
Theoretical Computer Science 53 (1987) 67-97

North-Holland

67

PROBABILISTIC IANOV’S SCHEMES*

D. FRUTOS ESCRIG

Departamento de Iqfiwmdtica y Automdtica, Facultad de Matemdticas, Universidad Complutense,
28040 Madrid, Spain

Abstract. We present probabilistic lanov’s schemes, studying their semantics and proving the

equivalence between operational and denotational ones. We also study the equivalence of schemes

relative to them; as usual all these equivalence problems are decidable, and we prove it giving

the appropriate decision algorithms.

Introduction

Ianov’s schemes are, without any doubt, the simplest control systems. Therefore,

when we decided to study probabilistic programs, we began by studying probabilistic

Ianov’s schemes. But as probabilism and nondeterminism are closely related, we

studied nondeterministic Ianov’s schemes first, considering the three classical (nowa-

days!) ways to define a semantics of nondeterministic programs: (i) Hoare’s or

angelical semantics (forget about the infinite computations) [l, 6,7], (ii) Plotkin’s

semantics (consider all the computations) [9], and (iii) Smyth’s semantics (nontermi-

nation is a disaster) [111. In [2,4] you can find an exhaustive study of these schemes,

whose principal results will be resumed in the first section of this paper.

Then, probabilistic schemes are obtained from nondeterministic ones in the

following way: an arc leaving an OR-node is labelled by a rational number, namely,

the probability that a computation reaching that OR-node continues to the other

end node of the arc. So, we have to complicate our schemes, but this complication

is not gratuitous, as we obtain some intuitive improvements-semantics telling what

is ‘probable’ instead of ‘possible’-and some technical improvements-having a

‘natural’ semantics. If we consider trace semantics, we find an equivalence between

denotational and operational ones, which is not always true for nondeterministic

schemes.

In Section 2 we will define our probabilistic schemes and their natural semantics

(operational and denotational) and prove the equivalence. Section 3 is dedicated

to the study of the equivalence of schemes relative to the defined semantics. In

Section 4 we will define a Smyth-like semantics of probabilistic schemes which

induces an equivalence between schemes that is decidable too, although proving

this turns out to be rather difficult. Finally, in Section 5 we study trace semantics;

* This paper is an extended version of the one with the same title that was presented at CAAP-86,
and that appeared in Lecture Notes of Computer Science 214, (Springer, Berlin, 1986).

0304.3975/87/$3.50 0 1987, Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82561221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

68 D. Frutos Escrig

in this case we need a nontrivial notion of probabilistic powerdomain as the base

domain is not a flat one.

You can find more details about the subject and, in particular, about the relation

between nondeterministic and probabilistic schemes in [2].

1. Nondeterministic Ianov’s schemes

Definition 1.1. S is a nondeterministic Ianov’s scheme if S = (P, A, G, r), where P,

A, G, and r are defined as follows:

(i) P is a set of predicate symbols.

(ii) A is a set of action symbols.

(iii) G is a directed finite graph, whose nodes have labels from the set Au P u

{STOP, OR}. If a node n is labelled by a E A, there is exactly one arc leaving n; if

a node n is labelled p E P, there are two arcs, labelled TRUE and FALSE, going

out from n; and STOP-nodes are the only ones from which no arcs leave.

(iv) r is a distinguished node in G, from which all other nodes in G can be

reached. r is called the root of the scheme.

Definition 1.2. (a) An interpretation I is a 3-tuple (D, cp, $), where D is a set (Z’s

domain), cp : D x P+ {TRUE, FALSE} and + : D x A + D. We write p,(d) for p(d, p)

and $,(d) for (cr(d, a).

(b) We say that Z is free when D = A* and (Cla(d) = d. a.

Definition 1.3. (a) If we have a scheme S = (P, A, G, r) and n E G, we can define

the subscheme S, = (P, A, G,, n), where G, is the complete subgraph of G, whose

nodes are those that can be reached from n.

(b) We can classify the schemes s by paying attention to their roots: If r is

labelled by p E P and n, , n2 are nodes such that (r, n,), (r, nz) E G, E(r, n,) = TRUE,

l(r, n2) = FALSE, we will denote the scheme S by p(S,, , S,,?); if r is labelled by

a E A and (r, n) E G, we will denote S by a(&); if r is labelled by OR and

{n,, . . , nk}={nEGl(r,n)EG} we will denote S by OR(S,,,...,S,,,); and if r is

labelled by STOP, we will say that S = STOP.

