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The renormalization factors of the dimension-six effective operators for proton decay are evaluated at
two-loop level in the supersymmetric grand unified theories. For this purpose, we use the previous re-
sults in which the quantum corrections to the effective Kähler potential are evaluated at two-loop level.
Numerical values for the factors are presented in the case of the minimal supersymmetric SU(5) grand
unified model. We also derive a simple formula for the one-loop renormalization factors for any higher-
dimensional operators in the Kähler potential, assuming that they are induced by the gauge interactions.
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1. Introduction

Discovery of the Higgs boson [1,2] may suggest the existence of
supersymmetry (SUSY). The supersymmetric theories may accom-
modate the hierarchical structure with the great desert naturally.
Searches for rare processes, such as proton decay, would be one
of methods to access the physics beyond the supersymmetric stan-
dard models (SUSY SMs). The processes are dictated with the effec-
tive higher-dimensional operators. When comparing the prediction
with the observation precisely, we need to include the radiative
corrections correctly.

The realization of the gauge coupling unification strongly moti-
vates us to study the supersymmetric grand unified theories (SUSY
GUTs) [3–6]. In the theories, proton decay is induced by the ex-
changes of the colored Higgs multiplets and the X gauge bosons,
which yield the baryon and lepton number non-conserving inter-
actions. They are expressed in terms of the dimension-five and
-six effective operators, respectively. It is found that the former
interactions in general give rise to dominant channels for proton
decay, such as p → K +ν̄ [7,8]. However, the current experimen-
tal limits on the channel, τ (p → K +ν̄) > 3.3 × 1033 yrs [9], are so
severe that the contribution of the dimension-five operators is re-
quired to be suppressed by a certain mechanism; otherwise the
model is excluded just as the case of the minimal SUSY SU(5)
GUT unless the SUSY particles in the SUSY SM are much heav-
ier than the weak scale [10,11]. A variety of such mechanisms
have been proposed. For example, the Peccei–Quinn symmetry
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[12] would be exploited for the purpose. The R symmetry also
plays a role in suppressing the dimension-five proton decay in
the models with extra dimensions [13]. With such a suppression
mechanism imposed, the dimension-six operators in turn become
dominant. In this case, the main decay mode is the p → π0e+
channel; the present experimental limit on its lifetime is given by
τ (p → π0e+) > 1.29 × 1034 yrs [14]. Since in the SUSY GUTs the
GUT scale MGUT is relatively high, i.e., MGUT ∼ 2 × 1016 GeV, the
predicted proton lifetime usually evades the experimental limit.
However, the consequence might be altered if there exist extra par-
ticles in the intermediate scale. With such particles belonging to a
representation of the grand unified group, the gauge coupling uni-
fication is still achieved, while its value at the unified scale turns
out to be enhanced. Then, the proton lifetime is considerably re-
duced due to the large gauge coupling [15].

In order to study such possibilities based on the proton decay
experiments, it is important to make a precise prediction for the
decay rate. To that end, we need to determine the effects of the
dimension-six operators, which are generated at the GUT scale, on
the low-energy physics by using the renormalization group equa-
tions (RGEs). Indeed, there have been several literature in which
the renormalization factors for the effective operators are evalu-
ated. In Ref. [16], the long-distance QCD corrections are computed
at two-loop level. For the short-distance factors, on the other hand,
only the one-loop calculation is carried out in Ref. [17] in the SUSY
SM.

In this Letter, therefore, we evaluate the renormalization factors
of the dimension-six operators at two-loop level in the presence
of the supersymmetry. In the calculation, we use the results for
the two-loop corrections to the effective Kähler potential given in
Ref. [18] Since in the SUSY GUTs, the most of the intermediate
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energy scales are supersymmetric, the short-distance renormaliza-
tion factors are well approximated by those evaluated in purely
SUSY theory. Thus, combined with the long-distance effects given
in Ref. [16], our results offer a tool for making a prediction of the
proton decay rate with accuracy of two-loop level.

We also derive a simple formula for the one-loop level renor-
malization factors of any higher-dimensional operators in the
Kähler potential, when including only the gauge interaction contri-
butions. It is applicable to other observables, such as the neutron–
antineutron oscillation [19].

