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Abstract

We show that the string bit model suffers from doubling in the fermionic sector. The doubling leads to strong vi
of supersymmetry in the limitN →∞. Since there is an exact correspondence between string bits and the algebra o
operators even at finiteN , doubling is expected also on the side of super-Yang–Mills theory. We discuss the origin
doubling in the BMN sector.
 2003 Elsevier Science B.V. Open access under CC BY license.
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1. Introduction

LargeN physics [1,2] plays an important role
the correspondence between Yang–Mills theory
strings (see [3] for a review). Recently, Berenste
Maldacena–Nastase (BMN) advocated in [4–6] t
IIB superstring theory onpp-wave background ca
be described in terms of a particular set of ope
tors (BMN operators) having largeR-chargeJ in
super-Yang–Mills theory. Thepp-wave background
[7–9], appears as a Penrose limit of anti-de Si
(AdS) space. Therefore, the BMN correspondence
be seen as a limit of the AdS/CFT corresponde
[10,11]. The peculiarity of this background is th
string theory can be solved there [12,13].
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The BMN correspondence was conjectured to h
in the limit of large (infinite)J andN , the quantity
gBMN = J 2/N being the effective coupling of th
string interaction. For finite values ofJ and N ,
however, the dynamics of BMN operators was sho
to be equivalent to the string bit model [14–1
The string bit model was introduced by Thorn [1
as a supersymmetric mechanical model describ
fragmented superstring. For earlier works dealing w
the discretization of one-dimensional superspace,
[19–21].

On the other hand, it is not difficult to see that t
above string fragmentation corresponds to the lat
discretization of the string. In the Green–Schwarz
proach, IIB superstring contains, besides the bos
fields, also fermionic ones in target space repres
tation.2 It is well known, however, that the lattic

2 For a useful parametrization of the scalar superfields involv
see [22].
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formulation of systems that include fermions po
sesses a strong drawback, related to a fermion d
bling problem (see, e.g., [23]). In particular, the l
tice formulation ofsupersymmetric theories faces the
problem of fermion doubling (see [24,25] and ref
ences therein for a review of the problem and s
sequent developments). Thus, one may expect
the string bit model is spoiled by fermion do
bling too. Below, we show that this is indeed t
case.

Having in mind the abovementioned fact, toget
with the assumption that the string bit model descri
exactly the BMN operator dynamics, we can conje
ture that there are wrong fermionic modes in the BM
sector of super-Yang–Mills theory, which survive
the largeN (or largeJ ) limit. This conjecture is sup
ported also by the fact that computations in the BM
approach are essentially the same as in matrix the
while at the same time in the latter one can find tra
of the fermionic doubling [26].

The plan of the Letter is as follows. Firstly, w
briefly review the string bit model in both Hami
tonian and Lagrangian approaches. In Section 3
analyze the fermionic spectrum and discover the
energy fermionic states corresponding to large lat
momenta (the edge of the Brillouin zone). Next,
solve the equations of motion for the bits, which
lows one to quantize the model the same way, as it
done in the case of the continuous string. In Sectio
we discuss the fate of supersymmetry in the cas
the fermionic doubling. Using a simplified version
sting bits as a toy-model, we show that the contribut
of the fermionic mirror states leads to a strong vio
tion of supersymmetry, in the continuum limit. Afte
that, we show how doubling states can appear in
BMN correspondence and, finally, we discuss the
sults.

2. Bit string model

Let us shortly review thepp-wave IIB superstring
bit model [15]. The superstring consisting ofJ bits
is described in terms of phase space coordinate
its bits and their superpartners:{pin, xin, θan , θ̃ an }, where
n= 0, . . . , J −1. The phase space variables satisfy
following (classical) commutation relations:

[
pin, x

i
n

]= δij δmn,
{
θαn , θ

β
m

}= i

2
δabδmn,

(1)
{
θ̃ an , θ̃

b
m

}= i

2
δabδmn.

The reparametrization invariance of the string
comes, in the bit language, the invariance with
spect to the symmetry groupSJ of permutations of
the labelsn. The whole permutation groupSJ is
split into equivalence classes[γ ] of permutations hav
ing the same number of cycles with fixed leng
J1, J2, . . . , Js ,

∑
Jk = J . Then, the Hilbert space o

the quantized model can be split, according to this,
a direct sum oftwisted sectors Hγ , associated with
each conjugacy class[γ ]. The transformations insid
a conjugacy class reduces to relabeling of bits in
cycles. Therefore, the twisted sector correspondin
the conjugacy class[γs] with s cycles, can be identi
fied with thes-string Hilbert space. In particular, on
string sector corresponds to cyclic subgroups ofSJ ,
and up to relabeling ofn is given by

(2)γ1(n)= n+ 1 modJ.

