
Francis Jordan

Department of Mathematics and Computer Science, Queensborough Community College, Queens, NY 38677, United States

1. Introduction

In [2], I claim to prove the following theorem (Theorem 7 of [2]):

Theorem 1. The fine Isbell topology on \(C(X, \mathcal{P}_+ (Y)) \) is the topological modification of \(c_+ \).

Unfortunately, the proof for this alleged theorem is incorrect and the theorem is, in fact, false, unless one assumes that \(X \) is regular.

To see the error in the proof of [2], the reader can go to p. 343 where I define \(O = \bigcup_{x \in \pi x (M)} (\bigcap_{i \in S_x} U_{x, T_i}) \times (Y \setminus \bigcup_{i \in S_x} T_i) \). I claim the set \(O \) is disjoint from \(M \). However, simple examples show that these sets need not be disjoint.

We give a counter-example showing the theorem is indeed false for general topological spaces. We then state and prove a correct version of the theorem for regular spaces. Since the theorem is true for regular spaces and is only applied to regular spaces in [2], all other results of [2] are valid. In what follows we will use the notations and definitions from [2]. The only exception being that we will not use \(T(c_+) \) to denote the fine Isbell topology. The symbol \(T(c_+) \) will only denote the topological modification of \(c_+ \).

2. The counter-example

We will need the following propositions about compact families, both of which have simple proofs.
Proposition 2. ([2]) Let C be a compact family on X and $D \subseteq C$. The family $C_D = \{ C \in C : C \cap D \subseteq C \}$ is a compact family.

Proposition 3. ([1]) Let C be a compact family on X and A be a closed set in X such that $|A| \neq C$. The collection $A \cup C = \{ C \cap A : C \in C \}$ is a compact family on A.

Note that in [1] it is actually shown that the X-open supersets of $A \cup C$ form a compact family on X, however the same idea applies to show that $A \cup C$ is a compact family on A.

In [3] an example is given of two consonant zero-dimensional spaces (X_0, τ_0) and (X_1, τ_1) whose topological sum $X_0 \oplus X_1$ is not consonant. In [2], it is shown that there is a compact family C on $X_0 \oplus X_1$ such that for every compact $K \subseteq X_0 \oplus X_1$ there is an open U such that $K \subseteq U \subseteq C$. Let (X, τ) be the topological space whose underlying set is $X_0 \cup X_1$ and has base $\tau_0 \cup \{ X_0 \cup U : U \in \tau_1 \}$. Let $Y = \{ y_0, y_1, y_2 \}$ be the three point discrete space.

Let S be the collection of all $f \in C(X, \mathcal{P}_+(Y))$ such that there exists a $C \in C$ such that $f(x) \subseteq \{ y_0 \}$ for every $x \in X_0 \cap C$ and $f(x) \subseteq \{ y_0, y_1 \}$ for every $x \in X_1 \cap C$.

Claim 1. $S \in T(c_+)$.

Proof. Let $f \in S$ and \mathcal{F} be a filter on $C(X, \mathcal{P}_+(Y))$ such that $f \in \mathrm{lim}_{\mathcal{F}} \mathcal{F}$. Let $C \in C$ be such that $f(x) \subseteq \{ y_0 \}$ for every $x \in C \cap X_0$ and $f(x) \subseteq \{ y_1, y_2 \}$ for every $x \in C \cap X_1$. For every $x \in X_0 \cap C$ there is an X-open neighborhood U_x of x and an $F_x \in \mathcal{F}$ such that $g(u) \subseteq \{ y_0 \}$ for every $u \in U_x$ and $g \in F_x$. For every $x \in X_1 \cap C$ there is an X-open neighborhood U_x of x and an $F_x \in \mathcal{F}$ such that $g(u) \subseteq \{ y_0, y_1 \}$ for every $u \in U_x$ and $g \in F_x$. Since $\{ X_0 \cap U_x : x \in X_0 \cap C \} \cup \{ X_1 \cap U_x : x \in X_1 \cap C \}$ is an $(X_0 \oplus X_1)$-open cover of C, there exist finite sets $A_0 \subseteq X_0 \cap C$ and $A_1 \subseteq X_1 \cap C$ such that

$$C_1 := \left(\bigcup_{x \in A_0} (X_0 \cap U_x) \right) \cup \left(\bigcup_{x \in A_1} (X_1 \cap U_x) \right) \subseteq C.$$

For every $x \in U_x \cap C_1$ and $g \in \bigcap_{x \in A_0} F_x$ we have $g(u) \subseteq \{ y_0 \}$ and for every $u \in X_1 \cap C_1$ and $g \in \bigcap_{x \in A_1} F_x$ we have $g(u) \subseteq \{ y_0, y_1 \}$. Thus, $\bigcap_{x \in A_0 \cup A_1} F_x \subseteq S$. Therefore, $S \in T(c_+)$. □

Define $f : X \to \mathcal{P}_+(Y)$ by

$$f(x) = \begin{cases} \{ y_0 \} & \text{if } x \in X_0, \\ \{ y_0, y_1 \} & \text{if } x \in X_1. \end{cases}$$

Notice that f is upper semicontinuous and $f \in S$.