This Letter is organized as follows: in Section 2, we first write
down the dimension-six effective operators in terms of the super-
field notation. Our notations and conventions are also shown in
the section. Then, in the subsequent section, we describe a way of
calculating the renormalization factors of the operators by using
the effective Kähler potential, and present the results for the com-
putation. In Section 4, the comparison of the one- and two-loop
renormalization factors is discussed in the minimal SUSY SU(5)
GUT. Section 5 is devoted to conclusion and discussion.

2. Dimension-six effective operators

To begin with, we write the dimension-six effective operators
for proton decay in a SUSY and gauge invariant manner with su-
perspace notation:

O(1) =
∫

d2θ d2θ̄ εabcεi j
(
U †)a(

D†)b
e− 2

3 gY V 1
(
e2g3 V 3 Q i

)c
L j,

O(2) =
∫

d2θ d2θ̄ εabcεi j E†e
2
3 gY V 1

(
e−2g3 V 3 U †)a

Q b
i Q c

j , (1)

where all the chiral superfields correspond to left-handed fermions,
and V 1 and V 3 are the U(1)Y and SU(3)C vector superfields with
the gauge coupling constants gY and g3, respectively. The sub-
scripts i, j, are the SU(2)L indices, while a,b, c are the color in-
dices. Furthermore, we omit the generation indices for simplicity.

The relationship between bare and renormalized operators is
written in the following form:

O(I)
B = Z (I)O(I) (I = 1,2), (2)

where the subscript B indicates the operator is bare. Then, the
Wilson coefficients C (I) for the operators O(I) obey the differen-
tial equations,

μ
d

dμ
C (I)(μ) = γO(I) C (I)(μ), (3)

with γO(I) the anomalous dimensions for the operators defined as

γO(I) ≡ μ
d

dμ
ln Z (I). (4)

The anomalous dimensions are obtained by analyzing the ver-
tex functions (or the effective action) in which the operators are
inserted. Since we now deal with the dimension-six operators
which contain four chiral or anti-chiral superfields, it is sufficient
to consider the four-point vertex functions which include the cor-
responding external superfields. Their renormalization group equa-
tions (RGEs) are given as[
μ

∂

∂μ
+ βα

∂

∂ gα
−

∑
i

γi + γO(I)

]
ΓO(I) = 0. (5)

Here, ΓO(I) are the four-point vertex functions with an insertion
of the operators O(I) . The gauge coupling constants and their beta
functions are denoted by gα and βα , respectively, and the sum
over each gauge group is implicit. Further, γi shows the anomalous
dimension of each superfield contained in the operators. From now
on, we often omit the superscript (I) for brevity.

3. Renormalization factors

In this section, we present the formulae for the renormalization
factors. They are derived from the effective Kähler potential given
in Ref. [18]. In the calculation, the dimensional reduction scheme
(DR) [20] is employed for the regularization. We first obtain the
one-loop results and confirm the results in Ref. [17] in the former
subsection. Then, in the latter subsection, we evaluate the two-
loop contribution.

3.1. One-loop

Let us first evaluate the vertex functions at one-loop level. For
this purpose, we use the results in Ref. [18], where the effective
Kähler potential for generic four-dimensional N = 1 SUSY theories
is computed up to two-loop level. According to the results, the
one-loop correction1 to the Kähler potential is given as

�K1 = −
∑
α

1

16π2
TrM2

C(α)

(
2 − ln

M2
C(α)

μ̄2

)
, (6)

where μ̄2 ≡ 4πe−γ μ2 defines the MS renormalization scale, and
the mass matrix M2

C(α) is defined by

(
M2

C(α)

)
AB ≡ 2g2

αφ̄a
(
T (α)

A

)a
bGb

c
(
T (α)

B

)c
dφ

d, (7)

with φ the background for the chiral superfield Φ and Ga
b the

Kähler metric

Ga
b ≡ ∂2

∂φ̄a∂φb
K (φ̄, φ). (8)

In Eq. (6), Tr denotes the trace over the adjoint representation of
a gauge group whose coupling constant is gα and generators are
given by T (α)

A . Moreover, in the following calculation, we only take
the gauge interactions into account, i.e., we neglect the superpo-
tential.2

In order to obtain the renormalization factors for the higher-
dimensional effective operators, we consider the Kähler potential

K = φ̄aφ
a + CO + CO†, (9)

with C the Wilson coefficient of the operator O. In this case, the
Kähler metric reads

Ga
b = δa

b + COa
b + CO†a

b, (10)

with Oa
b ≡ ∂2O/∂φ̄a∂φb . By substituting the above equations to

Eq. (6), we have

�K1 = −
∑
α

g2
α

16π2
2
(
1 + ln μ̄2)[Cα(a)φ̄aφ

a

+ {
C
(
φ̄T (α)

A

)
aO

a
b
(
T (α)

A φ
)b + h.c.

