Ca 0.75-9.4mm² (1.2-25.5%), cNC-area was 0.5-8.9mm², cNC-thickness 0.4-2.1mm, cNC-arc 25-241°, cCa-area 0.3-4.2mm², and cCa-arc was 44-228°. Minimum FC thickness was 0.21-0.53mm. Mean inter-observer measurement variability of absolute/proportionate peak plaque content was 4.2±1.4% for NC, 5.57±2% for FF, 5.28±2% for FT, 5.06±2% for Ca; mean inter-transducer measurement variability was respectively 7.2±10.2%, 7.2±8.4%, 6.1±7.0%, 8.6±11.7%. For NC, cNC-thickness, cNC-arc, cCa-area, cCa-arc, and minFC thickness mean inter-observer/inter-transducer measurement variability was respectively 7.2±10.2%, 7.2±8.4%, 6.1±7.0%, 8.6±11.7%. For cNC-area, cNC-thickness, cNC-arc, cCa-area, cCa-arc, and minFC thickness mean inter-transducer measurement variability was respectively 7.2±10.2%, 7.2±8.4%, 6.1±7.0%, 8.6±11.7%. For cNC-area, cNC-thickness, cNC-arc, cCa-area, cCa-arc, and minFC thickness mean inter-observer/inter-transducer measurement variability was respectively 7.2±10.2%, 7.2±8.4%, 6.1±7.0%, 8.6±11.7%.

Conclusions: Quantitative IVUS-IVUS carotid plaque evaluation using the proposed parameters is highly reproducible. These findings provide grounds for the use of quantitative VH-IVUS in cross-sectional and longitudinal studies of carotid atherosclerosis.