Remark. In the remainder of the paper the label of n E G will be denoted by l(n),

and we will use 1 too, to denote the Boolean label on the arcs leaving a predicate node.

Definition 1.4. (a) A conjiguration (under I) is a pair (d, S) where d E D, and S is

a scheme in the class of which I is an interpretation, that is,

I= (Q cp, $I), S=(P,A,G,r),

cp : D x P’+ {TRUE, FALSE}, +:DxA’+D,

with P c P’ and A _C A’.

Probabilistic lanov’s schemes 69

(b) A computation step oj”S (under I) (d,, S,) +’ (d2, SJ, is a pair of configura-

tions (d,, S,) and (d,, S,) such that

S, = STOP =+S2 = STOP A d, = dZ;

S,=a(S;) 3 S,=S;/\d2=&,(d,);

s, =p($, s:) 3

((cp,(d,)=TRUE * S,=S;)

A (cp,(d,) = FALSE j S2 = S:) A d2 = d,);

S, = OR(S;, . . . , S;) + (3 i E (1, . . . , k}, Sz = S;) A dz = d,

(c) A computation c of S, under I, from d E D (c E C, (S, d)) is a sequence of

computation steps c: (d,, S,) -’ (d,, S,) --*I. . . , where d, = d and S, = S. We say

that c stops (cl) with result r(c) if there is some i E N such that S, = STOP and

d, = r(c).

(d) A partial computation C,E Cy(S, d) is a finite sequence of computation steps

cp: (d,, S,)+‘. . .+’ (d,, S,), where S, = S and d, = d. We say that cp stops with

result r(c,,) = d,, when S,, = STOP.

Definition 1.5. The operational semantics of S (under I) are given by

YP(S, d) =
yA(s, d)u{ll, if3 CE G(s, d), CT,
~A(S, d), otherwise;

YsM(S, d) = ”
if 3 c E C,(S, d), CT,

YA(S, d), otherwise.

Here CT denotes lc&.

Remark. We have not made explicit the dependence from I, as we do not want to

overload the notation.

To define the denotational counterparts of these operational semantics, we have

to introduce the corresponding powerdomains.

Definition 1.6. (a) The angelical powerdomain 9,(D) is given by the powerset 2D

ordered by set inclusion; (b) Plotkin’s powerdomain 9(D) is 9,(D) u g’,(D),

where pF(D) = {A E 2D (IAl <CO} and 9”,(D) = {A 1 A = {I} u B, B E 2O}, ordered by

Egli-Milner’s order relative to the flat one over D; (c) Smyth’s powerdomain 9sM(D)

is the flat domain (PF(D))L.

70 D. Frutos Escrig

Definition 1.7. The denotational semantics 9% of a scheme S, where X E {A, P, SM},

are defined as usual by means of a system of equations, relating the semantics of

S and any one of its subschemes S,. The minimal solution of the system gives us

the denotational semantics of these schemes. The system is the following:

S = STOP * Y”,[Sg(d) = {d};

S = a(S) =+ $JNl(4 = Y3SII(k(d));

S=p(S,, S,) =+

@JSKd) = COND(p,, 924s,n, sp"xuwwk
S=OR(S,, . . , Sk) =+ sP$[S](d) = bx Yd,[Si](d),

i=,

where each operator Ux is defined as follows:

UA = IJ, = U (set union),

USMAi={hAi,
if3 ic{l,..., k},Ai=I,

otherwise.

Theorem 1.8. The operational and denotational semantics Yx and Sp”, are equivalent

for each X E {A, P, SM}.

To study the equivalence of schemes, we have to introduce a normal form:

Definition 1.9. We say that S, and S, are X-equivalent (S, -xS2) for X E {A, P, SM},

if for any interpretation of both and for all d E D, we have Yx (S,, d) = Lfx (S2, d).

Proposition 1.10. S, -xSz ifSfor any free interpretation of both we have Yx(S,, E) =

~X(S?> F).

Notation 1.11. We will say that a computation c begins executing cy E A*, when LY

is a prefix of the chain of actions executed along c (a E Pre(c)); if c stops, we will

call Act(c) the chain of actions executed along c; and if c loops (cc), i.e. c does

not stop and only executes a finite chain of actions, we will denote the chain of

actions by Lact(c).