}]
, (11)

where Cα(i) are the quadratic Casimir group theory invariants for
the superfield Φi , defined in terms of the Lie algebra generators T A

by (T (α)
A T (α)

A )a
b = Cα(i)δa

b . Further, we keep only the terms up to
the first order with respect to the Wilson coefficient, C , and do

1 This one-loop result is first derived in Ref. [21].
2 Experimental constraints on the effective operators in Eq. (1) are particularly

severe when the external lines of the operators are of the first and/or second gen-
erations. In such a case, the size of the Yukawa couplings are negligible.
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not show the terms including the logarithmic dependence on the
background fields, which are not relevant to the present calcula-
tion. At the first order in the perturbation theory, the RGE (5) then
leads to

γ
(1)
O O =

∑
i

γ
(1)
i O +

∑
α

g2
α

16π2
4
(
φ̄T (α)

A

)
aO

a
b
(
T (α)

A φ
)b

. (12)

Here, the superscript (1) of the anomalous dimensions denotes
that they are evaluated at one-loop level. In supersymmetric theo-
ries, γ

(1)
i is given as3

γ
(1)
i = −2

∑
α

Cα(i)
g2
α

16π2
. (13)

Now we evaluate the second term in Eq. (12). To that end, we
analyze the structure of the term on a general basis in order to
derive the formula for the one-loop renormalization factor of any
operator. Consider the following operator which contains an ar-
bitrary number of both chiral and anti-chiral superfields and is
singlet under a given global symmetry G as a whole:

O = λ̄
i1...im
a λa

j1... jn
Φ i1 · · ·Φ imΦ j1 · · ·Φ jn . (14)

Here, the coefficients λa
j1... jn

and λ̄
i1...im
a make the set of superfields

G singlet. When G is localized (gauged), the operator invariant un-
der both supersymmetry and the gauge symmetry is∫

d2θ d2θ̄
(
λ̄

i1...im
a Φ i1 · · ·Φ im

)[
e2gV A

G T A ]a
b
(
λb

j1... jn
Φ j1 · · ·Φ jn

)
,

(15)

where g and V A
G are the coupling constant and the gauge vec-

tor superfields of the gauge group G , respectively. Moreover, T A

are assumed to be the generators for an irreducible representation,
which are relevant to the transformation properties of the compos-
ite chiral superfield Φ j1 · · ·Φ jn ; under the gauge transformation,
Φ j1 · · ·Φ jn is transformed as

(
λa

j1... jn
Φ j1 · · ·Φ jn

) → (
eigΛA T A )a

b
(
λb

j1... jn
Φ j1 · · ·Φ jn

)
, (16)

with ΛA any chiral superfields. Further, we write the generators
for each chiral superfield Φ as t A , i.e., Φ j → (eigΛAt A

) j
j′Φ j′ . Then,

since the coefficients λa
j1... jn

and λ̄
i1...im
a assemble the transforma-

tion properties of each chiral superfield into that of the composite
operator λa

j1... jn
Φ j1 · · ·Φ jn , it follows that

(
T A)a

bλ
b
j1... jn

= λa
j′1 j2... jn

(
t A) j′1

j1 + · · · + λa
j1... jn−1 j′n

(
t A) j′n

jn , (17)

and similarly for the anti-chiral superfields,

λ̄
i1...im
b

(
T A)b

a = (
t A)i1

i′1 λ̄
i′1i2...im

b + · · · + (
t A)im

i′m λ̄
i1...im−1i′m
b . (18)

