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Throughout this paper a ring will mean an associative ring with identity 1 # 0. 
The Jacobson radical of a ring R is denoted by J(R). A ring R is semilocal if 
R/J(R) is Artinian. R is called semiperfect if R/J(R) is Artinian and idem- 
potents can be lifted modulo J(R). An element (I of a ring R is said to be regular 
(in the sense of von Neumann) if a ra = a for some r E R. If each element of R is 
regular, R is said to be a regular ring. A ring R is called semiregular if R/J(R) is 
regular and idempotents can be lifted modulo J(R). Regular rings and semi- 
perfect rings are clearly semiregular. Further it is known that endomorphism 
rings of injective modules are semiregular. For a more detailed study of semi- 
regular rings and related topics, we refer to [3] and [4]. Following [2] we call a 
ring R left weakly perfect if and only if R satisfies the minimum condition on 
principal right ideals which are not direct summands. Weakly perfect rings are 
semiregular [2, Theorem 31. 

In Section 1, we prove that if RR is a direct summand of RS (where R is a 
subring of s) and if S is a semilocal ring then R is also a semilocal ring. Some 
important applications to group rings are given. Semiregular rings and group 
rings are studied in Section 2 and in Section 3 we have studied weakly perfect 
group rings. 

Notation and basic facts involving group rings are taken from [7] and [6]. 
1. In general, subrings of semilocal rings need not be semilocal. Our 

Theorem 1 below is a useful observation in this direction. It is not hard to see 
that a ring R is semilocal if and only if J(R) is a finite intersection of maximal 
right ideals of R. 
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THEOREM 1. Let S be a semilocal ring and let R be a subring of S with the 
same 1. Suppose that R is a direct summand of S as left R-modules. Then R is a 
semilocal ring. 

PROOF. { WS + &7)/J(S) 1 W is an intersection of finitely many maximal 
right ideals of R} is a non-empty family of right ideals of the Artinian ring 
S/J(S) and therefore possesses a minimal member, say, WoS+J(S)/J(S). We 
claim that J(R) = WO. Certainly J(R) c WO, so if J(R) # WO, then there exists a 
maximal right ideal M of R such that WO is not contained in M. So we have 
R = WO + M. Further from the minimality of WoS+ J(S)/J(S), we have 

From above 

1 =wo+m, WOE Wo and mEM. 
=s+t+m, sE(WOfU4)Sand ~EJ(S). 

Therefore 1 + MS = t + s + m + MS = t + MS, since s + m E MS. This implies that 
1 - t EMS, but t E J(S), hence 1 - t is invertible and MS= S. This is a contra- 
diction, because MS will be proper as R is a direct summand of S as left R- 
modules. Therefore J(R) = WO, which is a finite intersection of maximal right 
ideals of R. Thus R is semilocal. 

Let AG denote the group ring of the group G over the ring A. Theorem 1 has 
some interesting applications to group rings. W. Burgess, J. Valette, J.M. 
Goursaud, S.M. Woods, J. Lawrence and others have contributed significantly 
to the problem of semilocal and semi-perfect group rings (for references, see 
[6]). Following corollary to Theorem 1 is very important and it also generalizes 
and simplifies some of the results obtained by Goursaud and Lawrence. 
Perhaps, first it has been observed by SM. Woods. 

COROLLARY 1. If the group ring AG is semilocal, then so is AH, for every 
subgroup H of G. 

From this we obtain a completely different proof of S.M. Woods important 
Lemma [6], Chapter 10, Lemma 1.61. 

COROLLARY 2. Let K be a field and let the group algebra KG be semilocal, 
then G is torsion. 

PROOF. Let XE G and let H= (x), then by Corollary 1, KH is semilocal. 
Suppose if possible, H is infinite then J(KH) =O. So KH is Artinian and 
therefore H is finite, a contradiction. Thus His finite and G is torsion. 

COROLLARY 3. Let F be a subfield of the field K and let KG be semilocal, 
then FG is semilocal. 

PROOF. Immediate from Theorem 1. 
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2. F-Semiperfect rings of [2] are precisely semiregular rings. Oberst and 
Schneider have shown that a ring R is F-semiperfect (semiregular) if and only if 
every finitely presented left (right) R-module has a projective cover [2]. The 
following characterization, although implicit in [3], has not previously been 
stated explicitly. Because of its importance, we give here a direct proof. 