Definition 1.12. We say that S, and S, are strongly

interpretation I of both and for all d E D, we have

(i) Va E A* (ICE C,(S,, d), (Y E Pre(c))

e (~c’E C,(S2, d), a E Pre(c’));

(ii) Va~A*(3c~C,(S,,d),cJr,Act(c)=a)

equivalent (S, = SJ iff for any

e (Yc’E C',(S,, d), c’l A Act(c’) = (u);

(iii) Va E A* (3~ E C’, (S, , d), CC A Lact(c) = cy)

G (~c’E C,(Sz, d), c’C A Lact(c’) = LY).

Probabilistic Ianov’s schemes 71

We will not define here normal form schemes (see [2,4]); you only need to know

that it is very easy to associate to any normal form scheme S, a regular language

L(S) that characterizes the family of sets {Res(c)) c E C, (S, d), cl} for any interpreta-

tion I of S and any d E D. Besides we have the following theorem:

Theorem 1.13. For each lanov’s scheme S we can construct s, which is in normal form

and strong1.y equivalent to S.

Theorem 1.14. S, -*SZ @ L(s,) = L(&).

Corollary 1.15. Angelical equivalence of Ianov’s schemes is a decidable property.

To decide Smyth’s equivalence is more complicated: All the infinite computations

c must be identified, because if such a c exists, the semantics will become 1. But

by means of a careful study we can identify the nodes of normal form schemes that

witness the existence of such computations c, so that from s we can construct SSM

verifying the following theorem.

Theorem 1.16. (a) S-,, SsM

(b) S, -SM Sz e SsM -/,Sz”.

Corollary 1.17. Smyth’s equivalence of lanov’s schemes is decidable.

Finally for Plotkin’s equivalence we have the following theorem.

Theorem 1.18. S, --P&e (S,-AS*ASI-SMSJ.

Corollary 1.19. Plotkin’s equivalence of Ianov’s schemes is decidable.

The last results in this section concern trace semantics of Ianov’s schemes.

Definition 1.20. We define the (jiree) trace semantics of Ianov’s schemes S (under

a free interpretation I) as the function .YsEo (S, a) that associates to each a E A*,

the set of sequences of actions, eventually ended by STOP, executed by the elements

of C,(S, a).

Remark. We could define trace semantics under any arbitrary interpretation by

taking sequences of elements from the domain D. But they would be more difficult

to manipulate and no more general, in essence, as free interpretations are universal.

Obviously

.Y’sk:o(S, a) c_ S(A) = A* u A* . {STOP} u A”,

72 D. Frutos Escrig

so that to get a denotational counterpart of our operational semantics, we first have

to consider S(A) ordered by the prefix ordering and then 9(S(A)), where 9’ denotes

Plotkin’s powerdomain. Recall that the elements of P(S(A)) are the convex and

closed closures of finitely generable subsets of S(A). We will denote this closure

of X by 2.

Once more the denotational semantics is given by a set of equations:

Definition 1.21. A trace denotational semantics Y&,[S] of Ianov’s schemes S is

defined by

S = STOP =3 ~$&[S](CY) = {STOP};

S =P(&, S,) * Y&QUSI(Q) = COND((p,, %z,US,ll, Y&QUSzl)(a);

S = OR(S,, . . , S,) 3 Y’&[Sn(a) = 6 Y&[S,](cx).
i=,

And we have the following theorem.

Theorem 1.22. For each lanov’s scheme S, and all a E A*, we have

As YsEa(S, a) is not always convex, &o and Y&o can be unequal; but noncon-

vexity is always due to the existence of loops in S, and these are syntactically

detectable when S is in normal form. So we can define a new trace semantics 9&o

that allows the new ‘action’ LOOP, whose meaning is “and then the computation

loops”. This semantics will give us subsets of

SL(A) = A*. LOOPu A*. STOPu A”,

whose prefix ordering is trivial. Then its denotational counterpart Y& verifies the

following theorem.

Theorem 1.23. For each Zanov’s scheme S, and for all CY E A*, we have

L - dL -
~sEQ(s,a)= sdsnb).

As YsEo and Y&o are not equal, we have two new equivalence relations between

Lanov’s schemes: --sEQ and -&o. In fact, it is very easy to prove that they are not

the same.