These expressions imply that λa
j1... jn

and λ̄
i1...im
a are invariant ten-

sors under G . By using the relations, we now evaluate the second
term in Eq. (12). It goes as follows:
(
φ̄t A)

aO
a

b
(
t Aφ

)b

= [(
t A)i1

i′1 λ̄
i′1i2...im

b + · · · + (
t A)im

i′m λ̄
i1...im−1i′m
b

]
× [

λa
j′1 j2... jn

(
t A) j′1

j1 + · · · + λa
j1... jn−1 j′n

(
t A) j′n

jn

]

3 The anomalous dimension of fields, γi , may be also derived at one- and two-
loop levels from the effective Kähler potential derived in Ref. [18] in the similar
way. See the first term in Eq. (11).
× φ̄i1 · · · φ̄imφ j1 · · ·φ jn

= λ̄
i1...im
b

(
T A)b

a
(
T A)a

cλ
c
j1... jn

φ̄i1 · · · φ̄imφ j1 · · ·φ jn

= Ccomp
G O, (19)

where Ccomp
G is defined by T A T A = Ccomp

G 1; it corresponds to
the Casimir invariant for the composite chiral superfield
λa

j1... jn
Φ j1 · · ·Φ jn . Substituting the expression into Eq. (12), we fi-

nally obtain a generic formula for the one-loop renormalization
factors of arbitrary operators:

γ
(1)
O =

∑
α

g2
α

16π2

[
4C comp

α − 2
∑

i

Cα(i)

]
, (20)

with Ccomp
α the Casimir invariants of the gauge group α for the

chiral part of the operators.
So far we have assumed that the set of chiral (anti-chiral) su-

perfields forms an irreducible representation. When it is reducible,
independent operators are formed. They are not mixed with each
other at one-loop level if only gauge interactions are effective.

Now we apply the formula to the dimension-six effective oper-
ators for proton decay in Eq. (1). We find Ccomp

3 = C3(�) = 4/3 in
the case of SU(3)C and Ccomp

2 = 0 in the case of SU(2)L for both
O(1) and O(2) . Here, � denotes the fundamental representation of
the corresponding group, and we have used C3(�) = C3(�). Note
that the latter equation for SU(2)L follows from the fact that the
SU(2)L non-singlet superfields in the effective operators have the
same chirality and form an SU(2)L singlet. For U(1)Y contributions,
on the other hand, we obtain different results for the operators
O(1) and O(2): Ccomp

Y = (Y Q + Y L)
2 for O(1) and Ccomp

Y = (2Y Q )2

for O(2) . As a result, by using these factors we obtain that

γ
(1)

O(I) =
∑

α=Y ,2,3

g2
α

16π2

[
γ

(1)

O(I)

]
α
, (21)

where

[
γ

(1)

O(1)

]
3 = [

γ
(1)

O(2)

]
3 = −8

3
, (22)

[
γ

(1)

O(1)

]
2 = [

γ
(1)

O(2)

]
2 = −3, (23)

[
γ

(1)

O(1)

]
Y = −11

9
,

[
γ

(1)

O(2)

]
Y = −23

9
. (24)

These results are totally consistent with those in Ref. [17].

3.2. Two-loop

Next, we discuss the two-loop level contribution. Again, we use
the results in Ref. [18]. The radiative corrections to the Kähler po-
tential at two-loop level are described by

�K2 = 1

2
Rb

a
d

c Ja
b

c
d
(
M2) −

∑
α

f (α)
ABC f (α)

D E F I B D E A F C (
M2

V (α)

)

−
∑
α

(
GT (α)

A φ
)b

;c
(
φ̄T (α)

B G
)

a
;d Ha

b
c

d
AB(

M2, M2
V (α)

)
,

(25)

with f (α)
ABC the structure constants of the gauge group α. The mass

functions and the geometric factors appear in Eq. (25) are dis-
played in Appendix A. By using them, we readily obtain the two-
loop corrections to the vertex functions. We found from explicit
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calculation that the two-loop correction is not given simply by the
gauge transformation properties of the composite chiral superfield
in the operator and anomalous dimension of the external fields,
which is different from the one-loop ones. At present, however,
since the explicit derivations are quite complicated, we simply give
the final results and defer full details [19].

