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Abstract

We show that the string bit model suffers from doubling in the fermionic sector. The doubling leads to strong violation
of supersymmetry in the limivV — oco. Since there is an exact correspondence between string bits and the algebra of BMN
operators even at finit&/, doubling is expected also on the side of super-Yang—Mills theory. We discuss the origin of the
doubling in the BMN sector.

0 2003 Elsevier Science B.V. Open access under CC BY license,

1. Introduction The BMN correspondence was conjectured to hold
in the limit of large (infinite)J and N, the quantity
gBMN = J2/N being the effective coupling of the
string interaction. For finite values of and N,
however, the dynamics of BMN operators was shown
to be equivalent to the string bit model [14-18].
The string bit model was introduced by Thorn [14],
as a supersymmetric mechanical model describing

Large N physics [1,2] plays an important role in
the correspondence between Yang—Mills theory and
strings (see [3] for a review). Recently, Berenstein—
Maldacena—Nastase (BMN) advocated in [4—-6] that
IIB superstring theory orpp-wave background can
be described in terms of a particular set of opera-

tors (E;(MN ol\p/)ﬁlrat:)hrs) ha\_/r'ﬂg Iarg@-cr;argkej md fragmented superstring. For earlier works dealing with
super-yang—IVIilis theory. Thep-wave background .o giscretization of one-dimensional superspace, see
[7-9], appears as a Penrose limit of anti-de Sitter [19-21]

(AdS) space. Therefore, the BMN correspondence can
be seen as a limit of the AdS/CFT correspondence
[10,11]. The peculiarity of this background is that
string theory can be solved there [12,13].

On the other hand, it is not difficult to see that the
above string fragmentation corresponds to the lattice
discretization of the string. In the Green—Schwarz ap-
proach, 1IB superstring contains, besides the bosonic
fields, also fermionic ones in target space represen-
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formulation of systems that include fermions pos- following (classical) commutation relations:
sesses a strong drawback, related to a fermion dou- - i
bling problem (see, e.g., [23]). In particular, the lat- [p, x}] = 6" 8yun, lox, 08} = 53”}’8,,,”,
tice formulation ofsupersymmetric theories faces the i
problem of fermion doubling (see [24,25] and refer- {§¢, 60} = ES“Z’SWI. (1)
ences therein for a review of the problem and sub-
sequent developments). Thus, one may expect that The reparametrization invariance of the string be-
the string bit model is spoiled by fermion dou- COmes, in the bit language, the invariance with re-
bling too. Below, we show that this is indeed the SPect to the symmetry grouf; of permutations of
case. the labelsn. The whole permutation groug; is
Having in mind the abovementioned fact, together SPIitinto equivalence classgg] of permutations hav-
with the assumption that the string bit model describes ing the same number of cycles with fixed lengths
exactly the BMN operator dynamics, we can conjec- /1. J2,.... Js, 2_Jx = J. Then, the Hilbert space of
ture that there are wrong fermionic modes in the BMN  the quantized model can be split, according to this, into
sector of super-Yang—Mills theory, which survive in @ direct sum oftwisted sectors 74, , associated with
the largeN (or largeJ) limit. This conjecture is sup- each conjugacy clagy]. The transformations inside
ported also by the fact that computations in the BMN @ conjugacy class reduces to relabeling of bits in the
approach are essentially the same as in matrix theory, cycles. Therefore, the twisted sector corresponding to
while at the same time in the latter one can find traces the conjugacy claspy;] with s cycles, can be identi-
of the fermionic doubling [26]. fied with thes-string Hilbert space. In particular, one
The plan of the Letter is as follows. Firstly, we String sector corresponds to cyclic subgroupssef
briefly review the string bit model in both Hamil- &nd up to relabeling of is given by
tonian and Lagrangian approaches. In Section 3 we _
analyze the fermionic spectrum and discover the low ya(n) =n +1mod. 2)
energy fermionic states corresponding to large lattice  In the case of the-string sector, one can introduce
momenta (the edge of the Brillouin zone). Next, we the following standarg, transformation by fixing the
solve the equations of motion for the bits, which al- representant of the conjugacy cldss]. For this, let
lows one to quantize the model the same way, as it was Us relabel 6< n < J — 1 by sets of bitgn; 0 <ny <
done in the case of the continuous string. In Section 4 Jx —1,k=1,...,s} and define

we discuss the fate of supersymmetry in the case of 1) (o )
the fermionic doubling. Using a simplified version of s =71 Y1 "*"V1
sting bits as a toy-model, we show that the contribution y;* (24) = nx + 1 modJj. (3)

of the fermionic mirror states leads to a strong viola-
tion of supersymmetry, in the continuum limit. After
that, we show how doubling states can appear in the
BMN correspondence and, finally, we discuss the re-
sults.