In the case of thes-string sector, one can introduc
the following standardγs transformation by fixing the
representant of the conjugacy class[γ1]. For this, let
us relabel 0� n� J − 1 by sets of bits{nk; 0 � nk �
Jk − 1, k = 1, . . . , s} and define

γs = γ
(1)
1 γ

(2)
1 · · ·γ (s)1 ,

(3)γ
(k)
1 (nk)= nk + 1 modJk.

Since the conjugation transformations preserve
cyclic structure ofγs (including the lengths of the
cycles), just changing the labels [27], in order to
the arbitrary representativeγ ′s of the conjugacy class
it suffices to replace each bit label by a permutati
n �→ σ(n). Among the permutations, however, the
are some which do not change the cycles, thus lea
us with the sameγs .

The Hamiltonian and supercharges describing
model read as follows [15]:

(4a)H =HB +HF ,

(4b)

Q=
J−1∑
n=0

[
a
(
pinγiθn − xinγiΠθ̃n

)+ (
xiγ (n) − xin

)
γiθn

]
,
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(4c)

Q̃=
J−1∑
n=0

[
a
(
pinγi θ̃n − xinγiΠθn

)− (
xiγ (n) − xin

)
γi θ̃n

]
,

where

(5)HB =
J−1∑
n=0

[
a

2

(
p2
in + x2

in

)+ 1

2a

(
xiγ (n) − xin

)2
]
,

(6)HF =−i
J−1∑
n=0

[
(θnθγ (n) − θ̃nθ̃γ (n))− 2aθ̃nΠθn

]
.

In the Lagrangian form the action compatible w
the Hamiltonian (4a) and the commutation relatio
(1) are given by

S =
J−1∑
n=0

[
a

2
ẋ2
in −

1

2a

(
xiγ (n) − xin

)2− a

2
x2
in

+ ia(θnθ̇n + θ̃n
˙̃
θn)+ i(θnθγ (n) − θ̃nθ̃γ (n))

(7)+ 2iaθ̃nΠθn

]
.

The expressions (4a)–(4c) correspond to a disc
version of IIB superstring inpp-wave background
[12,13], obtained by the most straightforward (naiv
discretization. Since this naively discretized mo
contains fermions, one should expect problems typ
of lattice fermions.

3. Fermion doubling

Let us analyze the fermionic spectrum in t
free string bit model. In order to do this, let u
consider the fermionic part (6) of the Hamiltonian a
“diagonalize” it. For this, let us perform the bit (lattic
Fourier transform of the fields

(8a)θn = 1√
J

J/2∑
p=−J/2

θpe2π iln/J ,

(8b)θ̃n = 1√
J

J/2∑
p=−J/2

θ̃pe2π ipn/J ,

where, by abuse of notations, we kept the sa
character for both the field and its Fourier transfo
distinguishing them only by the labels

l,m,n, . . .= 0,1, . . . , J − 1

(9)(x-representation),

p, q, r, . . .=−J/2,−J/2+ 1, . . . , J/2

(10)(p-representation).

From (10) one can notice that for oddJ the “momen-
ta” p,q, r, . . . run through integer numbers, while fo
an evenJ value, they should be half-integer. This h
no particular meaning and is a result of the cho
for the origin of the momentum space, which in t
present case was taken to be symmetric with res
to the inversion of momentap→−p.

Let us consider, for definiteness, the one str
sector and fix the standard choice (2) for the “modu
of γ permutation. As we discussed above, all ot
situations in the same class[γ ] are obtained from
the standard one by all possible relabeling of b
n′ = n′(n). (The other multi-string sectors can b
analyzed in a similar way, by fixing the “standar
γ -permutations to (3), and then “shuffling” the labe
in order to generalize the result to arbitraryγs .)

Plugging the transformations (8a), (8b) in t
fermionic Hamiltonian (6), yields the expression

HF =
∑
p

sin

(
2πp

J

)
(θ−pθp − θ̃−pθ̃p)+ 2aiθ̃−pΠθp

(11)

= ( θ−p θ̃−p )
(

sin 2πp
J

iaΠ

−iaΠ −sin 2πp
J

)(
θp

θ̃p

)
.

