-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Elsevier - Publisher Connector

Electronic Notes in Theoretical Computer Science 44 No. 2 (2001)
URL: http://www.elsevier.nl/locate/entcs/volumed44.html 20 pages

A Pattern-Matching Compiler

Pierre-Etienne Moreau, Christophe Ringeissen

LORIA-INRIA
BP 239, 54506 Vandeuvre-les-Nancy Cedex, France
Email: moreau@loria.fr,ringeiss@loria.fr

Marian Vittek

Institut of Informatica
Mlynska dolina 842 15 Bratislava, Slovakia
Email: vittek@fmph.uniba.sk

Abstract

Implementation of a rule-based transformation engine consists of several tasks with
various abstraction levels. We present a new tool called mtom for the efficient
implementation of rule-based transformations. This engine should help to bridge
the gap between rewriting implementations and practical applications. It aims at
implementing well-identified parts of complex applications where the use of rewriting
is natural or crucial. These parts are specified using rewrite rules and integrated
with the rest of the application, which is kept in a classical imperative language such
as C, C++ or Java. Our tool, which can be viewed as a Yacc-like pre-processor,
does not depend on a given term representation, rather it accepts implementation of
terms (or term like data-types) of yet existing applications and it permits to define
and execute rewrite rules upon those types. From our experiences, this system is
well-suited for industrial use as well as for implementations of rule-based languages.
The paper introduces several features supported by mtom.

1 Introduction

Only few industrial applications are implemented using tools that perform
rewrite rules. However, rewriting is of greatest interest for symbolic and alge-
braic computations, program transformations, compiler constructions, etc. A
couple of existing rule-based programming languages (such as ASF+SDF [17],
Cafe-OBJ [12], ELAN [5] or Maude [7]) have been yet used in the development
of large applications but their connections with industrials are rather limited.
This is probably not because of a lack of will on both sides (industrials as well
as rule-based programming promoters). For example, several serious attempts
have been made to use ELAN in industrial applications. But those attempts

(©2001 Published by Elsevier Science B. V. Openaccessunder CCBY-NC-ND license.

161

https://core.ac.uk/display/82561579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

MOREAU, RINGEISSEN, VITTEK

failed on ordinary practical tasks, like implementing particular input/output
requirements, improving the user-interface, reusing existing tools, linking to
existing libraries, etc. In general it seems to us that academical rewriting
environments are not well-suited for real-life programming.

To bridge the gap between rewriting implementations and practical ap-
plications, we propose a new tool called mtom (for Many-To-One Matching).
Its design follows our industrial experiences and our works on the efficient
compilation of rewriting [30,16]. From our point of view, this new tool is very
useful for implementing well-identified parts of complex applications. These
parts are specified using rewrite rules and integrated with the rest of the ap-
plication, which is kept in a classical imperative language such as C, C++ or
Java, called goal language in the rest of the document.

This tool aims at compiling functions defined in a declarative way into
functions written in an imperative programming language. The latter will
then become executable with well-known compilers. Hence, the programmer
simply defines his function by using his favorite programming language but
also with the help of rewrite rules which will be applied through the mechanism
of pattern-matching. Our tool can be viewed as a Yacc-like pre-processor
translating this rule-based imperative function into a true imperative function.

When trying to integrate a black-box tool into an existing system, one
of the main bottlenecks comes from data conversion and the flexibility of-
fered to the user. One of the main originality of our system is to allow a
flexible term representation. The programmer can use (or re-use) his own
data-structures for terms and then execute rule-based functions defined upon
those data-structures. We propose to access terms using only a simple user-
defined Application Interface (API). This allows the programmer to work on
multiple term representations, including user-defined data-structures as well
as existing built-in data-types. The proposed tool is also able to cooperate
with a variety of memory management methods and does not impose any
particular evaluation strategy. It is general enough to permit the user to im-
plement his own rewriting strategies. The innermost normalisation remains
the default strategy and we will use it in most of the cases.

The paper is organized as follows. After this introduction, we start with
a brief overview of our approach that has led to the development of mtom
(Section 2). The notations and definitions are given in Section 3. Then, we
present in Section 4 how to encode innermost rewriting using mtom. The
specification language of mtom is given in Section 5. Its main features are
discussed in Section 6. Eventually, we compare our tool with existing works
(Section 7), and we conclude with some final remarks (Section 8).

2 Overview

Our practical experiences show that the construction of right hand sides of
rules can be written in standard programming languages in a straightforward

162

MOREAU, RINGEISSEN, VITTEK

way and we believe that there is no need for a particular new syntax to rep-
resent them. Simply, let us suppose that for each n-ary function symbol
occurring in the signature, we have implemented a term constructing func-
tion (n-ary) f, written in the goal language and whose evaluation returns the
term f(ty,...,t,), when called with ¢,..., ¢, as arguments. In this case, the
construction of a given term (right hand side of a rule), can be directly imple-
mented in the goal language by several nested function calls. For example, in
order to construct the term f(g(a)) we just write the code: f£(g(a())).

As illustrated in the rest of the paper, it is possible to express rewriting
strategies (innermost, outermost or user-defined) directly in the goal language.
Concerning non-deterministic strategies, our experience showed us that it can
also be expressed in the goal language in a straightforward and understandable
way [30,20].

However, given a ground term, the test whether a rule is applicable or
not is more complex. It usually requires term decomposition and some kind of
indexing technique for efficiency reasons. When looking at a code generated by
a rule-based language compiler, it is clear that the compilation of the (many-
to-one) matching process makes the resulting code complex and difficult to
understand. If one tries to code the rewriting directly in a goal language, this
part of code would be hard to understand and hardly maintainable. For these
reasons it is desirable that this part is not written directly in the goal language
but is generated from a more compact and abstract representation.