Probabilistic ianov’s schemes 13

We have the following results:

Proposition 1.24. By means of its normalform we can associate to each Ianov’s scheme

two more regular languages Lf(S) and L’(S) that reject its partial and looping

computations, so that we have

S, - SEQS* e L(S) = L(S) A L’(S) = L’(S) A L’(S) = L’(S).

Corollary 1.25. Strong equivalence is exactly SEQ-equivalence, and it is decidable.

Proposition 1.26. From Lf(S) and L(S) we can construct a new regular language

L”(S) that reflects the convex closure of .YsEo to get YiEQ, so that we have

s, -&SZ e L(S) = L(S,) A L’(S) = Lf(S,) A L”(S) = L”(S).

Corollary 1.27. dSEQ-equivalence of Ianov’s schemes is a decidable property.

2. Probabilistic Ianov’s schemes: Definitions and semantics

Definition 2.1. A probabilistic Tanov’s scheme is a nondeterministic one, in which

the arcs leaving an OR-node are labelled by probabilities (positive rational numbers),

so that the sum over all the outgoing arcs is 1.

Intuitively, when a computation reaches an OR-node, it consults the value of a

discrete random variable and chooses between the arcs leaving the node according

to their probabilities.

Definition 2.2. (a) We will denote by S the nondeterministic scheme obtained from

a probabilistic scheme S by deleting the probabilities.

(b) A precomputation c of S is a partial computation of S; each such c has a

probability prob(c) that is defined as the product of the probabilities of the arcs

leaving the OR-nodes chosen along c.

Example 2.3. Consider scheme S in Fig. 1 and a free interpretation I with (P,,(E) =

p,,(d) = FALSE, cp,,(dd) = TRUE. We have amongst others the following precompu-

tations:

cl: (S,, El - “2 (S2, E)+ (S,, a),

prob(c,) = $;

c2: (S, 9 E) - “4 (s,, E) “4 - (s4, E)+(&, E)- “2 (S*, E) + (S,“, c),

prob(c2) = $.

.!I. Frutos Escrig

Fig. 1.

Definition 2.4. (a) We say that a precomputation c: (S,, d,) --** (S,, d,) stops, if

S, = STOP but S,_, #STOP; d,, is its resuft (res(c) = d,,). We denote by Pc,(S, d)

the set of precomputations of S (under I) from the input d and by Pcf,(S, d) its

subset of stopping precomputations.

(b) Given an interpretation I of S, we define the operational semantics of S (under

I) as the function .Y rRoR(S, d) that associates to each input d E D that probability

distribution which assigns to each possible result d’ E D the sum of the probabilities

of the elements in Pcf,(S) with result d’, and that associates to i the complement

to 1.

To define a denotational semantics, we need a probabilistic powerdomain.

De~nition 2.5. P PRoR(D,) is the domain whose elements are the discrete probability

distributions over l2, ordered by

p~p’~jd~D,p(d)~p’(d).

Proposition 2.6. ~pFROB(D,) is a cpo.

Proof. It is very easy to check that if {pi / i E I} is a directed subset of PPRoB(Dl),

its lub, p, is given by

p(d) = supi+z,pi(d), Vd E 0,

p(l) = infi,~Pii~)-

So that in general we have

p(x) = limiE,pi(x), Vx E D,.

You can find in [2,3] a detailed proof of a more general result. q

As usual, to define a denotational semantics we need a structuraf classi~cation

of schemes as is given in Definition 1.3(b), except for the case when r is labelled

by OR. If r is fabelled by OR, {(v, n,), . . . , (r, nk)} is the set of arcs leaving r, and

each one of them is labelled by qi, we denote S by OR(q, : S,,, , . . . , qk : S,,).

Probabilistic Ianou’s schemes

On the other hand, by (q, : x, , . . , ql- : xk) we will denote

concentrated in {x, , . . . , x,}, such that p(x,) = q,, 1 G i< k.

15

the finite distribution p

Definition 2.7. The denotational semantics of a probabilistic Ianov’s scheme S (under

I) is the function .!Y’dpRoBIS] : D+ PPROR(DI) defined by:

S = STOP + L&,JJS](d) = (1: d);

S = ONq, : s,, . . . , qk : Sk) =+ $wxdSn(d) = i 9,. %dSi~(d).
i=l

To check that LYpdpRoB is well defined, we only have to check the continuity of the

function Cf=, q1 . pi. This is an immediate consequence of the fact that finite sums

and limits commute.