It is not difficult to see that the spectrum of th
Hamiltonian (11) reads

(12)E(J )
p =±

√
J 2 sin2 2πp

J
+ 1.

As expected, in the limit of largeJ , one can expan
the sin function under the square root, in order to
the continuum energy levels of the fermions3

(13)ωn =E
(J )
p=n�J ≈±

√
(2πn)2+ 1,

obtained by Metsaev in [12].
Eq. (13) yields a correct, although incomple

energy spectrum for the continuous superstring. D

3 Notice the difference in notations with the paper [12].
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to the other zero of the sin function when its argum
approaches±π , there are other low energy leve
which survive in the continuum limitJ →∞. They
appear when the momentump is in the vicinity of
the edge of theBrillouin zone, p ∼ ±J/2. This will
appear as a 2-fold degeneracy of each energy l
in (13),Ep = EJ/2−p. This phenomenon has been
known for long time in lattice theories with fermion
where it is called fermion spectrumdoubling (for more
details see the textbook [23]).

The doubling can be related to a symmetry of
discrete system of string bits which relates fermio
modes of different chiralities [28]

(14)

(
θn

θ̃n

)
�→ (−1)n

(
Πθ̃n
Πθn

)
.

Thus, in the continuum limit, we obtained not ju
pp-wave IIB superstring but something more, i.
the Green–Schwarz superstring with two fermio
sectors!

In this context one may ask, what happens
supersymmetry? The short answer is that the lat
theory in fact is not supersymmetric owing to t
effects of discreetness. Also due to the doubli
the symmetry has few chances to be restored in
continuum limit!

4. A note on supersymmetry and doubling

In order to illustrate the behavior of supersymme
on the lattice let us consider a simpler toy mo
example, which catches however the most impor
features generic for all supersymmetric models on
lattice.

Let us consider the model of “one-dimension
superstring” described by the continuum action

(15)S =
∫

d2σ

(
1

2
∂aX∂aX+ i

2
ψ∂̂ψ

)
,

where X and ψ are, respectively, a bosonic fie
and a Majorana–Weyl fermion on a two-dimensio
cylinder. The action (15) is invariant with respect
the supersymmetry transformations

(16)δX =−iεψ,

(17)δψ = ∂̂Xε,
where ∂̂ is the two-dimensional Dirac operator,∂̂ =
γa∂a , and ε is the supersymmetry transformatio
parameter, which is a Majorana–Weyl spinor. In
canonical formalism the system is represented by
canonical variablesΠ(σ) = (∂L/∂Ẋ), X(σ) andψ ,
satisfying[
Π(σ),X(σ ′)

]
PB= δ(σ − σ ′),

(18)
{
ψα(σ),ψβ(σ

′)
}

PB=
i

2
γ 0
αβδ(σ − σ ′),

and the Hamiltonian

(19)H =
∮

dσ

(
1

2
Π2+ 1

2
(X′)2+ iψγ1ψ

′
)
.

Supersymmetry is generated by the supercharg

(20)Q=
∮

dσ [−iΠψ + iX′γ1γ0ψ],
which satisfies the (classical) algebra,

(21){Q,Q} = −2Hγ0+ 2Pγ1,

where H is the Hamiltonian (19) andP = ΠX′
denotes the shift generator. Just like the action,
Hamiltonian (19) is invariant with respect to th
supersymmetry transformation

(22)δH = ε[Q,H ] = 0.

Let us consider now a version of the above mo
in the case of a discrete spatial extensionσ ≡ σ1.4 In
order to do this, let us start with the supercharge5

(23)

Q= a

J∑
n=0

(
−iΠnψn + i

a
(Xn+1−Xn)γ1γ0ψn

)
.