Because of the above discussion, our tool will only process left hand sides
of rules, which are called patterns. Given a set of patterns, the tool generates
a many-to-one matching function in the goal language. Each pattern has a
semantic action, which is executed if the given pattern matches the input
term. The semantic action is directly written in the goal language and is
supposed to construct the right hand side of the rewrite rule.

Our tool can be seen as a Yacc-like pre-processor. The input is a set of
patterns together with their semantic actions (written in the goal language).
The output is a function, say mtom main(input_term), providing many-to-
one matching of the input_term against the given set of patterns. Similarly
to Yacc, semantic actions are inserted directly into the generated function.
In order to keep the tool general and simple, the mtom main function per-
forms matching only at the top position of the input_term (see Section 4 and
Section 6.5 for full normalisation implementations). If a particular pattern
matches the input_term, then the corresponding semantic action is executed.

This also explains why we call our tool mtom, since it provides basically a
Many-To-One Matching compilation. In order to be as general as possible, we
restrict our tool to this unique functionality. Hence, even elementary rewrit-
ing strategies must be implemented by the user. However, as we will see in
Section 4 some support for innermost strategies is provided.

mtom is not designed for a particular goal language: the function imple-
menting the pattern-matcher can be expressed in an abstract language and

163

MOREAU, RINGEISSEN, VITTEK

then translated into a specific goal language such as C, C++ or Java. This
code can then be compiled by a standard compiler and linked together with
other files of the whole project. An important question is: what will be the
form of rewrite rules given to mtom? We will give an answer to this question
after explaining how to implement efficiently an innermost rewriting.

3 Notations and Definitions

Let us briefly introduce notations for concepts that will be used along this
paper. 7 (F,X) is the set of terms built from a given finite set F of function
symbols and a denumerable set X of variables, denoted by x, vy, 2z, etc. Posi-
tions in a term are represented as sequences of integers and denoted by greek
letters €, v. The empty sequence € denotes the position associated to the root
and so it is the position of the top symbol. The subterm of ¢ at position v is
denoted by ¢,. The replacement at position v of the subterm ¢, by ¢’ is writ-
ten t[v «— t']. The set of variables occurring in a term ¢ is denoted by Var(t).
If Var(t) is empty, t is called a ground term and 7 (F) is the set of ground
terms. A term ¢ is said to be linear if no variable occurs more than once in t.
A substitution is an assignment from a finite subset of X' to 7 (F, X), written
o=A{y — t1,...,yx — tr}. A rewrite rule is a pair of terms with variables,
called respectively the left and right-hand sides. The root of a rewrite rule is
the top symbol of its left hand side. A function symbol is defined if it occurs
as a root of a rewrite rule, otherwise, it is a constructor.

Let us consider a set of rewrite rules R and a term t. Computing the normal
form of a term ¢ w.r.t. a rewrite system R consists in applying successively the
rewrite rules of R, at any position, until no more applies. The existence and
uniqueness of normal forms require the rewrite system R to be respectively
terminating and confluent. An innermost normalisation is a process which
consists in computing normal forms of subterms (using recursively innermost
normalisation) before applying any rule to the top position of the current
term. It corresponds to the intuition that from all the possible positions where
a rewrite rule can be applied, an innermost one is chosen at each rewrite step.
There may be several such innermost positions, further refinements are then
possible by defining for example the left-most innermost normalisation.

In order to make things more readable, several fonts will be used along
this paper: mathematical font to express mathematical concepts, mtom font
to write mtom expressions, and goal font to write expressions from the goal
language.

4 Efficient Innermost Normalisation

In this section we will describe mtom’s support for innermost term-normalisation
strategy, especially we will demonstrate how this strategy can be efficiently
implemented using the standard evaluation mechanism of imperative program-

164

MOREAU, RINGEISSEN, VITTEK

ming languages. This compilation schema has been successfully used in several
compilers such as ASF+SDF [28] and ELAN [30,16].

The main idea consists in generating normalising term construction func-
tions for each defined functional symbol in the signature. A normalising term
construction function for a m-ary symbol f € F is a n-ary function £ with
the following property: let ty,...,t, be terms in normal forms, then f applied
on terms tq,...,t, returns the normal form of the term f(¢y,...,t,). More-
over, this normal form has to be computed by an innermost normalisation
of f(t1,...,t,). Normalising term construction functions refine the construc-
tion seen in Section 2. As mentioned previously, with those functions, a term
construction (for example, of f(g(a))) can be easily implemented as nested
function calls (e.g. £(g(a()))). Except that, with normalising functions,
the normal form of this term is directly constructed. Since the evaluation
mechanism of the goal language is assumed to be a call-by-value evaluation
mechanism, it ensures that arguments are evaluated before being passed to
the calling function. Therefore, the nested function calls lead to an innermost
normalisation.

As a special support for innermost normalisation, mtom generates a skele-
ton of normalising term construction function for each defined function sym-
bol. There are two reasons that explain why mtom does not generate a term
construction function for constructor symbols of the signature and is only
restricted to defined symbols. The first main reason is that mtom does not
construct terms, and a term construction function for a constructor symbol
always results in the construction of a constructor-based term. Another reason
is that we suppose that the description of a rewrite system can be organized
into several files sharing the same signature. In this case, the generation of
functions for all symbols in each of those files would generate conflicts at link
time.