By way of contradiction, assume S is open in the fine Isbell topology. In this case, there exist open subsets O_1, \ldots, O_k of $X \times Y$ and compact families D_1, \ldots, D_k on X such that $f \in \bigcap_{i=1}^k [D_i, O_i] \subseteq S$. Let $1 \leq i \leq k$. We say i is of type 1 provided that $D \cap X_1 \neq \emptyset$ for every $D \in D_i$ such that $f(D) \subseteq O_i$. We say i is of type 2 provided that i is not of type 1. If i is type 1, then pick any $D_i \subseteq D_i$ such that $f(D) \subseteq O_i$. If i is type 2, then we may pick a $D_i \subseteq D_i$ such that $f(D) \subseteq O_i$ and $D_i \subseteq X_0$.

Claim 2. For every $1 \leq i \leq k$ there exists a compact set $K_i \subseteq D_i$ such that $[E_i, O_i] \subseteq [D_i, O_i]$, where E_i stands for the collection of all X-open supersets of K_i.

Proof. Let $1 \leq i \leq k$.

Case 1: i is of type 2.

In this case, $f(D) \subseteq O_i$ and $D_i \subseteq X_0$. It is easily checked that $\{ U \subseteq D_i : U \subseteq D_i \}$ is a compact family on D_i. Since X_0 is consonant and open subsets of regular consonant spaces are again consonant, D_i is consonant. Thus, there is a compact $K_i \subseteq D_i$ such that every D_i-open superset of K_i is in D_i. Let E_i denote the collection of X-open supersets of K_i. Let W be an X-open superset of K_i. Since $W \cap D_i$ is a D_i-open superset of K_i, $W \cap D_i \subseteq D_i$. So, W in D_i. Thus, every X-open superset of K_i is in D_i. Since $E_i \subseteq D_i$, $[E_i, O_i] \subseteq [D_i, O_i]$.

Case 2: i is of type 1.

By definition of type 1, there is an $x \in D_i \cap X_1$. Since $f(D) \subseteq O_i$, there is an open neighborhood L of x and an open V such that $f(x) \subseteq V \cap L \subseteq V \subseteq L$. Since $L \cap X_1 \neq \emptyset$, $X_0 \subseteq L$. Since $f(x) = \{ y_0, y_1 \}$, $y_0 \subseteq V$. Thus, $X_0 \times \{ y_0, y_1 \} \subseteq O_i$. Let $E \in (D_i)_0$. Since $E \cap D_i \subseteq D_i$ and $f(E) \subseteq O_i$, $f(E \cap D_i) \subseteq O_i$. Since $f(E \cap D_i) \subseteq O_i$, $E \cap D_i \cap X_1 \neq \emptyset$, by definition of type 1. Let $E \cap X_1 \neq \emptyset$. Thus, $(D_i)_0 \cap X_1$. Since X_1 is closed and $(D_i)_0 \cap X_1$ is a compact family on X_1 that does not have \emptyset as an element. It is easy to check that the collection $A_i = \{ U \cap X_1 : U \cap X_1 \subseteq D_i \}$ is a compact family on X_1. Since X_1 is consonant and $D_i \cap X_1$ is open in X_1, $D_i \cap X_1$ is consonant. So, there is a nonempty compact $K_i \subseteq X_1 \cap D_i$ such that every $(D_i \cap X_1)$-open superset of K_i is in $A_i \subseteq X_1 \cap (D_i)_0$. Let E_i denote the collection of X-open supersets of K_i. Let U be an X-open superset of K_i. Since $X_1 \cap U \neq \emptyset$ and $X_1 \cap U$ is an X_1-open superset of K_i, $X_0 \subseteq U$ and $X_1 \cap U \subseteq X_1$; $X_1 \cap U \subseteq (D_i)_0$, respectively. Since $X_1 \cap U \subseteq X_1 \cap (D_i)_0$ and $X_0 \subseteq U$, it follows that $U \subseteq (D_i)_0 \subseteq D_i$. Since $E_i \subseteq D_i$, $[E_i, O_i] \subseteq [D_i, O_i]$. □
By our choice of C, there is an $X_0 \oplus X_1$-open set Z such that $\bigcup_{i=1}^k K_i \subseteq Z$ and $Z \not\in C$. Define $g : X \to \mathcal{P}_+(Y)$ by

$$g(x) = \begin{cases}
\{y_0\} & \text{if } x \in Z \cap X_0, \\
\{y_0, y_1\} & \text{if } x \in X_0 \setminus Z, \\
\{y_0, y_1\} & \text{if } x \in Z \cap X_1, \\
Y & \text{if } x \in X_1 \setminus Z.
\end{cases}$$

It is easily checked that g is upper semicontinuous.

Claim 3. $g \in S$.

Proof. Let $1 \leq i \leq k$.