This expression is analogous to the supercharge
and is a straightforward discretization of (20). T
discrete Hamiltonian and the shift operator can
defined through the lattice version of Eq. (21). Inde
for the Hamiltonian one has

H = a
∑
n

(
1

2
Π2
n +

1

2a2 (Xn+1−Xn)
2

(24)+ i

2a
ψnγ1ψn+1

)
,

4 This model suffers from doubling, in the same way as the st
bit model in the previous section.

5 We consider the following discretization ofσ : σ = an, n =
0, . . . , J , anda = 2πL/J .
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while P appears to be the operator of the forwa
lattice shift, i.e.,P =∑

n Πn(Xn+1−Xn).
The above results agree perfectly with what c

be expected from a naive discretization of the Ham
tonian (19). However, an unpleasant surprise co
next. The discrete Hamiltonian (24) fails to be exac
supersymmetric! Indeed, a straightforward compu
tion yields

δH

δε
=

∑
n

[
i

2

(
−Πnγ0+ 1

a
(Xn+1−Xn)γ1

)

(25)× γ1(ψn+1− 2ψn +ψn−1)

]
.

For slowly varying fields (which correspond
smooth functions in the continuum limit), this part
the supersymmetry variation is of order∼ 1/J and
thus it vanishes, asJ approaches infinity. This occur
because the terms in (25) correspond to lattice ana
of second derivatives, multiplied by factors of ord
a = 2π/J . In the continuum limit they are suppose
to give Lorentz non-invariant terms vanishing like

(26)− ia

2

∮
dσ (Πγ0−X′γ1)γ1ψ

′′ ∼O(1/J ).

This is what would happen, if the doubler sta
would not come into the game. For the doubler sta
the fermionic factor in the r.h.s. of (25) is of the ord
of unity, while the summation adds a factor of ordeJ
making the non-invariant contribution divergent. Th
is in contrast with the situation of the “genuine” no
doubled part, where the fermionic factor is of ord
1/J 2, while the summation just reduces the decay
one power inJ . In conclusion, the supersymmet
algebra on the lattice does not close, to ensure
supersymmetry of the Hamiltonian. Moreover, due
the contribution of doubler states, the non-invari
terms do not just fail to vanish in the continuum lim
but, on the contrary, they even diverge!

We have considered a simplified toy model rela
to the bit string. However, this model catches, besi
technical details, the crucial properties of the str
bit model under study. The result, also, is not
unexpected one. Firstly, because the Poincaré alg
which is important part of the supersymmetry alge
is gravely affected by the discretization. (In our ca
it is, in fact, reduced to continuous shifts in time a
discrete one in the spatial direction, while rotatio
are completely lost.) It would be at least strange
it were otherwise, because the string bit model
be (consistently if there was no doubling) formulat
in any dimension and any background what come
contradiction with the fact that consistent superstr
theories can exist only in very special spaces
backgrounds.6

5. Bit string quantization (à la Metsaev)

Let us solve the equations of motion, followin
[12]. This will allow us to quantize the bit string an
understand the phenomenon of doubling.

The equations of motion arising from the action
read

(27)−ẍin +
1

2a2(xγ (n) − 2xn + xγ−1(n))− xin = 0,

for the bosonic part, and

(28a)θ̇n + 1

2a
(θγ (n) − θγ−1(n))+Πθ̃ = 0,

(28b)˙̃
θn − 1

2a
(θ̃γ (n) − θ̃γ−1(n))−Πθ = 0,

for fermions. Once again, let us limit ourselves to
one-string sector and fix the class[γ1] by the standard
choice:γ (n)= n+ 1 modJ . As we discussed earlie
the solution corresponding to an arbitrary elemen
the class is obtained by permutation of labels in
“standard” solution.

The solution to the equations of motion is obtain
in a way analogous to that of [12], except the discr
Fourier transform (8a), (8b) is used. In particular,
bosonic part of the solution looks as follows:

xin(τ )=Xi cosτ +P i sinτ

(29)

+
∑

l=±1,...,±[J/2]

1

ωl

(
α1i
l ϕ̂

1
l;n(τ )+ α2i

l ϕ̂
2
l;n(τ )

)
,

whereαail are string mode operators whileϕa
l;n(τ ) are

respective modes of the string

(30a)ϕ̂1
l;n(τ )= exp

(−i(ω̂lτ − 2πln/J )
)
,

6 Strictly speaking, this is related not only to the fermi
doubling problem but also to violations of conformal symmetry
the lattice.



120 S. Bellucci, C. Sochichiu / Physics Letters B 564 (2003) 115–122

e

med
s
0b),

e

b)

nic
des
e

ally
son

s

is
clic

l
zed

,
s,

re

ally

The
the
e

on-
nd
bit
er-

N

he
ro-
u-

of

d
g
he
ge
(30b)ϕ̂2
l;n(τ )= exp

(−i(ω̂lτ + 2πln/J )
)
,

and

(31)ω̂l = sgnl
√
k̂2
l + 1, k̂2

l =
2

a2

(
1− cos

2πl

J

)
.