Since the conjugation transformations preserve the
cyclic structure ofy; (including the lengths of the
cycles), just changing the labels [27], in order to get
the arbitrary representatiyg of the conjugacy class,
it suffices to replace each bit label by a permutation:
n — o(n). Among the permutations, however, there
are some which do not change the cycles, thus leaving
us with the same.

The Hamiltonian and supercharges describing the
model read as follows [15]:

2. Bit string model

Let us shortly review thep-wave 1I1B superstring H = Hg + Hp, (4a)
bit model [15]. The superstring consisting &f bits J-1
is described in terms of phase space coordinates of o ZZ[Q(PZ%'GH —x;)/iﬂén) + (xf/(m —Xi))/ﬁn],
its bits and their superpartnefgr,, x;,, 05, 04}, where =0

n=0,...,J —1. The phase space variables satisfy the (4b)
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0= [a(pnyibn — x,yiI16,) — (x;(n) —x3)7i0n ),
"= (4c)
where
J-1
Hp = Z[C_zl(pizn i) + %(x;/(n) - x;;)z], )
n_oj—l
Hp ==Y [0nby ) — Onby ) — 2a0,116,].  (6)
n=0

In the Lagrangian form the action compatible with
the Hamiltonian (4a) and the commutation relations
(1) are given by

S= Z|:2 Xin —
+ ia(enén + énén) + i(eney(n) - é‘néy(n))

+ 2ia§n179n]. (M

The expressions (4a)—(4c) correspond to a discrete
version of IIB superstring inpp-wave background
[12,13], obtained by the most straightforward (haive)
discretization. Since this naively discretized model
contains fermions, one should expect problems typical
of lattice fermions.

3. Fermion doubling

Let us analyze the fermionic spectrum in the
free string bit model. In order to do this, let us
consider the fermionic part (6) of the Hamiltonian and
“diagonalize” it. For this, let us perform the bit (lattice)
Fourier transform of the fields

1 J/2 '
o= > g, (82)
Jp:—.//z
1 J/2 '
=7 > et (8b)
p=—J/2

where, by abuse of notations, we kept the same
character for both the field and its Fourier transform,

117
distinguishing them only by the labels
l,m,n,...=0,1,..., -1

(x-representation 9)
p.q,r...=—J/2,—J/2+1,...,]/2
(p-representation (10)

From (10) one can notice that for oddthe “momen-

ta’ p,q,r,...run through integer numbers, while for
an evenJ value, they should be half-integer. This has
no particular meaning and is a result of the choice
for the origin of the momentum space, which in the
present case was taken to be symmetric with respect
to the inversion of momenta— —p.

Let us consider, for definiteness, the one string
sector and fix the standard choice (2) for the “moduli”
of y permutation. As we discussed above, all other
situations in the same clagy] are obtained from
the standard one by all possible relabeling of bits
n’ = n'(n). (The other multi-string sectors can be
analyzed in a similar way, by fixing the “standard”
y-permutations to (3), and then “shuffling” the labels,
in order to generalize the result to arbitrasy)

Plugging the transformations (8a), (8b) in the
fermionic Hamiltonian (6), yields the expression

= Zsm( )(9_,,9
o a0 )(3)
(11)

It is not difficult to see that the spectrum of the
Hamiltonian (11) reads

E“)—j:,ljzsm2 i1

As expected, in the limit of largd, one can expand
the sin function under the square root, in order to get
the continuum energy levels of the fermiéns

—0_p0,) + 2ai0_, 116,

iall

Op
O

—iall

(12)

D)

penas £ 2zn)2+1

(13)

wp =

obtained by Metsaev in [12].
Eq. (13) yields a correct, although incomplete,
energy spectrum for the continuous superstring. Due

3 Notice the difference in notations with the paper [12].
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to the other zero of the sin function when its argument whered is the two-dimensional Dirac operater,=
approachestrn, there are other low energy levels y,d,, and ¢ is the supersymmetry transformation
which survive in the continuum limiy — oco. They parameter, which is a Majorana—Weyl spinor. In the
appear when the momentumis in the vicinity of canonical formalism the system is represented by the
the edge of thaBrillouin zone, p ~ £J/2. This will canonical variable$I (o) = (0L/3X), X (o) and,
appear as a 2-fold degeneracy of each energy levelsatisfying

in (13), E, = Ej/2—,. This phenomenon has been is , ,

known foflong fme in Iatticpe theories with fermions, |17 X(@)]pg = 3 — a7,

where it is called fermion spectrudoubling (for more / _'o 5o —o 18

details see the textbook [23]). {¥a(0), (@)} pg 5 Yapdl@ =0 ), (18)
The doubling can be related to a symmetry of the and the Hamiltonian

discrete system of string bits which relates fermionic 1, 1 ., . .