Suppose i is of type 2. In this case, $D_i \subseteq X_0$ and $K_i \subseteq D_i \cap Z$. Since $D_i \cap Z$ is open in $X_0 \oplus X_1$ and $D_i \cap Z \subseteq X_0$, $D_i \cap Z$ is open in X. Since $D_i \cap Z$ is open in X and $K_i \subseteq D_i \cap Z$, $D_i \cap Z \subseteq K_i \cap D_i \subseteq D_i \subseteq D_i \cap Z$. Since $g((Z \cap D_i)) = f((Z \cap D_i)) \subseteq f(D_i \cap Z) \subseteq O_i$, $g((Z \cap D_i)) \subseteq O_i$. So, $g \in [D_i, O_i]$.

Suppose i is of type 1. Since $Z \cap D_i$ is $(X_0 \oplus X_1)$-open, $X_0 \cap (Z \cap D_i)$ is X-open. Since $K_i \subseteq X_0 \cap (Z \cap D_i)$, $X_0 \cap (Z \cap D_i) \subseteq K_i \cap D_i \subseteq D_i \subseteq D_i \cap Z$. Suppose $x \in X_0 \cap (Z \cap D_i)$. In this case, $g(x) \subseteq \{y_0, y_1\}$. Thus, $g((X_0 \cap (Z \cap D_i))) \subseteq O_i$. So, $g \in [D_i, O_i]$.

Since $g \in S$, there is a $C \subseteq C$ such that $g(x) \subseteq \{y_0\}$ for every $x \in X_0 \cap C$ and $g(x) \subseteq \{y_0, y_1\}$ for every $x \in X_1 \cap C$. By the way we defined g, $C \subseteq C$. So, C is a compact family. Let \mathcal{L} be the collection of sets formed by taking finite unions of sets of the form $\bigcup_{i=1}^k K_i \subseteq Z$ and $Z \not\in C$. Define $j : X \to \mathcal{L}$ by

$$j_U(x) = \begin{cases}
Y & \text{if } x \notin U, \\
((X \times Y) \setminus H)(x) & \text{if } x \in U.
\end{cases}$$

Since U is open and $(X \times Y) \setminus H$ is upper semicontinuous, it follows that j_U is upper semicontinuous.

Let \mathcal{L} be the collection of all open sets L such that $j_L \in S$. Notice that $X \in \mathcal{L}$, since $j_X = (X \times Y) \setminus H \in S$. So, \mathcal{L} is not empty.

We now show that \mathcal{L} is a compact family. Let $L \in \mathcal{L}$ and U be an open set such that $L \subseteq U$. Since $j_U \leq j_L \in S$, $j_U \in S$. So, $U \in \mathcal{L}$. Thus, \mathcal{L} is closed under open supersets. Since \mathcal{L} is closed under open supersets, if $\emptyset \in \mathcal{L}$, then \mathcal{L} is compact. So, we may assume $\emptyset \notin \mathcal{L}$. Suppose $L \in \mathcal{L}$ and U is an open cover of L. Notice that $U \neq \emptyset$, since $L \neq \emptyset$. Without loss of generality, we may assume that U is closed under finite unions. For each $U \in \mathcal{L}$ let $B_U = \{j_W : U \subseteq W$ and W is open$\}$. Let $B = \{B_U : U \in \mathcal{L}\}$. Notice that B is a filter base.
We claim that $j_L \in \lim_{c^+} B$. Let $x \in X$ and V be an open set such that $j_L(x) \subseteq V$. Assume $x \notin L$. In this case, $V = Y$. Let $U_0 \in \mathcal{U}$ be arbitrary. Now, $g(z) \subseteq Y = V$ for every $g \in B_{U_0}$ and $z \in X$. Assume that $x \in L$. In this case, there is a $U_1 \in \mathcal{U}$ such that $x \in U_1$. Since j_L is upper semicontinuous, there is an open set $U_2 \subseteq U_1 \cap L$ such that $x \in U_2$ and $j_L(z) \subseteq V$ for every $z \in U_2$. Let $g \in B_{U_1}$. There is an open W such that $U_1 \subseteq W$ and $g = j_W$. For every $u \in U_2$ we have $g(u) = j_W(u) = j_L(u) \subseteq V$. So, $g(u) \subseteq V$ for all $u \in U_2$ and $g \in B_{U_1}$. Thus, $j_L \in \lim_{c^+} B$.

Since $j_L \in S$, there is a $U \in \mathcal{U}$ such that $B_U \subseteq S$. In particular, $j_U \in S$. So, $U \in \mathcal{L}$. Thus, \mathcal{L} is compact.

Since $X \in \mathcal{L}$ and $f|X = f \ll O$, we have $f \in [\mathcal{L}, O]$. It remains to show that $[\mathcal{L}, O] \subseteq S$. Let $g \in [\mathcal{L}, O]$. There is an $L \in \mathcal{L}$ such that $g|L \ll O$. So, $g|L \subseteq O|L = ((X \times Y) \setminus \text{cl}(H))|L \subseteq ((X \times Y) \setminus H)|L$. Hence, $g \subseteq j_L$. Since $j_L \in S$, $g \in S$. Thus, $[\mathcal{L}, O] \subseteq S$. $
$

References