Once again, it is not difficult to see that, asJ →∞,
a = 1/J → 0, one recovers the solution of [12].

Let us turn now to the fermionic sector. Th
solution in this sector reads

θn(τ )= cosτΘ + sinτΠΘ̃

(32a)

+
∑
l

cl
(
ϕ̌1
n;l(τ )θ

1
l + i(ω̌l − ǩl)ϕ̌

2
n;l(τ )Πθ2

l

)
,

θ̃n(τ )= cosτΘ̃ + sinτΠΘ

(32b)

+
∑
l

cl
(
ϕ̌2
n;l(τ )θ

2
l − i(ω̌l − ǩl)ϕ̌

1
n;l(τ )Πθ1

l

)
,

where, as in the bosonic case, the sum is perfor
over l = ±1, . . . ,±[J/2], and the fermionic mode
ϕ̌a
n;l (τ ) are given by the same expressions (30a), (3

except that the hatted̂ωl and k̂l are replaced by th
“checked” onešωl , ǩl , given by

(33)ω̌l = sgnl
√
ǩ2
l + 1, ǩl = 2

a

(
sin

2πl

J

)
.

The peculiarity of the fermionic solution (32a), (32
is that, owing to the presence of a sin2 factor (instead
of cos, as in the bosonic case), very high fermio
modesl ∼ J/2 possess the same energy as the mo
in the regionl � J . In fact, the modes of the sam
energy come in pairs(l, J/2− l), in total accord with
the discussion of the previous section. The canonic
quantized model is obtained by replacing the Pois
brackets of the oscillator modes generatorsαal and
θal (wherea = 1,2) with the commutation relation
[12,13][
P i,Xj

]=−iδij ,

(34)
[
αail , α

bj
m

]= 1

2
ω̂δabδij δm+n,0,

for bosonic modes, and

(35)
{
θaαl , θbβm

}=−1

4
δabδαβδm+n,0,

for fermionic ones.
A note is in order. The solution we found in th

section corresponds to a particular choice of the cy
permutationγ (n). As proposed in [15], the physica
states of the string bit model are those symmetri
with respect to conjugations ofγ , h−1γ h, or averaged
over the conjugacy class ofγ . As we noted earlier
going to a differentγ , in the same conjugacy clas
is equivalent to a permutation of the labelsn →
h(n) [27]. Therefore, a solution with a differentγ ′ =
h−1γ h is still given by Eqs. (29) and (32), whe
now the functionsϕn;l are replaced byϕh(n);l. Then,
a physical state withB bosonic andF fermionic
modes symmetrized over the permutations generic
looks as follows:

(36)
1

J !
∑
h∈SJ

α
h−1γ h
l1

· · ·αh−1γ h
lB

θ
h−1γ h
l1

· · ·θh−1γ h
lF

|0〉,

where the labels correspond to raising operators.
ground state is unique and invariant with respect to
permutation groupSJ , so we do not have to twist th
vacuum.

6. BMN correspondence

So far, we observed that the bit string model c
tains a number of problems like fermion doubling a
supersymmetry violation. On the other hand, the
string model is equivalent to BMN sector of the sup
Yang–Mills model at any finiteJ . This equivalence
would imply that the fermionic subsector of the BM
operators is badly defined, at finiteJ . (Since there is
no definition for the BMN correspondence atJ =∞,
this would signal a self-consistency problem in t
BMN correspondence.) Hence, in this section we p
ceed to the analysis of the implications of fermion do
bling at the level of the BMN operators.

The BMN correspondence [4] relates a class
operators inN = 4 super-Yang–Mills model, which
have a largeR-charge (J →∞), to states in the close
superstring on thepp-wave background. The strin
“semantics” of the BMN language is as follows. T
light-cone superstring vacuum in the BMN langua
is given by the operator

(37)
1√

J NJ/2
tr
[
ZJ

]↔ |0,p+〉,

whereZ is the complex scalar component,Z = (φ5+
iφ6)/

√
2.
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The excited string states correspond to the inser
of “impurities” under the trace (37), according to t
following rule:

(38)DµZ↔ α†µ, µ= 1, . . . ,4,

(39)φj−4↔ α†i , i = 5, . . . ,8,

(40)χaJ=1/2↔ θ†α, α = 1, . . . ,8,

whereα† andθ† are, respectively, bosonic and ferm
onic standard oscillator raising operators. Also, in
der to get non-zero string modes, the insertions sho
be accompanied by a factor e2π ikn/J , wherek is the
position of the insertion in the row ofZ’s. Hence, e.g.
a double fermionic insertion corresponds to

1√
J NJ/2+1

J−1∑
k=0

tr
[
χαJ=1/2Z

kχ
β

J=1/2Z
J−l]e2π ikl/J

(41)↔ θ
†α
l θ

†β
−l |0,p+〉.