The whole concept is easy to understand on this classical example: let us
consider the two following rewrite rules, where Zero, Suc, Plus are function
symbols and z,y are variables:

Plus(Zero,y) — y Plus(Suc(x),y) — Suc(Plus(z,y))

If we assume using the ATerm library [27], this rewrite system can be compiled
into C language as follows:

ATerm zero() { return(ATmake("Zero")); }
ATerm suc(ATerm x) { return(ATmake("Suc(<term>)", x)); }
ATerm plus(ATerm u, ATerm y) {
ATerm x;
if (ATmatch(u, "Zero")) {
return(y) ;
} else if (ATmatch(u, "Suc(<term>)", &x)) {
return(suc(plus(x,y)));
}

165

MOREAU, RINGEISSEN, VITTEK

The two first functions (zero and suc) use the ATmake function, which only
consists in constructing a term for the pattern introduced as a string (first ar-
gument). The third function (plus) is more interesting since it decomposes
its first argument u, using the ATmatch function!, and returns either y (corre-
sponding to the first rule), or suc(plus(x,y)) (corresponding to the second
rule). As we can see, the compilation of innermost normalisation of a term is
quite easy and straightforward. If we need to get the normal form of a term,
say Plus(Suc(Zero()), Plus(Suc(Zero()), Zero)), we just write in the goal
language the expression plus(suc(zero()), plus(suc(zero()),zero())).
The result of its evaluation will be the term Suc(Suc(Zero)).

This example illustrates also that rules rooted by a common function sym-
bol are compiled into the normalising term construction function for this sym-
bol. According to this schema, and given a set of rules, mtom will decompose
the many-to-one matching into several independent functions that are invoked
from the main generated function mtom main. Note that this example does
not provide real “Many-To-One” matching, since rewrite rules are simply pro-
cessed one after the other.

As we have noticed before, mtom does not construct terms, however it
generates term construction functions for symbols occurring at the root of
a rule. In such a function if the constructed term is reducible, then the re-
duction is provided and the resulting term will be constructed by a user’s
semantic action (as the right hand side of the corresponding rewrite rule). A
problem arises if for such a symbol f, no rule is applicable. In this case the
term construction function for symbol f is supposed to construct the term
f(ty,... t,) itself. As an example, let us consider a rewrite system which
only contains the rule Plus(Suc(x),y) — Suc(Plus(z,y)). The evaluation of
plus(zero() ,zero()) should result in the term Plus(Zero, Zero) as no rule
is applicable in this case. In general, such a situation indicates a wrong design
(at least in context of innermost evaluation). In order to avoid those cases,
the user is invited to define a default rewrite rule f(xy,...,z,) — ... whose
semantic action is supposed to construct the appropriate term f(xq,...,x,)
or to issue an error message. From an implementation point of view, if no such
rule is specified, mtom will return a special pre-defined term (such as NULL or
null for C or Java).

The generation of normalising term constructing functions does not restrict
the user to an innermost normalisation strategy: there is no obligation for
the user to construct terms with this set of functions generated by mtom.
When implementing other evaluation strategy, the user can define its own
term construction functions. The reduction mechanism is therefore kept fully
under the control of the user.

! This function matches the first argument against the pattern string given as second argu-
ment, and modifies accordingly the values of variables occurring after the second argument.

166

MOREAU, RINGEISSEN, VITTEK

5 mtom Specification Language

In this section, we introduce the concrete syntax of an input file processed
by mtom. It is inspired by the syntax of the Yacc tool (namely, usage of the
% sign). In order to support the intuition throughout this section, we show
how mtom can be used to specify addition (Plus) on Peano integers (Suc and
Zero), and we use the C programming language as the goal language.

5.1 Passing Text to the Goal Language

Similarly to Yacc, any text enclosed between %{ and %} operators is directly
passed to the generated output file. It is supposed that the enclosed text
contains headers, declarations and definitions of functions and data-types used
in semantic actions. As an example, consider an input file which starts with
the following text:

%

#include "myheaders.h"

struct term { // an example of a term representation
int fsym; // functional symbol code
int arity; // number of subterms
struct term **subs; }; // pointer to array of subterms.

b

This means that the generated file starts with the corresponding include
directive and contains the declaration of term.

5.2 Specifying Term API

As mentioned before, mtom does not require any pre-defined term represen-
tation. Instead, it performs an access to terms through a user-defined API.
Hence, mtom needs to know:

e how to get the top symbol of a term
* how to get the n-th subterm of a given term
* how to compare two terms (wrt. equality)

In order to be flexible, the user is not restricted to have only one uni-
form term representation (see Section 6.2 for more details): the API can be
parametrized by the type name of the class of terms to be considered. Those
types are enclosed between < and > signs.

Continuing our example, in mtom we can specify a term API:

AGET_FUN_SYM<struct term *>(t) (t->fsym)
%GET_SUBTERM<struct term *>(t,n) (t->subs[n])

In all cases, declarations behave as macros, it means that the body is in-
serted into appropriate places of the output file (with corresponding argument
replacements). In particular this example states that for terms represented

167

MOREAU, RINGEISSEN, VITTEK

by the “struct term *” type, top symbol of a term t can be obtained by
the (t->fsym) text and n-th subterm of a term t can be obtained by the
(t->subs[n]) text.

Since we want to consider non-linear patterns, a term comparing function
must be provided as follows:

%TERMS_EQUAL<struct term *>(t1,t2) (compareTerms(tl, t2))

5.8 Specifying Signature of Patterns

In order to parse patterns, one has first to define the signature on which
patterns are expressed. mtom’s signature must also establish a relation be-
tween function symbols occurring in patterns (parsed by mtom) and internal
representation of function symbols in the goal language. For example, if the
signature declares a symbol suc, it must also specify its code (the integer 1):
the number used to represent the suc symbol in the fsym field of the term
structure.