modes of different chiralities [28] H= % do (EH +5XD) +iyny ) (19)

(931 ) o (—1)" (Zgn ) ‘ (14) Supersymmetry is generated by the supercharge
" B | 0= fdoi-iny +iX o, (20)

Thus, in the continuum limit, we obtained not just

pp-wave |IB superstring but something more, i.e., which satisfies the (classical) algebra,
the Green—Schwarz superstring with two fermionic
Sootors! Persting (0. Q) = ~2Hyo +2P1. (21)

In this context one may ask, what happens to where H is the Hamiltonian (19) and? = 71X’
supersymmetry? The short answer is that the lattice denotes the shift generator. Just like the action, the
theory in fact is not supersymmetric owing to the Hamiltonian (19) is invariant with respect to the
effects of discreetness. Also due to the doubling, supersymmetry transformation
the symmetry has few chances to be restored in the H=ec[0,H]=0. 22)

continuum limit!
Let us consider now a version of the above model
in the case of a discrete spatial extensios: 014 In
4. A note on supersymmetry and doubling order to do this, let us start with the superchérge
J

In order to illustrate the behavior of supersymmetry Q =a Z(—IH Yn 4+ — (Xn+1 — n)ylyol//n>
on the lattice let us consider a simpler toy model n=0
example, which catches however the most important
features generic for all supersymmetric models on the
lattice.

Let us consider the model of “one-dimensional
superstring” described by the continuum action

(23)
This expression is analogous to the supercharge (4b)
and is a straightforward discretization of (20). The
discrete Hamiltonian and the shift operator can be
defined through the lattice version of Eq. (21). Indeed,
for the Hamiltonian one has

1 (A
2
_ f o (Eaaxaax + Ewalp), (15) _az( Z(Xn+1 X,)2
where X and ¢ are, respectively, a bosonic field
and a Majorana—Wey! fermion on a two-dimensional + Zlﬂnl’llﬂnﬂ)» (24)

cylinder. The action (15) is invariant with respect to
the supersymmetry transformations -

4 This model suffers from doubling, in the same way as the string
3X = —iey, (16) bit model in the previous section.

A 5 We consider the following discretization of o = an, n =
8¢ =0 Xe, (17) 0,....,J,anda =2 L/J.
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while P appears to be the operator of the forward are completely lost.) It would be at least strange if
lattice shift, i.e.,P =), IT,(Xu+1— Xn). it were otherwise, because the string bit model can

The above results agree perfectly with what can be (consistently if there was no doubling) formulated
be expected from a naive discretization of the Hamil- in any dimension and any background what comes in
tonian (19). However, an unpleasant surprise comes contradiction with the fact that consistent superstring
next. The discrete Hamiltonian (24) fails to be exactly theories can exist only in very special spaces and
supersymmetric! Indeed, a straightforward computa- backgrounds.

tion yields
SH i 1 5. Bit stri ization (alaMet
= Z (=0 + =(Xps1 — X1 . Bit string quantization (ala saev)
de 2 a
Let us solve the equations of motion, following
X Y1(Yn+1 — 29 + wnl)]. (25) [12]. This will allow us to quantize the bit string and
understand the phenomenon of doubling.
For slowly varying fields (which correspond to The equations of motion arising from the action (7)

smooth functions in the continuum limit), this part of read

the supersymmetry variation is of order1l/J and , 1 ‘

thus it vanishes, ag approaches infinity. This occurs  —%, + ﬁ(xy(n) =2 +x,-1(y) — X, =0, (27)
because the terms in (25) correspond to lattice analogs

of second derivatives, multiplied by factors of order for the bosonic part, and

a = 2x/J. In the continuum limit they are supposed . 1 50 28
to give Lorentz non-invariant terms vanishing like On + %(QVW — Oy-14n)) +110 =0, (282)
. 3 1 - -
i _ = _ 7o =
y fd - Xy’ ~on. @) OB T = I0=0 (280)

o ) for fermions. Once again, let us limit ourselves to the
This is what would happen, if the doubler states ng_string sector and fix the clasa] by the standard
would not come into the game. For the doubler states choice:y (n) = n + 1modJ. As we discussed earlier

the fgrmion_ic factor in the _r.h.s. of (25) is of the order 6 solution corresponding to an arbitrary element of
of unity, while the summation adds a factor of order ¢ (Jass is obtained by permutation of labels in the
making the non-invariant contribution divergent. This  «gtandard” solution.