Thus, the BMN correspondence (language) is for-
mulated in terms ofwords or strings of products o
Z’s, with insertions of impurities and operators on t
space of allowed words. The main operators acting
words are the positionX and the shiftP . X gives the
positionj (up to a cyclic permutation) of an insertio
in the chain ofZ’s, whileP performs a permutation o
the impurity in thej th position to the(j + 1)th one.

One can define the scalar product of wordsΨ ∼
· · ·ZφZ · · ·ψ · · ·, which is given by

(42)(Ψ,Ψ ′)= 〈ΨΨ ′〉N,J→∞.
(The necessary properties required for this to b
scalar product follow from the planar properties of t
correlator in the largeN limit, [4].) As it can be seen
the shift operatorP is not self-adjoint, with respec
to the BMN scalar product, and there is an adjo
operatorP+, which corresponds to the backward sh

(43)P+ : j→ j − 1.

Since the bosonic interaction comes through
term∼ g2

YM tr[Z,φ][ Z,φ], this produces in the boso
nic part of the effective Hamiltonian a term propo
tional toP+P (due to the cyclic property of the trac
this is the same asPP+). On the other hand, the ferm
onic interactions in super-Yang–Mills theory are line
in the shifts

(44)∼ (
χΓZ[Z,χ] + χΓ Z[ Z,χ]

)
.

This leads to a contribution proportional to the sy
metric part of the shift operator∼ 1/2(P +P+) in the
fermionic part of the effective Hamiltonian. As we o
served above, when analyzing the bit string model,
leads to the fermionic spectrum doubling. In terms
the shift operators, this is explained by the existenc
such zero modes of 1/2(P + P+), which correspond
to highly oscillating modes on the lattice string.

7. Discussion

In this Letter we addressed the problem of fin
N effects in the BMN correspondence. For finiteN
andJ , the set of BMN operators maps into the Hilb
space ofJ string bits. As we have shown above, t
fermionic spectrum of the string bit model is double
An immediate effect of doubling is the failure to ge
supersymmetric limit, asJ →∞.

We considered a free theory and, on this level,
can explicitly separate the contribution of the doub
states, in order to get the correct spectrum of
string, asJ andN go to infinity. Webelieve that this
can also be done on the tree level of interacting clo
superstrings. However, as the experience of the la
shows, in the case of bit loops the doubling states
with the correct modes.

In spite of above problems, the study of supersy
metric models on the lattice have achieved, during
last several years, a considerable progress (see [2
29] for a review).7 One can hope to apply the tec
nique developed in this approach to string bits t
This is accompanied, however, by the fact that,
yond the typical lattice problem with fermion do
bling, there are specifical string problems, related
conformal invariance violation by the string discretiz
tion. One can also expect the duality symmetries to
violated too.

Returning to the BMN correspondence, one c
see that there is a class of unwanted fermionic sta
given by the fermionic doublers, which survive in t
(formal) BMN limit. In fact, the BMN sector is known
to contain some “extra” states which are conjectu
to decouple because of large masses acquired

7 While this work was in progress a paper [30] studyi
topological models on the lattice appeared.
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to the interactions [4]. On the other hand, the ab
arguments about decoupling, used in [4] would har
apply to fermion doublers, since they propagate
interact exactly in the same way, as the genu
fermionic modes.

The above fact can also signal the presence
the same problem in the fermionic spectrum of
AdS/CFT correspondence, when one tries to ob
such correspondence starting from large but fin
values ofN . In order to be able to say something mo
precise, one has to study this topic too. We hope to
this in the future. Perhaps one can avoid the proble
working directly in the model withN = ∞, which
is the super-Yang–Mills model in non-commutati
space. However, in this case, a procedure allowin
get rid of non-planar contributions must be devis
and implemented.
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