Theorem 2.8. Under any interpretation, we have for each probabilistic scheme S that

9$ROB[S](d) = .YPROB(S, d) for all d E D.

Proof. First of all we will see that our operational semantics verifies the equations

defining our denotational semantics. Indeed, it is only nontrivial to check the last

equation: If S = OR(q, : S, , . , qk : S,) and c E Pcf, (S, d), c must begin with a step

(S, d) -:, (S,, d) for some i E { 1, . , k}; the rest of c will be an element of

Pcf, (S,, d). So each result of some cj E Pcfr(Si, d) is also a result of some c E

Pcf, (S, d) with prob(c) = q, . prob(c,) and, conversely, we have

Y r.K.oa(S, d) = ; qt. Ypaon(S!: d).
,=I

Then, as the denotational semantics is defined as the least solution of the considered

system, we have

To prove the converse inclusion we will consider approximations to the operational

semantics. 9” ,XRoB(S, d) for n E N are defined in the same way as Y,,RoB(S, d) but

allowing only precomputations of length no greater than n. It is clear that

Y PROH(S, d) = L_l KAKAS, d)
ntN

16 D. Frutos Escrig

and we can check by induction on n that

JGROB(S, ~)~%,BUSTl(~),

for each n EN. Indeed, if n = 0 and S # STOP, we have

%03(S, d) = (1: ~E~d,RoBlISll(~);

and if S = STOP

yopRoB(S, d) = (1: d) = %oBuSn(4.

Now, we will suppose that the result is proved for n 4 k, and we will prove it for

n = k+ 1. For instance, if S = a(S,), any c E Pcf,(S, d) will begin with the step

(S, d)+’ (S, , t,bo (d)), and continue with an element of Pcf, (S, , (CI, (d)). So

Y ;&CS, d) = %wx(S,, &Cd)).

As

%&R(S,, ICr,(d))~ydpRoB[Is,g(~l,(d))

by the induction hypothesis, we can conclude the desired inclusion from the

definition of the denotational semantics. On the other hand, if S=

OR(q, : S, , . . , qT : S,), we have

The other cases are very similar. 0

3. Equivalence of probabilistic Ianov’s schemes

As in the nondeterministic case, we will manage regular languages, although now,

of course, we need probabilistic languages. They will be a version of those defined

by Paz [8].

Definition 3.1. (a) A probabilistic jinite automaton is a tuple d = (S, I, sO, F, A),

where S is a finite set of states; I the input alphabet; s,, E S the initial state; FE S

the set of acceptor states; and A the transition function, associating to any x E I a

square matrix of rational nonnegative numbers, whose dimension is the cardinality

of S and such that the sum of the elements in each row is 1.

(b) We will denote by L(d), the language accepted by &. L(d) is the set of pairs

(q : a), where (Y E A* and q is the sum of the probabilities of the computations of

d that accept CL

(c) Probabilistic regular languages are the languages accepted by probabilistic

finite automata.

Probabilistic Ianov’s schemes 71

Proposition 3.2. fie equivalence ofprobabilisticjinite automata is a decidable property.

Proof. See [2,8]. 0

We will also need a notion of strong equivalence.

Notation. (a) Pca,(S, d) is the set of precomputations whose last step executes an

action (the root of S,_, is labelled by some a E A); Pca,(S, d) also contains the

precomputation of length 0.

(b) For c E Pc,(S, d), Act(c) will denote the sequence of actions executed

along c.

(c) We say that c E PC, (S, d) loops, if there is neither an extension of c executing

more actions, nor a prefix of c with that property. We will denote by PI, (S, d) the

set of all loops.

Definition 3.3. We say that S, and S2 are strongly equivalent (S, = S,) iff under any

interpretation I of both and for all d E 0, we have for each (Y E A*:

6) c prob(c) = C prob(c),

where A(S,I,d,cz)={c~Pca,(S,d)lAct(c)=(~};

(ii) c prob(c) = C prob(c),
ctF(S,, 1,d.m) c~F~S~,f,d,a)

where F(S,I,d,a)={c~Pcf,(S,d)lAct(c)=a};

(iii) c prob(c) = C prob(c),
~cL(S~.l,d,a, c~L(S~,l,d,a)

whereL(S,Z,d,cz)={cEPl,(S,d)lAct(c)=cw}.