Consider the following signature declaration:

%hsym struct term *zero() % 0
%sym struct term *suc(struct term *) %1
%sym struct term *plus(struct term *, struct term *) 7 2

This piece of code defines a signature of three symbols: zero, suc and
plus. All these symbols are defined on our simple term data-structure, and
they are represented by integer constants 0, 1 and 2.

A signature item is introduced by the %sym keyword followed by a symbol
declaration which is split into two parts. The part before the % sign defines the
profile of the symbol. The concrete syntax is the same as in the corresponding
goal language. This part is also used as declaration for the normalising term
construction function (which will be generated if there is a pattern with this
symbol at the top position). The part after % defines the code of the symbol to
be used in the generated code. This relates the function symbol to its internal
representation in user’s data-structures. This second part may be omitted if
the symbol only appears at the top position of patterns. This usually occurs
when dealing with built-in data-types (see Section 6.1).

5.4 Specifying Variables

Patterns can contain variables. Those variables can be used inside corre-
sponding semantic actions too. Variables are introduced by the %var keyword
followed by declarations. Similarly to symbol definitions the concrete syntax
comes from the goal language.

For example, the text:

Y%var struct term *X,*y, *Z;

declares three variables x, y and z, each of type struct term *.

168

MOREAU, RINGEISSEN, VITTEK

5.5 Specifying Rewrite Rules

Patterns and rewrite rules are introduced by the %rule keyword followed by
a pattern, the %--> sign and by a semantic action. The semantic action will
be executed if its corresponding pattern matches the input term. In this case,
local variables (generated by mtom) record the matching substitution. If a
return statement occurs in a semantic action it is supposed to return the
right hand side of the rule.

Consider the following example:

%rule plus(zero, x) %—=> return(x);
%rule plus(suc(x),y) %——> return(SUC(plus(x,y)));
%rule plus(x,y) %——> printf ("unexpected term\n"); exit(1);

It describes three rewrite rules implementing the plus operator on Peano arith-
metics (the third rule should not be executed, but it ensures that at least one
rule with plus at the top position of the pattern will always be applicable).
Note that the second semantic action calls recursively the normalising term
constructing function plus (generated by mtom) and then a SUC function,
which should be an external function constructing a term by adding one suc
operator. This function should be user-defined, for example as follows:

w{

struct term *SUC(struct term *x) {
struct term *res;
res = (struct term *) malloc(sizeof (struct term));
res->fsym = 1; res—>arity = 1;
res->subs = (struct term **) malloc(sizeof (struct term *));
res->subs[0] = x;
return(res); }

h

In order to easily implement several variants of rewriting (conditional
rewriting, rewriting with local assignments, strategy controlled rewriting, etc.),
possible ambiguities are solved as follows: If there are several patterns appli-
cable on the given input_term then the first applicable rule is taken, i.e. the
semantic action corresponding to the first applicable pattern is executed. If a
semantic action does not exit by the return statement, then the next possible
match of this rule is taken and the semantic action is executed again for the
new substitution (this applies only on possible extensions of matching, see
Section 6.4). If there is no more different matches for the same pattern then
the next applicable pattern (in order of appearance) is taken and its semantic
action is executed. Those rules permit us in particular to implement condi-
tional rewrite systems, where the construction of each right hand side will be
enclosed in an if statement (this if statement comes from the goal language,
it is not an mtom construction, of course). Let us take for example two rules
(note that this example involves built-in data-types of the goal language, see
Section 6.1):

169

MOREAU, RINGEISSEN, VITTEK

%rule fib(x) %——> if (x<=1) return(l);

f%rule fib(x) %-—> return(fib(x-1)+fib(x-2));

Here both rules are always applicable on a term starting by the fib symbol.
Due to the condition, the second rule is executed if and only if the variable x
is instantiated on a subterm greater than 1.

6 mtom Features

6.1 Goal Language Built-ins

We expect that primitive data-types, such as integers, floating points and
strings will be often used in mtom programs. A syntactic sugar is introduced
to ease this usage. First, the API for those types is not required. Second,
constant symbols of built-in data-types do not need to be declared. They can
be directly written in patterns and they stand for the corresponding constant
term of the given built-in type. Those constants, however, cannot appear at
the top position of patterns, since they must be constructor symbols.

Let us take the following example:

%sym int fib(int)
Yvar int x;

Y%rule £fib(0) %-—> return(l);

Y%rule fib(1) %-—> return(l);

Y%rule fib(x) %--> return(fib(x-2)+fib(x-1));

Here, the generated function fib tests if its argument is equal to 0 or 1, and
applies the third rewrite rule if the argument is different.

6.2 Mixed Terms

In mtom, symbol definitions contain profiles of symbols, including types of
each argument and of result. Those types are not necessarily identical. In
consequence, terms with different representations of different subterms are
allowed.

Let us take for example a symbol definition:

%sym struct term *cons(int, struct term *) % 1

mtom parses the signature definition and knows the type of each subterm.
It knows also that when decomposing a term with cons as top symbol, its
first subterm will be of type int and the second of type struct term*. In
consequence, the generated temporary variables will be declared of appropriate
types. On the other hand, mtom expects that patterns are well-typed.