PROPOSITION 1. The following are equivalent for a ring R: 
1) R is semiregular. 
2) For every element a in R there exists an element b in R such that (a@2 = ab 

and a - aba E J(R). 
3) R/aR has a projective cover for every a E R. 

PROOF. 1)*2). Let acR, then a-axa~J(R) for some XER. Now 
(a~)~-axeJ(R), so e-axEJ(R) for some PER with $=e. Put 1-e+ax=u 
and b=xeu-l, then ab = ueu- l is an idempotent. It is easily seen that 
ax - ab E J(R) and therefore a - aba = a - uxa + (ax- ab)a belongs to J(R). 

2)*3). Let UE R, then (ab)2=ab and a- abae J(R) for some be R. So 
R=abR@(l-ab)R=aR+(l-ab)R. It can be seen that aRn(l-ab)RCJ(R) 
and hence aR n (1 - ab)R is small (superfluous) in R. Thus O+uR fl (1 - ab)R+ 
+(I - ab)R+R/aR+O is a projective cover of R/aR. 

3)*1). Let O+K-*P+R/uR+O be a projective cover of R/aR. Also 
O+aR+R+R/aR-*O is exact, hence by [I, Lemma 2.31 R = POP’ with P’c aR 
and aRf7P superfluous in P. In fact aRnP will be superfluous in R and so 
aR Il P c J(R). Let P’= eR and P= (1 - e)R for suitable e E R with ez = e. Now 
R = P’@P= aR + (1 - e)R, going modulo J(R), we have R = C% + (I- @. This 
sum is direct because eE aR and uR fl(1 - e)R C J(R). Thus R/J(R) is regular. 

Suppose a2 - a E J(R), then put f = e + ea(1 - e) where e is as above. It is easy 
to see that f2 = f and f - a E J(R). 

REMARK 1. This proposition implies that each homomorphic image of a 
semiregular ring is semiregular. 

We now turn to group rings. Let K be any field and let G be a group then 
o(KG) will denote the augmentation ideal of the group algebra KG. If H is a 
subgroup of G then oH= o(KH)*KG as in [7]. 

The N*-radical of a ring R is defined by 
N*(R) = {a E R 1 aS is nilpotent for all finitely generated 

subrings S c R}. 

For the group algebra KG, we have 

N*(KG) = {a E KG 1 a KH is nilpotent for all finitely generated 
subgroups H of G}. . 

For details see [6, chapter 81. 

LEMMA 1. Let G be a group and let K be a field such that J(KG) =N*(KG). 
If KG/J(KG) is regular then G is locally finite. 
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PROOF. If char K= 0, then N*(KG) being nil, we have J(KG) = 0 and KG is 
regular, so G is locally finite. Assume char K=p, then by [6, chapter 8, 
Theorem 2.61, we have 

J(KG) = N*(KG) 
=J(KA+(G))-KG 
c @(K/i +(G))*KG 
=cd+(G). 

So we have, 

nKG/J(KG)/wl +(G)/J(KG). 

But KG/J(KG) is regular, hence the group algebra K(G//I+(G)) is regular. 
This implies that G//i +(G) is locally finite, but /i +(G) is always locally finite, 
hence G is locally finite. 

REMARK 2. It is known that J(KG) =N*(KG) if G is locally finite or linear 
or solvable group. In general, it is an open problem [6, Chapter 81. A group, 
whose every finitely generated subgroup is solvable, is called locally solvable. It 
is easily seen that if G is locally solvable then also J(KG) =N*(KG). 

REMARK 3. If J(KG) =N*(KG), then J(KG) is nil and so idempotents can be 
lifted modulo J(KG). Thus if J(KG)=N*(KG) then KG is semiregular if and 
only if KG/J(KG) is regular. If G is linear, solvable, or locally solvable then KG 
semiregular implies G is locally finite. 

EXAMPLE 1. Let K be a field with char K =p and let G be a universal locally 
finite group havingp-elements then J(KG) = 0 [6, Chapter 9, Theorem 4.8, Cor. 
4.101 but KG is not regular. Thus G locally finite does not imply that KG is 
semiregular. 

PROPOSITION 2. Let G be a nilpotent group and let K be any field then KG is 
semiregular if and only if G is locally finite. 

