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Background: Genome-wide association studies (GWAS) have identified six single-nucleotide poly-
morphisms (SNPs) related to carotid intima media thickness (cIMT) or plaque. However, whether these
loci relate to other vascular diseases and subsequent vascular events is unclear.
Methods and results: We tested six SNPs (rs4888378, rs11781551, rs445925, rs6601530, rs17398575 and
rs1878406) for association with subclinical atherosclerotic measures (cIMT, plaque presence and ankle-
brachial index), as well as ischemic stroke, abdominal aortic aneurysm, peripheral or coronary artery
disease (CAD) in the Second Manifestations of ARTerial disease (SMART) cohort. Four SNPs were asso-
ciated with cIMT and two with plaque (p < 0.05). One SNP was also significantly associated to CAD
(rs1878406, OR ¼ 1.24, 95% CI ¼ 1.08e1.42, p ¼ 2 � 10�3). A genetic risk score (GRS) based on the cIMT-
related SNPs was associated to increased risk of cIMT itself (p ¼ 1 � 10�3), but not to other secondary
outcomes or vascular events during follow-up (p ¼ 0.86).
Conclusions: In addition to replicating previously published associations for cIMT, we confirmed a
nominally significant effect between the GRS and cIMT.

© 2015 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Coronary artery disease (CAD) and stroke are leading causes of
death worldwide [1], influenced by common genetic factors. Sub-
clinical atherosclerosis, a thickening of the artery wall caused by
the deposition of cholesterol material, often precedes these events
[2,3]. Carotid intima-media thickness (cIMT) and plaque, measures
of subclinical atherosclerosis, have been shown to predict incident
atherosclerosis-related cardiovascular disease [4e6]. In this sense,
genetic association studies may identify susceptibility genes and
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pathways involved in the initiation and early phases of these
diseases.

Recently, genome-wide association studies (GWAS) identified 6
single-nucleotide polymorphisms (SNPs) [7,8] associated to cIMTor
plaque. The extent to which these loci are related to other sub-
clinical phenotypes, clinically manifested vascular diseases and
subsequent cardiovascular events is unclear. Therefore, we aimed
to demonstrate the external validity of these findings by testing
whether these SNPs relate to cIMT, plaque, ankle-brachial index
(ABI), ischaemic stroke (IS), abdominal aortic aneurysm (AAA),
peripheral artery disease (PAD), and CAD in the SMART (Second
Manifestations of ARTerial disease) cohort. We also modeled the 3
cIMT-related SNPs as a multilocus genetic risk score (GRS) and
tested for associationwith CAD, IS, AAA, PAD, ABI, and cIMT itself, as
well as with recurrent vascular events.
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2. Methods

2.1. Study populations and phenotyping

We used data from the SMART cohort, consisting of patients
from the University Medical Center Utrecht (UMCU), the
Netherlands, included on the basis of manifest atherosclerotic
vascular disease or the treatment of atherosclerotic risk factors
[9,10] (Supplemental Table S1). From the 8210 patients included in
the study, 3743 had CAD, 640 had AAA,1726 had PAD, and 1764 had
IS, with overlap among traits. Patients free of cardiovascular disease
who had one or more risk factors for cardiovascular disease and
were included in the SMART follow-up phase, served as a control
group (n ¼ 1981). All patients provided informed consent, and the
Medical Ethics Committee of the UMCU approved the study.

2.2. SNP selection, genotyping and quality control

Based on a GWAS meta-analysis for cIMT and plaque [7], we
selected 3 cIMT-associated SNPs (rs11781551, rs445925, and
rs6601530), and 2 plaque-associated SNPs (rs17398575 and
rs1878406). A second study associated rs4888378 with cIMT [8]
and was added to this analysis, resulting in a total of 4 cIMT-
associated and 2 plaque-associated SNPs. Community standard
quality control (QC) [11] was applied in all 6 SNPs. We excluded
rs445925 from further analysis as it was out of HardyeWeinberg
Equilibrium (p ¼ 4.14 � 10�9).

Wet-lab genotyping was carried out at KBiosciences (Hertford-
shire, UK, www.kbioscience.co.uk) whose personnel were blinded
to patient status, using the proprietary KASPar PCR technique and
TaqMan. Genotype calling was done using an automated system,
with results checked manually using SNPviewer software.