In general, this feature gives to mtom the possibility to work on several
different term representations, namely to define functions transforming one
data representation into another, to define functions working with built-in

170

MOREAU, RINGEISSEN, VITTEK

values as if they were terms, etc. This is a very important feature for industrial
use.

Let us take for example the following code defining a sorted list of integers,
with no duplicate elements:

w{
struct sortedIntList {
int value;
struct sortedIntList *next; };
#define NIL O
#define CONS 1
W
AGET_FUN_SYM<struct sortedIntList *>(list) ((1list==NULL)?NIL:CONS)
%GET_SUBTERM<struct sortedIntList *>(list,n)
((n==0)71list->value:list->next)
%sym struct sortedIntList *nil() % NIL
%sym struct sortedIntList *cons(int, struct sortedIntlList *) % CONS
%var int x,y;
J%var struct sortedIntList *z;

%rule cons(x, cons(y, z)) %-—> if(x==y) return(cons(y,z));
%rule cons(x, cons(y, z)) %-—> if(x>y) return(cons(y,cons(x,z)));
%rule cons(x, z) Y%==> return(allocCons(x,z));

In this example, we suppose that the function allocCons allocates and fills
anew struct sortedIntList item. Provided that any list is constructed only
with the cons function, this makes that those integer lists in the program will
always be sorted. The user can handle this data-structure as if it was written
directly in C. Note that the expression ((n==0)71ist->value:list->next)
may be wrong typed on some C implementations. In such a case, some casts
should be added to the above example. On the other hand, mtom is supposed
to generate “reverse” casts before assignments to its temporary variables.

6.3 Support for Non-Automatic Garbage Collectors

Until now, we did not take into account the question of memory management.
This is because the user has to take care of this problem. However, unless
an automatic garbage collector is used (like for instance with ATerms [27]),
some kind of cooperation is desired. This concerns mainly accessing parts of a
term matched by a pattern. Some parts should be freed after an application of
rewrite rule. Semantic actions need to be able to access particular subterms of
the term to be reduced. In mtom, a special mechanism is provided to handle
this situation. By convention any subterm of the input term corresponds to
a local variable denoted by its position in the pattern. For example, the local
variable _1 denotes the first subterm, whereas the variable _2_1 denotes the
first subterm of the second subterm. Note that when a particular semantic

171

MOREAU, RINGEISSEN, VITTEK

action is executed, all positions were inspected, and so, those variables are
instantiated.

For example, when using a reference counting garbage collector, a rule for
left-associativity of plus can be:

%rule plus(x,plus(y,z)) %-—> free(_2); return(plus(plus(x,y),z));

Here the function free is supposed to decrease the reference counter and, if
the latter is equal to zero, to free the packet plus(y, z) of the reduced term.

This convention gives users direct access to all subterms of the input term.
Those subterms can also be used to improve the construction of the right hand
side (for instance, if there are common subterms between left hand side and
right hand side of the rule).

6.4 Pattern Matching

Non-Linear Patterns

A variable may have multiple occurrences in a pattern. Such non-linear pat-
terns cause that mtom will need to compare two subterms of the input term.
Because mtom is not supposed to know the entire term representation, the
user needs to specify how to compare two terms in its API part.

Another problem concerning non-linear terms is when to check the equality
of corresponding subterms. There are basically two possibilities to implement
those checks.

First, we can automatically linearise patterns by indexing differently mul-
tiple occurrences of a variable, say 1, x2, x3 for three occurrences of x. Then,
matching is processed on linear patterns, and eventually we must test whether
variables introduced during the previous linearisation step are or not equal to
the same term.

Second, we could forbid in mtom the use of non-linear patterns. Hence,
the linearisation is left to the user, who can postpone the equality test in the
semantic action of the rule:

hrule f(x,y,b) %-—> if(equals(x,y)) {...}

In the current implementation, mtom allows non-linear patterns and per-
forms the equality test during the matching process whenever a new occurrence
of a variable is instantiated. But the user is free to consider a linear pattern
together with an equality test occurring in the semantic action.

Equational Matching

Rule-based languages (ASF+SDF, Maude, Elan) support extensions of match-
ing modulo some equational theory, like A (Associativity), AC (Associativity-
Commutativity), and some variants like AC1 (AC plus the Identity). As we
want to use mtom as an intermediate code for ELAN compiler, we would like to
support in the future those extensions. Making decision whether mtom should
support equational matching or not is not easy. In this section, we discuss

172

MOREAU, RINGEISSEN, VITTEK

about those issues, even if the full treatment of the problem is beyond the
scope of this paper.

Indeed, dealing with equational matching is much more complicated than
syntactic matching. First, this would break the nice property that mtom
does not construct terms, because for example in AC-matching we need to
construct new terms in order to build the solutions of a matching problem.
For example when matching the pattern (a + x) against the term ((a + b) +
¢) (where + is associative and commutative), then = has to be instantiated
by the (b + ¢) which did not exist before. It must be created during the
matching process. Second, specific non-syntactic matching algorithms are
usually working with their own internal term representations. In order to be
efficient, this would oblige the users to adopt this term representation and
we would loose another nice mtom property, which is to be independent on a
particular term representation.

However, one can remark that, even if there is no specific support for
equational matching, it is possible to implement equational rewriting using
mtom. Since a user can write as semantic action anything he wants, he can
also split pattern matching into two stages. The first will be the syntactic top
part of patterns, matching of this part will be executed by mtom. The rest of
the matching process, i.e. the full A or AC matching can be then implemented
directly in the goal language inside semantic actions.

For those reasons, we prefer to see the integration of equational matching
as an open problem, at least for early versions of mtom tool.