Remark. It is easy to check that (iii) follows from (i) and (ii), because any precompu-

tation executing a chain of actions will loop iff it neither executes a new action nor

stops. Nevertheless, we will preserve the three conditions to keep the similarity to

Definition 1.12. Note that there the three conditions are independent of each other,

as we can infer the probability, but not the mere ‘possibility’, of a loop from those

of precomputations. See also the following example.

Example 3.4. In Fig. 2 you can see a probabilistic scheme S such that under any 1

andforalldED,wehavePl,(S,d)=@,sinceC. LFFCS, ,, d, aj prob(c) = 1. Nevertheless,

S has an infinite computation that loops.

STOP

Fig. 2.

78 D. Frutos Escrig

Definition 3.5. We say that two probabilistic schemes S,

equivalent (S, - PRoeSz) iff under any interpretation I and

Y PROR(SI, d) = ~PROB(S?, d).

Proposition 3.6. S, = S2 + S, -PROB S2.

and S2 are semantically

for each d E D, we have

Proof. As free interpretations are universal, we have that S, = S, iff, under any free

interpretation, we have .YpRoB(S, , e) = YpRoB (Sz, E). This is trivially implied by

Definition 3.3(ii). 0

Now we introduce probabilistic schemes in normal form.

Definition 3.7. We say that a probabilistic Ianov’s scheme is in normal form, when

its graph is constituted by blocks as shown in Fig. 3. There P = {p, , . . , p,,} and

each leaf hii represents either a STOP-node, or an action node from which an arc

is leaving to the root of another (perhaps the same) block, or a LOOP-node

representing any scheme that neither executes actions nor stops. Moreover the root

of the scheme must be that of one of the blocks.

ypl\
p3vp2y

P3
p3wp2Yp3

Fig. 3.

Theorem 3.8. For each probabilistic Ianov’s scheme S, we can construct an sin normal

form, which is strongly equivalent to S.

The proof of this theorem is based on the following lemma.

Lemma 3.9. For each probabilistic Ianov’s scheme S, we can construct an S’ which is

strongly equivalent to S and is in the class ISp of inductive schemes that can be

constructed by application of the ,following rules:

(1) STOPE IS”.

Probabilistic lanov’s schemes 19

(2) Zf S E ISp, then for each a E A, a(S) E IS”. (Formally, if S = (P, A, G, r), then

a(S) = (P, A, G’, n) where G’ is obtained by adding a new node n labelled by a and

connected to r by an arc.)

(3) Zf S,, S2 E ISp, then for each p E P, p(S,, S,) E ISp.

(4) For all k E N, if S, , . . . , S, E ISp, q, , . , ql, E Q’, and If_, qz = 1, then

OR(q,:S ,,..., q,:Sk)EISP.

(5) Finally, to allow bucking arcs, when S = (P, A, G, r) E ISp and n is a STOP

node such that there is only one arc (n’, n) arriving at n, we have S” = (P, A, G-“, r) E

IS” where G--” is obtainedfrom G by removing n, and replacing the arc (n’, n) by (n’, r).

Proof. The proof is by induction on the number k of nodes of S that are not labelled

by STOP. If k = 0, then S = STOP, and we can take S’ = STOP. If k = t + 1, we check

if some of the arcs of scheme S arrive at its root. If so, we add a new STOP-node

for such an arc and replace the arc by a new one reaching the added STOP-node.

When all arcs of the scheme S reaching its root are replaced, we classify S according

to the label of its root. For instance, if S = p(S, , S?), it is possible that the subgraphs

G, and G, defining S, and Sz are not disjoint. In that case, we split their common

nodes, obtaining a graph G” that has two disjoint subgraphs GT and Gf, so that

the induced scheme S” = p(Sr, ST) verifies S = S*. But it is clear that ST and Sf

have less nodes not labelled by STOP than S has, so that, by the induction hypothesis,

we can construct Si, Si E ISp, S{ = ST, Si = ST. Now it is clear that S’= p(S;, Si)

is an inductive scheme and S’ 2- S.