is in contrast with the situation of the “genuine” non- g go|ution to the equations of motion is obtained
dou?led part, where the fermionic factor is of order j, 5 way analogous to that of [12], except the discrete
1/J%, while the summation just reduces the decay by rqrier transform (8a), (8b) is used. In particular, the

one power inJ. In conclusion, the supersymmetry pogonic part of the solution looks as follows:
algebra on the lattice does not close, to ensure the

supersymmetry of the Hamiltonian. Moreover, due to x! () = X' cost + P’ sint

the contribution of doubler states, the non-invariant 1, 4.9 9 A2
terms do not just fail to vanish in the continuum limit + ;(“z D1 (0) + o G, (D)),
but, on the contrary, they even diverge! I=£1,...£[J/2]

We have considered a simplified toy model related , (29)
to the bit string. However, this model catches, besides Wheree;" are string mode operators whi¢! (r) are
technical details, the crucial properties of the string respective modes of the string
bit model under study. The result, also, is not an A
unexpected one. Firstlil/, because the Poincaré algebra‘pll;"(f) = exp(—i(@yT — 2nin/J)). (30a)
which is important part of the supersymmetry algebra
!s.gre_lvely affected by the d'_scretlzathn‘ (,In (_)ur case s Strictly speaking, this is related not only to the fermion
itis, in fact, reduced to continuous shifts in time and  goubling problem but also to violations of conformal symmetry on
discrete one in the spatial direction, while rotations the lattice.
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@7, (1) =exp(—i(@yT + 27ln/J)), (30b)

and
- 2 ol
éy = sgniy/k2 + 1, k12=—2<1—cosl>. (31)
a J

Once again, it is not difficult to see that, d#s— oo,
a=1/J — 0, one recovers the solution of [12].
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permutationy (n). As proposed in [15], the physical
states of the string bit model are those symmetrized
with respect to conjugations of, h~1yh, or averaged
over the conjugacy class gf. As we noted earlier,
going to a differenty, in the same conjugacy class,
is equivalent to a permutation of the labels—
h(n) [27]. Therefore, a solution with a differept =

Let us turn now to the fermionic sector. The h ‘vh is still given by Egs. (29) and (32), where

solution in this sector reads
0, (7) = cOSTO + sintI1O
+ ch (¢,};1(T)911 +i(wr — 121)953;1(1)17912),
) " (32a)
6,(t) =cost® +sintlIE
+ ) (@2 (0F — iy — kg (D ITO}),
: (32b)

where, as in the bosonic case, the sum is performed

over/ = +1,...,+[J/2], and the fermionic modes

¢J.,(t) are given by the same expressions (30a), (30b),

except that the havtted, and 121 are replaced by the
“checked” onesyy, k;, given by

- . 2( . 2ml
oy =sgni\Jk?+1, k= —(sm%). (33)

a

The peculiarity of the fermionic solution (32a), (32b)

is that, owing to the presence of a %factor (instead

of cos, as in the bosonic case), very high fermionic
moded ~ J/2 possess the same energy as the modes

in the region! « J. In fact, the modes of the same
energy come in paird, J/2 — 1), in total accord with

now the functionsp,.; are replaced by ,.;. Then,

a physical state withB bosonic andF fermionic
modes symmetrized over the permutations generically
looks as follows:

1 h=lyh W Yyh b tyh hlyh
ﬁ Z all "'als 011 ...QIF |0Y, (36)
heS;

where the labels correspond to raising operators. The
ground state is unique and invariant with respect to the
permutation grougs,, so we do not have to twist the
vacuum.

6. BMN correspondence

So far, we observed that the bit string model con-
tains a number of problems like fermion doubling and
supersymmetry violation. On the other hand, the bit
string model is equivalent to BMN sector of the super-
Yang—Mills model at any finite/. This equivalence
would imply that the fermionic subsector of the BMN
operators is badly defined, at finite (Since there is
no definition for the BMN correspondence At oo,
this would signal a self-consistency problem in the

the discussion of the previous section. The canonically BMN correspondence.) Hence, in this section we pro-

gquantized model is obtained by replacing the Poisson

brackets of the oscillator modes generatafsand
0/ (wherea = 1, 2) with the commutation relations
[12,13]

[P X7] = —is,

bj

) 1 .
[, 0l ] = E@aaba'f Smtn.0; (34)
for bosonic modes, and

1
{Glaa’ Grétﬂ} = _Z8ab8aﬁ8n1+n,0» (35)

for fermionic ones.
A note is in order. The solution we found in this

ceed to the analysis of the implications of fermion dou-
bling at the level of the BMN operators.