The RGE in Eq. (5) at two-loop level is given as

μ
∂Γ

(2)
O

∂μ
+

∑
α

1

16π2
bα g3

α

∂

∂ gα
Γ

(1)
O −

∑
i

γ
(1)
i Γ

(1)
O

−
∑

i

γ
(2)
i Γ

(0)
O + γ

(1)
O Γ

(1)
O + γ

(2)
O Γ

(0)
O = 0. (26)

Here, the subscripts (0–2) indicate the quantities are evaluated at
tree, one-loop, and two-loop level, respectively. One-loop anoma-
lous dimensions γ

(1)
i are shown in Eq. (13), while the two-loop

ones are given as [22]

γ
(2)
i = 1

(16π2)2

∑
α,β

2g2
αCα(i)

[
g2
αbαδαβ + 2g2

βCβ(i)
]
. (27)

Here, bα are the one-loop beta function coefficients for gauge cou-
pling constants, given as bα = ∑

i Iα(i) − 3Cα(G) with Cα(G) and
Iα(i) the quadratic Casimir invariant for the adjoint representation
of the group α and the Dynkin index of the chiral multiplet Φi ,
respectively.

From the RGE in Eq. (26), we now obtain the two-loop anoma-
lous dimensions for the effective operators. Again, we parametrize
them as follows:

γ
(2)

O(I) = g4
3

(16π2)2

[
γ

(2)

O(I)

]
33 + g4

2

(16π2)2

[
γ

(2)

O(I)

]
22

+ g4
Y

(16π2)2

[
γ

(2)

O(I)

]
Y Y + g2

2 g2
3

(16π2)2

[
γ

(2)

O(I)

]
23

+ g2
Y g2

2

(16π2)2

[
γ

(2)

O(I)

]
Y 2 + g2

Y g2
3

(16π2)2

[
γ

(2)

O(I)

]
Y 3. (28)

Then, we have

[
γ

(2)

O(1)

]
33 = [

γ
(2)

O(2)

]
33 = 64

3
+ 8b3, (29)

[
γ

(2)

O(1)

]
22 = [

γ
(2)

O(2)

]
22 = 9

2
+ 3b2, (30)

[
γ

(2)

O(1)

]
Y Y = 113

54
+ 5

3
bY ,

[
γ

(2)

O(2)

]
Y Y = 91

18
+ 3bY , (31)

[
γ

(2)

O(1)

]
23 = 12,

[
γ

(2)

O(2)

]
23 = 20, (32)

[
γ

(2)

O(1)

]
Y 2 = 2,

[
γ

(2)

O(2)

]
Y 2 = 2

3
, (33)

[
γ

(2)

O(1)

]
Y 3 = 68

9
,

[
γ

(2)

O(2)

]
Y 3 = 76

9
. (34)
4. Results

In this section, we give the numerical results of the renormal-
ization factors in the minimal SUSY SU(5) GUT. The short-distance
renormalization factors A(I)

S are defined as the ratios of the coef-
ficients C (I) for the effective operators at the SUSY scale MSUSY to
those at the GUT scale MGUT:

A(I)
S ≡ C (I)(MSUSY)

C (I)(MGUT)
(I = 1,2), (35)

where we assume MSUSY = 1 TeV and MGUT = 1.5 × 1016 GeV. The
numerical results at one-loop level are given as

A(1)
S (1-loop) = 1.959,

A(2)
S (1-loop) = 2.058, (36)

while at two-loop level, we have found

A(1)
S (2-loop) = 1.961,

A(2)
S (2-loop) = 2.052. (37)

Here, we calculate the one-loop (two-loop) short-distance factors
with the one-loop (two-loop) renormalization equations for the
gauge coupling constants in the SUSY SM [22]. The numerical val-
ues of the unified gauge coupling constant at the one- and two-
loop level are given as α5(1-loop) = 0.03906 and α5(2-loop) =
0.03968, respectively, where α5 is defined as α5 ≡ g2

3(MGUT)/4π .
The results are hardly affected by the uncertainty of the input
parameters, e.g., the SU(3) gauge coupling constant, αs(mZ ) =
0.1184(7) [23]. There is a cancellation among the two-loop cor-
rections since the signs of [γ (2)

O(1) ]33 and [γ (2)

O(2) ]33 are opposite to
those of the other two-loop anomalous dimensions. Therefore, the
numerical values at two-loop level hardly differ from the one-loop
ones. Without cancellations, the significance of the two-loop con-
tributions to the short-distance factors reaches a few percent of
the one-loop ones.