PROOF. From Remark 3, it follows that KG semiregular implies G is locally 
finite, because G is nilpotent. Conversely suppose G is locally finite and nil- 
potent. If char K=O, then KG is regular. So assume that char K=p. Let Gp be 
the unique Sylow p-subgroup of G, then G/Gp is a locally finite p’-group. 
Hence by [6, Chapter 7, Theorem 2.101, we have 

J(KG) = J(KG+KG = o(KGp)*KG = co@. 

Thus K(G/Gp)zKG/J(KG). So KG/J(KG) is regular, since G/P is a locally 
finite p’-group. Also G is locally finite so J(KGZTN*(KG). So KG is semi- 
regular. 

3. Let us recall [2] that a ring R is left weakly perfect if and only if R 
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satisfies the minimum condition on principal right ideals which are not direct 
summands, in other words, for every strictly descending chain alR>azR> 
>a3R> . . . . with aim R, almost all an are regular elements. In this section we 
shall study weakly perfect group rings. 

PROPOSITION 3. Let H be a subgroup of a group G and K be a field. If KG is 
left weakly perfect then so is KH. 

PROOF. Let alKH>aXH>a&H>..., aiE KH, be a strictly descending 
chain of principal right ideals in KH, then alKG > azKG > asKG > . . . will be a 
strictly descending chain in KG. Since KG is left weakly perfect, an is regular in 
KG for all nzm, for some fixed integer m. Let an = anrun, re KG then 
a,, = an(rl + r2)un, rl E KH and Supp r2 fl H = 0. Thus an - annan = annun = 0, 
since a,, - anrlan E KH and Supp anna,, fl H = 0 as a,, E KH. Hence an is regular in 
KH for all nzm and KH is left weakly perfect. 

LEMMA 2. Let R be a ring such that J(R) is non-zero and left T-nilpotent. 
Then 
1) There exists a E J(R), a# 0 with aJ(R) = 0. 
2) N(R)#O. 
3) If N(R) is nilpotent, then J(R) =N(R). 

PROOF. Same as the proof of Lemma 1.2 in [6, Chapter lo]. 

LEMMA 3. Let G be a group and let K be a field such that J(KG) is left T- 
nilpotent then J(KG) =N(KG) =W(KG) and J(KG) is nilpotent. 

PROOF. If J(KG) =0, then the result is trivial. If char K=O, then left T- 
nilpotency of J(KG) will imply that J(KG) = 0. So we may assume that Char 
K =p and J(KG) # 0. By Lemma 2 there exists a E J(KG), a# 0 with aJ(KG) = 0. 
Since N(KG) c J(KG), so oiV(KG) =O. N(KG) is nilpotent [6, Chapter 8, 
Theorem 1.121. Rest follows from Lemma 2. 

THEOREM 2. Let G be a group and let K be a field. If char K = 0 then KG is 
left weakly perfect if and only if G is locally finite. If char K =p and KG is left 
weakly perfect then G is a locally finite group having subgroups P and H such 
that 
1) P is finite normal p-subgroup of H. 
2) jG:HI <a. 
3) J(K(H/P)) = 0. 

PROOF. If KG is left weakly perfect, then J(KG) is left T-nilpotent and 
KG/J(KG) is regular [2, Theorem 31. So if char K = 0, then J(KG) = 0 and KG is 
regular which implies that G is locally finite. Conversely if char K = 0 and G is 
locally finite then KG is regular. But regular rings are left weakly perfect, hence 
KG is left weakly perfect. 
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Now if char K=p and KG is left weakly perfect, then J(KG) is left T- 
nilpotent as seen above. So by Lemma 3, J(KG) = N(KG) and J(KG) is 
nilpotent. Also KG/J(KG) is regular, hence by Lemma 1, G is locally finite. The 
result follows, now, from [6, Chapter 8, Corollary 1.141. 

EXAMPLE 2. [5, Theorem 21.61. Let G=A -B where A and B are locally 
finite p-groups with A # (l), and with B infinite. Further let char K=p then 

J(KG)=oG=( C ux.xl 1 ux=O} 
x x 

and N(KG) =O. For an example take A =ZP and B= n 4, an infinite direct 
product of copies of 4. 

This gives an example of a local ring KG which is not left weakly perfect. 
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