2.3. Statistical analysis

Single SNP and GRS analyses were performed using linear and
logistic regression models where appropriate, adjusting for sex and
age. We considered the presence of plaque when cIMT>1.1,
following the same criteria as in Bis et al. [7].

For each individual in our cohort we constructed an unweighted
GRS using PASW Statistics 21 (SPSS, Inc., 2012, Chicago, IL, USA,
www.spss.com). The GRS was calculated as the sum of the number
of risk alleles at the 3 cIMT-related SNPs (rs11781551, rs6601530,
and rs4888378).

We used Cox proportional hazards model to analyze the asso-
ciation between GRS and clinical events during follow-up, consid-
ering age, sex and inclusion criteria as covariates. To estimate
quantitative effect sizes of the GRS on subsequent disease risk, we
divided individuals into quartiles according to the GRS distribution
and computed hazard ratios (HR) between the quartiles, with the
first quartile as reference.
Table 1
cIMT/plaque associated SNPs reported by literature and the association results for cIMT/

Reported by literature

Plaque associated variants
Locus SNP Chr Alleles EAF HWE OR (9
EDNRA rs1878406 4 T/C 0.13 0.5535 1.22
PIK3CG rs17398575 7 A/G 0.25 0.01141 1.18
cIMT associated variants
Locus SNP Chr Alleles EAF ß (95
PINX1 rs6601530 8 G/A 0.45 0.4141 0.007
ZHX2 rs11781551 8 A/G 0.48 0.5388 �0.0
BCAR1-CFDP1-TMEM170A rs4888378 16 A/G 0.43 0.003173 �0.0

SNP: single-nucleotide polymorphism. Alleles: effect and non-effect alleles. EAF: effect a
HWE: HardyeWeinberg Equilibrium.
Since all 5 SNPs that passed QC were previously associated with
cIMT or plaque at genome-wide significance (p < 5 � 10�8), we
considered a p < 0.05 threshold (for the same risk allele in the same
direction previously reported) as significant for these two pheno-
types. Correcting for multiple testing, the Bonferroni threshold
defined for the other five tested vascular beds (IS, AAA, CAD, PAD,
and ABI) was p < 2 � 10�3.

3. Results and discussion

In this study SMART comprised a total of 8210 individuals (6229
cases and 1981 controls), aged 17e83 years, whose majority (67.5%)
is male.

The single-SNP analysis for association with cIMT and plaque in
SMART (Table 1) resulted in 4 SNPs associated with cIMTand 2with
plaque (p < 0.05), all showing a concordant direction of effect with
the originally reported associations (binomial p ¼ 0.03). This in-
dependent replication supports the role of these loci as genetic
determinants of cIMT and plaque.

In order to test the relation between these loci and other
vascular beds, we tested their association with IS, AAA, CAD, PAD,
and ABI (Table 2). One variant (rs1878406) was significantly asso-
ciated with CAD (odds ratio [OR] ¼ 1.24, 95% confidence interval
[C.I.] ¼ 1.08e1.42, p ¼ 2 � 10�3). This SNP is located 8.5 kb from
EDNRA, a gene related to endothelial dysfunction. The endothelin
receptor is a target to reduce blood pressure, given the vasocon-
strictor role of endothelins in blood pressure elevation and vascular
hypertrophy [12]. Interestingly, genetic variations in this gene have
also been associated with atherosclerosis in hypertensive patients
[13] and with ambulatory blood pressure [14]. Convincingly, pre-
vious reports also linked the same locus to CAD [7,15]. This supports
the hypothesis that EDNRA might affect atherosclerosis causing
changes in blood pressure and thereby increasing the risk on CAD.
SNP rs6601530 showed a nominally significant association to CAD
(p ¼ 0.04) and ABI (p ¼ 0.006). This SNP locates in an intron of
PINX1, encoding Pin2-interacting protein 1, a telomerase inhibitor
[16] that relates to chromosomal segregation inmitosis [17] and has
been implicated in cancer [18,19]. A recent study [20] found that
SNP rs7840785, also located in the intron of PINX1, was signifi-
cantly associated with right carotid IMT (p ¼ 0.0003) in a non-
European population. The same study also conducted a gene-
based analysis in which PINX1 was significantly associated with
right carotid IMT. Even after removing the significant SNP
rs7840785, PINX1 was still significantly associated in the overall
sample (p ¼ 1 � 10�7). However, after correcting for multiple
testing, we did not find significant associations with IS, AAA, PAD,
or ABI.