5. Conclusion and discussion

We have evaluated the short-distance renormalization factors
for the dimension-six proton decay operators at two-loop level
with the effective Kähler potential. The procedure described in this
Letter is generic and applicable to any higher-dimensional opera-
tors. We get the results A(1)

S (2-loop) = 1.961 and A(2)
S (2-loop) =

2.052 in the minimal SUSY SU(5) GUT. We have found that the
two-loop contributions hardly change the renormalization factors
evaluated at one-loop level.

Finally, we briefly comment on the extensions of the minimal
SUSY GUT. The gauge coupling constants at the GUT scale increase
if there exist extra particles in the intermediate scale. The two-
loop effects may be more significant in such cases. In addition, let
us note that our results are only for the SU(3)C × SU(2)L × U(1)Y

gauge interactions. If some new gauge interactions exist below
the GUT scale, we also need to evaluate the contributions of the
gauge interactions. Even for such theories, however, it is possible
to execute the prescription describe above to estimate the renor-
malization factors by means of the effective Kähler potential.

In this Letter, we neglect the possible effects of the threshold
corrections from particles whose masses are around the GUT scale.
Although the effects are model-dependent, to complete the two-
loop level calculation, we also need to evaluate such corrections.
We will discuss the issue on another occasion [19].
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Appendix A

Here, we show the explicit form of the mass functions as well
as the geometric factors given in Eq. (25):

J a
b

c
d
(
M2) = 2

(16π2)2

(
ln μ̄2)∑

α,β

(
M2

αG−1)a
b
(
M2

β G−1)c
d, (38)

I ABC D E F (
M2

V (α)

) = −1

2

g2
α

(16π2)2

(
ln μ̄2)[4

(
M2

V (α)

)
ABδC DδE F

− δAB
(
M2

V (α) ln M2
V (α)

)
C DδE F

− δABδC D
(
M2

V (α) ln M2
V (α)

)
E F

] + cycl., (39)

where the “cycl.” denotes the cyclic permutations of the labels
AB, C D, E F , and

Ha
b

c
d

AB(
M2, M2

V (α)

)

= − g2
α

(16π2)2

(
ln μ̄2)[∑

β

δAB
{

2
(
M2

β G−1)a
b
(
G−1)c

d

+ 2
(
G−1)a

b
(
M2

β G−1)c
d − (

G−1)a
b
(
M2

β ln
{

M2
β

}
G−1)c

d

− (
M2

β ln
{

M2
β

}
G−1)a

b
(
G−1)c

d
}

+ 2
(
G−1)a

b
(
G−1)c

d
(
M2

V (α)

)
AB

+ (
G−1)a

b
(
G−1)c

d
(
M2

V (α) ln M2
V (α)

)
AB

]
. (40)

Here, we drop the terms independent of the scale μ or containing
two logarithms. The latter terms give rise to the logarithmic terms
after differentiation, which cancel other logarithmic terms in the
RGEs. The mass parameters are defined as
(
M2

α

)a
b ≡ 2g2

α

(
T (α)

A φ
)a(

φ̄T (α)
A G

)
b, (41)

and

(
M2

V (α)

)
AB ≡ 1

2

[(
M2

C(α)

)
AB + (

M2
C(α)

)
B A

]
. (42)

Further, G−1 is inverse of the Kähler metric Ga
b defined in Eq. (8),

and the curvature Ra
b

c
d is given by

Ra
b

c
d ≡ ∂2

∂φ̄a∂φb
Gc

d −
(

∂

∂φ̄a
Gc

e

)(
G−1)e

f

(
∂

∂φb
G f

d

)
. (43)

The third term in Eq. (25) includes the shorthand notations,
(GT Aφ)b;c and (φ̄T B G)a

;d , which are defined as

(GT Aφ)a;b ≡ Ga
c(T A)c

b +
(

∂

∂φc
Ga

b

)
(T Aφ)c

= (T A)a
c Gc

b + (φ̄T A)c

(
∂

∂φ̄c
Ga

b

)
≡ (φ̄T A G)b

;a. (44)

Here, the second line follows from the gauge invariance of the Käh-
ler potential.
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