We can reason in a similar way when S = a (S,) or S = OR(q, : S, , . . . , qk : S,,).

Finally, when our original scheme S had some arc reaching its root, we have

modified S getting S, Then we have constructed its inductive form S{. If we observe

how this is done, we see that S; will have several copies of each one of the

STOP-nodes that were added to get S,, and we only have to remove those copies

and redirect the arcs reaching them to the root of S;. So we get S’, inductive scheme

by rule (5) in the definition, and clearly S- S’. q

Remark. A more formal treatment of the considered copies of the introduced

STOP-nodes would be needed to get a completely formal proof. But we have avoided

this, as this treatment is very similar to the development done in the proof of

Theorem 3.8. Therefore, when we construct S, we can suppose that SE ISp.

3.1. Construction of S

S is constructed by structural recurrence, considering the way in which S is

constructed as an element of IS’. However, we cannot do a straightforward inductive

construction, but we have to define, at the same time, a function f that associates

the STOP-nodes in S to those in S such that for any STOP-node n in S we have

for all (Y E A* and under any free interpretation I:

C prob(c)= C prob(c),
CtCCn,a) ctC‘(n,a)

80 D. Frutos Escrig

where

C(n,a)={c~Pcf,(S,s)lc stops over n, Act(c)=a}

and

(1) If S = STOP, S is the scheme shown in Fig. 4, and f associates to any

STOP-node in S, the only one in S. Note that S is defined for a fixed P.

(2) If S = a(S), then S is the scheme shown in Fig. 5, where each S, stands for

a copy of the normal form of the subscheme S,. As each STOP-node in S is in a

copy of S,, f will associate to each of them the same node as f, (defined by the

induction hypothesis when constructing 3,) did, when they were considered as

STOP-nodes of S.

(3) The case S = OR(q, : S, , . . . , qk : Sk) is a trivial generalization of the previous

one, and so it does not need a more extended comment.

(4) When S =p(S,, S,), we consider S, and S, and set under each OR-node in

the root block of S the same subscheme as that beginning in the corresponding

node of F (resp. z) if the OR-node is in a branch including an arc labelled by

TRUE (respectively FALSE) leaving the node labelled by pi, where p = pi. The

function f is defined by considering f, and f2, and taking into account that S, and

S, are subschemes of S.

(5) Finally, if S is obtained from S, by replacing (n’, n) by (n’, r), we will construct

S by introducing some modifications in 3,. We take the set N of nodes in S, from

STOP STOP STOP STOP

Fig. 4.

p2’p1 \P2
.

IP”\ NPn
OR OR OR -Y3R

1 1
I I

1
I

1

a
I 77 7

% s1 s1 %

Fig. 5.

Prohahilistic lanov’s schemes 81

which an arc, labelled by q say, is leaving to a node in f;‘(n). We replace such an

arc by a new one reaching a new node that we have to add to S, Let n”~ N. We

will consider the test that takes us to n” (that is, the tuple of Boolean values of the

arcs of the path from the root of n”‘s block to n”). Then we take for n”’ the OR-node

in the root block of S, that can be reached following that test and for { nj) j E J} the

set of nodes such that (n”‘, n,) E S, with q, = l(n”‘, n,). If, for all j E J, n, l ,fl’(n”),

then we add only one node, labelled by LOOP, that will be accessible by an arc

with probability q. Otherwise, let

t= c 9,.
I,(n,J=tl

We will consider the rest of the n, and, for each nj labelled by a, E A, we add a

node labelled by a,; for each node labelled by STOP, we add a new node labelled

STOP; and the same for the nodes labelled by LOOP. All these arcs will be reached

from n” by an arc with probability q. qj/(1 - t). Finally, to define J we observe that

there are two kinds of STOP-nodes in S: those that come from S, and those added

by our construction. For the former we define f by extending f, and, if m was added

when we studied rri, we take f(m) =f,(n,).

Proof of Theorem 3.8. We have to show by structural induction, that S = S and that

the defined f verifies the condition imposed on it.

(1) If S = STOP, everything is obvious.