Many-To-One Matching

When starting our work on mtom we thought that a particularly good choice
of the many-to-one matching algorithm would be essential. Now it seems
that the tool design has its importance in its own. It offers a specification
language for industrial use of rewriting. When a user practices with mtom,
its application will not depend on a concrete implementation of the many-
to-one matching algorithm. The user is free to switch among different mtom
implementations with different pattern matching algorithms.

For the moment, the concrete choice of the many-to-one algorithm does
not have so much importance. However, we feel that such an algorithm should
have reasonable time and space complexities. In the future, we plan to make
experiments with sophisticated pattern matching algorithms like the one in-
troduced in [26].

The implementation will be much more complex when considering equa-
tional matching (see previous paragraph). The compilation of Many-To-One
AC-matching is already investigated in [16].

173

MOREAU, RINGEISSEN, VITTEK
6.5 Rewriting Strategies

User-Defined Fvaluation Strategies

As we have mentioned previously, the user can define its own evaluation strate-
gies when using mtom. If semantic actions are just building right hand sides
of rules instead of reducing them, then mtom itself does not provide and does
not impose any reduction strategy. It turns into a simple tool for many-to-one
matching and the generated function mtom_main provides one reduction step
at the top position of its input term. Using this function, the user can easily
define its own evaluation strategies.

However note that this case is much more complicated. For example, the
fact that no rule is applicable does not necessary mean a wrong design. It may
mean that an argument is not sufficiently evaluated at the moment. Due to
this fact, the default rules should evaluate their arguments before causing an
error message. Also conditions have to explicitly call an evaluation function
before failing in the application of a rule.

Let us take for example a rewrite system computing the (infinite) list of all
prime numbers. This example defines a function ilist computing the (infi-
nite) list of all natural numbers; a function isprime testing whether a number
is prime or not by trying to divide it by previously computed prime numbers;
a function pfilter getting the infinite list of natural numbers and filtering it
by the isprime function which results into the list of all prime numbers. The
pfilter function also keeps the list of already computed prime numbers in
its second argument. Semantic actions use functions Cons, Ilist, Isprime,
Pfilter which are supposed to construct corresponding terms without trying
to reduce them. This example acts on Peano arithmetics and uses functions
mul, mod and div implementing respectively the multiplication, module and
division between two Peano integers. Those functions are supposed to re-
turn normal forms of the result (innermost normalisation), so the example
demonstrates also a combination of different rewriting strategies in a single
program.

%rule ilist(n) %——> return(Cons(n, Ilist(suc(n))));

Jrule isprime(i,nil) %——> return(1);

%rule isprime(i,cons(j,x)) %——> if(less(i,mul(j,j))) return(l);
Jrule isprime(i,cons(j,x)) %-—> if((mod(i,j)==zero) return(0);
%rule isprime(i,cons(j,x)) %=—> return(Isprime(i,x));

Jirule pfilter(cons(i,x),p) %——> if(lazynf(Isprime(i,p))) {

return(
Cons(i,Pfilter(x,append(p,Cons(i,nil))))
);
} else {
return(Pfilter(x,p));

}

174

MOREAU, RINGEISSEN, VITTEK

%rule primes(n) %—=> return(
Pfilter(Ilist(suc(suc(zero))), nil));

In this example we have to define two C functions controlling applications
of rewrite rules: the function lazystep providing a single application of a
rule and the function lazynf computing a normal form of a given term. Both
functions act in a lazy manner meaning that they reduce an outermost position
first. Those functions use global variable mtom reduction_occured. This
variable is cleared by the mtom main function in case that it did not provide
any reduction.

struct term *lazystep(struct term *t) {
int i;
mtom_reduction_occured = 1;
t = mtom_main(t);
for(i=0; mtom_reduction_occured==0 && i<t->arity; i++) {
t->subs[i] = lazystep(t->subs[i]);

}
return(t);
}
struct term *lazynf(struct term *t) {
do {
while (t->fsym == CONS) {
printf ("%t .", lazynf(t->subs[0]));

t = t->subs[1];
}
t=lazystep(t);
} while (mtom_reduction_occured);
return(t);

3

Non-Deterministic Computations

In some languages (ELAN for example), rewriting is performed in a non-
deterministic way, meaning that several possible rewrite steps are explored
successively by backtracking. Non-determinism occurs when several rewrite
rules can be applied on a single term. In such a case, all the possibilities
should be explored.

In ELAN, we used a backtracking library [20] containing two functions
“setChoicePoint()” and “fail()”. The behaviour of those two functions is sim-
ilar to a pair of standard C functions “setjmp” and “longjmp” with no restric-
tion on “longjmp” invocations. Moreover “fail” is not jumping to any of the
“setChoicePoint()” calls, but always to the last one.

When using this pair of functions in semantic actions, one can implement
backtracking by using the fact that, if a semantic action does not exit via the

175

MOREAU, RINGEISSEN, VITTEK

return instruction, then another semantic action is tried. In the simple case
where each semantic action returns just one result, it is sufficient that the
whole semantic action is enclosed into

if (setChoicePoint()) { ... }

instruction and the default rewrite rules (applied when no regular pattern
matches) execute the fail () function. This ensures that a choice point is set
and then the right hand side is constructed and returned (the ¢rue branch of
the if statement). In the case that a fail occurs somewhere in further compu-
tation, the control comes back to the last if (setChoicePoint()) statement
and pass throw the false branch at the end of the semantic action. This will
cause that next match and the next applicable pattern will be examined.

In summary this means that backtracking can be implemented without
any modification of the mtom tool. One has just to modify semantic actions,
which are fully under the control of users.