The BMN correspondence [4] relates a class of
operators inN = 4 super-Yang—Mills model, which
have a larg&k-charge ( — o0), to states in the closed
superstring on thepp-wave background. The string
“semantics” of the BMN language is as follows. The
light-cone superstring vacuum in the BMN language
is given by the operator

1
—1r
ﬁNJ/Z

whereZ is the complex scalar componefit= (¢° +

[Z27] < 10, py), (37)

section corresponds to a particular choice of the cyclic i$®)/v/2.
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The excited string states correspond to the insertion
of “impurities” under the trace (37), according to the
following rule:

DHZ (—)aTll’, u=1...,4, (38)
¢)]'74<—>C(Ti7 i=5,...,8, (39)
X7=1/2 <—>9Ta, a=1,...,8, (40)

wherea! and6 ™ are, respectively, bosonic and fermi-
onic standard oscillator raising operators. Also, in or-

121

This leads to a contribution proportional to the sym-
metric part of the shift operator 1/2(P + P*) inthe
fermionic part of the effective Hamiltonian. As we ob-
served above, when analyzing the bit string model, this
leads to the fermionic spectrum doubling. In terms of
the shift operators, this is explained by the existence of
such zero modes of/2(P + PT), which correspond

to highly oscillating modes on the lattice string.

der to get non-zero string modes, the insertions should 7 piscussion

be accompanied by a factof&"// wherek is the
position of the insertion in the row df’s. Hence, e.g.,
a double fermionic insertion corresponds to

J-1
! kB J—172mikl]J
WZU[X?:UZZ Xj=1/2Z | o
k=0

(41)

Thus, the BMN correspondendariguage) is for-
mulated in terms ofvords or strings of products of
Z's, with insertions of impurities and operators on the
space of allowed words. The main operators acting on
words are the positioX and the shiftP. X gives the
positionj (up to a cyclic permutation) of an insertion
in the chain ofZ’s, while P performs a permutation of
the impurity in thejth position to thgj + 1)th one.

One can define the scalar product of words~
< ZOZ---y---, which is given by

;
<6610, py).

W)= (P¥)N j>oo. (42)

In this Letter we addressed the problem of finite
N effects in the BMN correspondence. For finite
andJ, the set of BMN operators maps into the Hilbert
space of/ string bits. As we have shown above, the
fermionic spectrum of the string bit model is doubled.
An immediate effect of doubling is the failure to get a
supersymmetric limit, ag — oo.

We considered a free theory and, on this level, one
can explicitly separate the contribution of the doubler
states, in order to get the correct spectrum of IIB
string, asJ andN go to infinity. Webelieve that this
can also be done on the tree level of interacting closed
superstrings. However, as the experience of the lattice
shows, in the case of bit loops the doubling states mix
with the correct modes.

In spite of above problems, the study of supersym-
metric models on the lattice have achieved, during the
last several years, a considerable progress (see [24,25,
29] for a review)! One can hope to apply the tech-

(The necessary properties required for this to be a pique developed in this approach to string bits too.

scalar product follow from the planar properties of the
correlator in the larg&v limit, [4].) As it can be seen,
the shift operatorP is not self-adjoint, with respect
to the BMN scalar product, and there is an adjoint
operatorP™, which corresponds to the backward shift

(43)

Since the bosonic interaction comes through the
term~ g$M tr[Z, ¢1[Z, ¢], this produces in the boso-
nic part of the effective Hamiltonian a term propor-
tional to P P (due to the cyclic property of the trace
this is the same aB P*). On the other hand, the fermi-
onic interactions in super-Yang—Mills theory are linear
in the shifts

~(xIZIZ, X1+ x TZ(Z, x)).

Pt:j—j—1

(44)

This is accompanied, however, by the fact that, be-
yond the typical lattice problem with fermion dou-
bling, there are specifical string problems, related to
conformal invariance violation by the string discretiza-
tion. One can also expect the duality symmetries to be
violated too.

Returning to the BMN correspondence, one can
see that there is a class of unwanted fermionic states,
given by the fermionic doublers, which survive in the
(formal) BMN limit. In fact, the BMN sector is known
to contain some “extra” states which are conjectured
to decouple because of large masses acquired due

7 While this work was in progress a paper [30] studying
topological models on the lattice appeared.
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