We further tested the combined effects of the cIMT-related SNPs
in a multilocus GRS for association with disease risk (Supplemental
Table S2). We confirmed the association between the GRS and cIMT
(p¼ 0.04) [7]. We did not find a significant association between the
plaque in SMART.

This study

5%CI) P EAF OR (95%CI) P (cIMT) P (plaque)
(1.15e1.29) 6.90 � 10�12 0.16 1.11 (0.98e1.26) 0.01 0.05
(1.12e1.23) 2.30 � 10�12 0.24 1.17 (1.04e1.30) 0.009 0.004

%CI) P EAF ß (95%CI) P (cIMT) P (plaque)
8 1.70 � 10�8 0.46 0.0009 0.404 0.176
078 2.40 � 10�11 0.45 �0.0071 0.033 0.133
045 7.24 � 10�6 0.39 �0.006873 0.039 0.496

llele frequency. Results listed in bold are nominally significant (p ¼ 0.05).
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Table 2
Single SNP association results for IS, AAA, CAD, PAD and ABI in SMART.

IS N ¼ 1764 AAA N ¼ 640 CAD N ¼ 3743 PAD N ¼ 1726 ABI N ¼ 7953

SNP Alleles OR (95%CI) P OR (95%CI) P OR (95%CI) P OR (95%CI) P ß (95%CI) P

rs1878406 T/C 1.02 (0.88e1.19) 0.791 1.10 (0.88e1.39) 0.407 1.24 (1.08e1.42) 0.002 1.14 (0.98e1.34) 0.094 �0.001 (�0.01e0.01) 0.886
rs17398575 A/G 1.07 (0.95e1.21) 0.260 1.03 (0.85e1.25) 0.743 1.01 (0.90e1.13) 0.905 1.15 (1.01e1.30) 0.035 �0.003 (�0.01e0.00) 0.314
rs6601530 G/A 1.04 (0.93e1.16) 0.523 1.06 (0.89e1.25) 0.514 1.11 (1.00e1.22) 0.040 1.09 (0.97e1.22) 0.132 �0.008 (�0.01e0.00) 0.006
rs11781551 A/G 1.00 (0.90e1.11) 0.975 1.12 (0.95e1.33) 0.170 1.03 (0.94e1.14) 0.515 1.06 (0.95e1.19) 0.307 0.000 (�0.01e0.01) 0.923
rs4888378 A/G 1.00 (0.90e1.11) 0.966 1.13 (0.95e1.33) 0.160 0.97 (0.88e1.07) 0.569 0.97 (0.86e1.08) 0.546 0.003 (0.00e0.01) 0.213

IS, ischaemic stroke; AAA, abdominal aortic aneurysm; CAD, coronary artery disease; PAD, peripheral artery disease; ABI, ankle-brachial index; SNP, single-nucleotide
polymorphism.
N refers to the number of cases. Controls ¼ 1981.
Bold values signifies that the Bonferroni corrected threshold defined for the five tested vascular beds (IS, AAA, CAD, PAD, and ABI) was p < 2 � 10�3.
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risk score and IS, AAA, CAD, PAD, or ABI. This can be due to the small
effect the combined SNPs confer on the susceptibility of disease, or
cardiovascular traits.

We also analyzed the association between the GRS and vascular
events during follow-up using Cox proportional hazard models
(HR ¼ 0.977, 95% C.I. 0.93e1.07, survival curves in Supplemental
Figure S1). We found no increased risk of vascular events during
follow-up when comparing individuals in the highest GRS quartile
with those in the lowest quartile (p ¼ 0.86). We may have had
limited power due to the modest number of secondary events to
find such an association, if it exists.

The results showed in this study confirm the original findings
[7,8], adding to the evidence of the effect these loci have on cIMT or
plaque presence. The GRS based on cIMT-related SNPs did not show
a significant effect on other vascular beds, or secondary vascular
events, suggesting against pleiotropy. An explanation for this
finding could be that risk factors and their underlying genetic
background may impact differently on each vascular bed in the
atherogenic process. In conclusion, our findings provide support for
previously claimed SNP associations for cIMT and plaque, specif-
ically highlighting the role of rs1878406 in both atherosclerosis and
CAD. This should motivate further research focused on the under-
lying mechanisms involved.
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