7 Related Works

Pattern matching is a simple but expressive concept which is used in a wide
variety of programming languages and in a variety of programming styles.
One axis for classifying the expressiveness of pattern matching is how many
bindings a pattern match yields:

e In the single-match style, a successful match yields just one binding. This
style is usually taken in declarative programming languages. In partic-
ular, most functional programming languages [4] such as CAML [8,31],
Clean [6,24], Erlang [2,1], Gofer [14], Haskell [15,23], or ML [9,18] allow
defining functions by pattern matching.

* In the all-match style, a pattern match yields a set of bindings corresponding
to all possible matches. This style is often used in query languages and in
programming languages based on term rewriting. Let us cite for instance
OBJ [13], ASF+SDF [17], Maude [7], Cafe-OBJ [12] and ELAN [5]. In these
rule-based languages, given a term and a single rule, there may exist several
ways to apply the rule when the matching is performed in an equational
theory for example. Given a term and a set of rules, several rules can
be potentially applied (corresponding to all possible matches). Selecting
which rules have to be applied is usually done a posteriori, according to the
conditions and the strategy under which the rewrite rules are applied.

In general, pattern matching constructions are well integrated into men-
tioned languages. But this is not the case in imperative languages such as C,
C++ or Java, in which are written most of industrial applications. In order
to add pattern matching facilities to imperative languages such as C, C++
or Java, one can imagine using sub-routines written in one of the previously
mentioned language. The main drawback of this approach concerns data rep-

176

MOREAU, RINGEISSEN, VITTEK

resentation: pattern matching usually works on internal data-structures which
are language dependent. Thus, when integrating it with other yet existing code
many data conversion are needed and the memory cannot be managed in a
uniform way.

Several systems have been developed in order to integrate pattern match-
ing and transformation facilities into imperative languages. Let us mention
for instance Rigal [3,11], R++ [10,25], App [22] and Prop [19]. Each of these
systems has its own specificity. Rigal is presented as a compiler construc-
tion language based on advanced pattern matching. R++ and App are pre-
processors for C++: the first one adds production rule constructs to C++,
whereas the second one extends C++ with a match construct. Finally, Prop is
a multi-paradigm extension of C++, including pattern matching constructs.
In all these existing systems, the pattern matching process can only act on
internal data-structures. Consequently, these systems cannot be used to add
pattern matching facilities in an existing project written for example in C,
C++ or Java: it is not easy to convince an industrial to use rule-based pro-
gramming style if the first thing to do consists in translating the existing main
data-structures.

8 Conclusion

In this paper we have presented a tool for many-to-one matching which seems
to be particularly well-suited to provide rewriting in an industrial context. In
our opinion, mtom is a key component for the implementation of rule-based
language compilers, as well as for the design of program transformation tools,
provided that programs are represented by terms (using for instance ATerms
or XML representations). This tool is very general, depending on semantic ac-
tions which can be used to provide variety of rewriting strategies including the
most usual leftmost-innermost and leftmost-outermost normalisations. mtom
does not depend on a particular implementation of terms, as it gives no term
manipulations, it does not construct or destruct terms, it only “observes”
terms through a user definable API, all term modifications are made by users
in semantic actions. This gives the user a large freedom in the choice of a
term representation to consider. mtom even does not impose a homogeneous
term representation, different data-structures can be mixed inside terms (Sec-
tion 6.2). Conditional rewrite rules can be implemented directly as well as
several extensions of term rewrite rules.

The examples presented in the paper are all operational and have been
tested with the mtom tool. This first prototype is a monolithic piece of soft-
ware which is rather hard to maintain. For instance, the mtom syntax is
“hard-wired” in the implementation of the parser. We are currently working
on a new design and implementation that improves the first prototype in the
following directions:

e The new mtom parser is a separate piece of software that generates an

177

MOREAU, RINGEISSEN, VITTEK

abstract syntax tree, represented by an ATerm [27].

* The compilation scheme consists of two phases: (a) The abstract syntax tree
is transformed (using mtom itself) into another tree representation where
each group of rule constructs is replaced by a matching automaton. (b)
The latter is pretty-printed according to the chosen goal language. If one
wants to enrich the generator with another goal language, it is sufficient
to parameterize or to extend this phase according to the goal language
constructs (How to declare a variable? How to assign a variable? How to
perform an if-then-else? etc.)

* A new match primitive is added. Contrary to the existing rule construct,
the match construct can be used everywhere a goal language instruction is
allowed (in blocks or functions for example). Furthermore, this construct is
more powerful since it can be used to group any set of patterns (even those
with different top symbols). This feature is particularly useful when com-
piling strategy controlled rewriting [5,29] (i.e. a set of rules applied under a
given strategy). It is clear that the current rule construct is implemented
using this more atomic construct.

The future developments will be provided under the terms of the Gnu
General Public License, and will be available on the ELAN homepage [21].

Acknowledgements: We would like to thank the referees for their per-
tinent remarks, Claude Kirchner and Eelco Visser for fruitful discussions on
the mtom design and future extensions.

References

[1] Armstrong, J., The development of Erlang, in: Proceedings of the ACM
SIGPLAN International Conference on Functional Programming, 1997, pp.
196-203.

[2] Armstrong, J., R. Virding, C. Wikstrém and W. M., “Concurrent Programming
in Erlang,” Prentice-Hall International, 1996.

[3] Auguston, M., Programming language RIGAL as a compiler writing tool, ACM
SIGPLAN Notices 25 (1990), pp. 61-69.

[4] Bird, R. and P. Wadler, “Introduction to Functional Programming,” Prentice-
Hall International Series in Computer Science, Prentice-Hall International,
1988, japanese translation, 1991. Dutch translation, 1991. German translation,
1992.

[5] Borovansky, P., C. Kirchner, H. Kirchner, P.-E. Moreau and C. Ringeissen, An
overview of ELAN, in: C. Kirchner and H. Kirchner, editors, Proceedings of the
second International Workshop on Rewriting Logic and Applications, Electronic
Notes in Theoretical Computer Science, 1998.

178

MOREAU, RINGEISSEN, VITTEK

[6] Brus, T. H., M. C. J. D. van Eekelen, M. O. van Leer, M. J. Plasmeijer and
H. P. Barendregt, CLEAN - A language for functional graph rewriting, in: Kahn,
editor, In Proc. of Conference on Functional Programming Languages and
Computer Architecture (FPCA’87), number 274 in Lecture Notes in Computer
Science (1987), pp. 364-384.

[7] Clavel, M., S. Eker, P. Lincoln and J. Meseguer, Principles of Maude, , 4 (1996).

[8] Cousineau, G. and M. Mauny, “The Functional Approach to Programming,”
Cambridge University Press, 1998.

[9] Cousineau, G., L. C. Paulson, G. Huet, R. Milner, M. Gordon and
C. Wadsworth, “The ML Handbook,” INRIA, Rocquencourt, 1985.

[10] Crawford, J. M., D. Dvorak, D. Litman, A. Mishra and P. F. Patel-
Schneider, Path-based rules in object-oriented programming, in: Proceedings of
the Thirteenth National Conference on Artificial Intelligence and the Eighth
Innovative Applications of Artificial Intelligence Conference (1996), pp. 490
497.

[11] Engelson, V. and M. Auguston, Rigal homepage:
http://www. ida. liu.se/ vaden/rigal.

[12] Futatsugi, K. and A. Nakagawa, An overview of CAFE specification
environment — an algebraic approach for creating, verifying, and maintaining
formal specifications over networks, in: Proceedings of the 1st IEEE Int.
Conference on Formal Engineering Methods, 1997.

[13] Goguen, J. A. and T. Winkler, Introducing OBJ3, Technical Report SRI-CSL-
88-9, SRI International, 333, Ravenswood Ave., Menlo Park, CA 94025 (1988).

[14] Jones, M. P., The implementation of the Gofer functional programming system,
Technical Report Report YALEU/DCS/RR-1030, Yale University, New Haven,
Connecticut, USA (1994).

[15] Jones, M. P., Hugs 1.3, The Haskell User’s Gofer System: User Manual,
Technical Report Report NOTTCS-TR-96-2, Department of Computer Science,
University of Nottingham, England (1996).

[16] Kirchner, H. and P.-E. Moreau, Promoting rewriting to a programming
language: A compiler for non-deterministic rewrite programs in associative-
commutative theories, Journal of Functional Programming (2000), to appear.

[17] Klint, P., A meta-environment for generating programming environments, ACM
Transactions on Software Engineering and Methodology 2 (1993), pp. 176-201.

[18] Leroy, X. and M. Mauny, Dynamics in ML, Journal of Functional Programming
3 (1993), pp. 431-463.

[19] Leung, A., Prop homepage:
http://csl.cs.nyu.edu/phd_students/leunga/prop.html.

179

MOREAU, RINGEISSEN, VITTEK

[20] Moreau, P.-E., A choice-point library for backtrack programming, JICSLP’98
Post-Conference Workshop on Implementation Technologies for Programming
Languages based on Logic (1998).

[21] Moreau, P.-E., C. Ringeissen and M. Vittek, mtom homepage:
http://www. loria. fr/ELAN/mtom.

[22] Nelan, G., App homepage: http://www.primenet.com/~georgen/app.html.

[23] Peyton Jones, S., Compiling Haskell by program transformation: a report from
the trenches, in: Proceedings of the FEuropean Symposium on Programming
(ESOP’96), Lecture Notes in Computer Science 1058 (1996).

[24] Plasmeijer, M. J. and M. C. J. D. van Eekelen, “Functional Programming and
Parallel Graph Rewriting,” Addison-Wesley, 1993.

[25] R++, homepage: http://www. research.att.com/sw/tools/r++.

[26] Sekar, R. C., R. Ramesh and I. V. Ramakrishnan, Adaptive pattern maching,
in: W. Kuich, editor, Proceedings of ICALP 92, Lecture Notes in Computer
Science 623 (1992), pp. 247-260.

[27] Van den Brand, M., H. de Jong, P. Klint and P. Olivier, Efficient annotated
terms, Software-Practice and Experience 30 (2000), pp. 259-291.

[28] van den Brand, M. G. J., P. Klint and P. Olivier, Compilation and Memory
Management for ASF+SDF, in: Compiler Construction, Lecture Notes in
Computer Science 1575 (1999), pp. 198-213.

[29] Visser, E. and Z.-e.-A. Benaissa, A core language for rewriting, in: C. Kirchner
and H. Kirchner, editors, Proceedings of the second International Workshop on
Rewriting Logic and Applications, Electronic Notes in Theoretical Computer
Science, 1998.

[30] Vittek, M., A compiler for nondeterministic term rewriting systems, in:
H. Ganzinger, editor, Proceedings of RTA’96, Lecture Notes in Computer
Science 1103 (1996), pp. 154-168.

[31] Weis, P. and X. Leroy, “Le langage Caml,” InterEditions, 1993.

180