(2) If S = a(S,), we have S, = S, and f, verifies the imposed condition. To see

that S = S, we only have to observe that for c E Pc,(S, E) with ICI 2 n +2 we have

c=c,. C?, where Act(c,) = a, prob(c,) = 1 and cz E PC, (3, , a). The same is true for

all the computations c of S. For the same reason, if m is a STOP-node of S, we

consider the test that takes us to the copy of S, in which m lies and, if, under (free)

Z, F does not pass it, then it is clear that

1 prob(c)=O= C prob(c).
Ci<‘(IVY) CE Cl n,‘r ,

Otherwise, when (Y f a. p for any /3 E A*,

C prob(c)=O= C prob(c),
ct(‘(n.rr) rtC:<n,ru)

too. Finally, if a = a. p (denoting by C, and C, the corresponding sets for S, and

S,), we have

C prob(c) = 1 prob(c)
KC(tI.LY, ctCl(n.13)

= Cc& p) prob(c) = C prob(c).
ciC:(n,a)

(3) The cases S = p(S,, S,) and S = OR(q, : S,, . . . , qk : Sk) are similar.

(4) Finfly, if S is obtained from S’ by replacing the arc (n’, n) by (n’, r), we

have S’= S’ and f’ verifies the imposed condition. To prove that S 2- S, we use an

82 D. Frutos Escrig

intermediate scheme S” that is (informally) defined by Fig. 6 and observe the

modifications of S’ to get S.

Since

c t”. qrj = &;/Cl - t),
“=O

we have S= S*, because once we reached the new OR-node of S”, we can turn

around in the loop any number of times (u with probability t”) before reaching m,.

So we only have to prove S = S”. Taking S, = S and S2 = S*, to check Definition

3.3(i) (and similarly Definition 3.3(ii)) we introduce the set A”(S,, I, d, a), defined

in the same way as A(S,, Z, d, a) but considering only precomputations of S that

go exactly u times along the arc (n’, r), and the set A“(&, Z, d, a), defined as

A($, I, d, a) but considering only the precomputations that cross exactly v times -
the OR-nodes added to S’ to get S*. Then we can prove

c prob(c) = 1 prob(c’),

by induction on v.

If v = 0, the elements of A”(SI, I, d, a) are in correspondence with those of

A(S’,1,d, a) and the elements of A”(&, I, d, a) are in correspondence with those

of A(S’, Z, d, a), but we know by hypothesis of the structural induction, that

c prob(c)= 1 prob(c),
ccA(S’,I,d,a) ctA(S’,f,d,u)

and from this our result follows.

If v>O, each CE A”(S,, I, d, a) can be broken down in c, E Pcf(S’, d), stopping

over n with Act(c,)=p, and c2~A”~‘(S,,Z,~~(d),y) where tip(d)=

. 2 +D (d) and cx = By. Analogously C’E A”(&, I, d, a) can be divided in

z’rt Pcf(S’ dj stopping over some element of (j”‘)‘(n) with Act(c{) = /3’, and
-

C$E A”-‘(&, i, $o.(d), y’) where (Y = P’y’. Then, by the hypothesis of our structural

induction and the induction hypothesis on v, we have

ccc~n8~ prob(c) = J prob(c’)
c’t C’(n,fi)

S- OR q A rl r.s . . .
STOP tl t

(4
s

Fig. 6

Prohahilisfic Ianov’s schemes

and

83

c prob(c) = c prob(c’).
c~A~-‘(S,,l&(dLy~ ~‘iAL~‘(SL,/,~~(d),y)

From these facts, the desired result follows without any additional difficulty.

We can also apply the similarity between S and S”, to prove that f verities the

imposed condition. Therefore, we define C” as C, but using S” instead of S, and

obviously

I, n) prob(c) = C prob(c).
c i C*(r,,n,

We can prove

,,,;, ~~) prob(c) = 1 Prob(c),
ct(‘(n,u)

by following a method very similar to the one used in the previous part of this long

proof. We define C”(n, cy) in the same way as C(n, a) but allowing only pre-

computations crossing u times the arc (n’, r); and we define C*“(n, cy) as C*(n, a)

but considering only the precomputations that go u times through the OR-nodes

added to S to get S*. By induction on u we can prove that

<_I;, ~~) prob(c) = C prob(c). •I
ctc‘*“(fI,n)

Example 3.10. In Fig. 7 you can see a probabilistic scheme S and its corresponding

normal form S. The reader is urged to follow the steps to get S.

Using the normal form we will associate a probabilistic automaton to each

probabilistic scheme.

Definition 3.11. Given a probabilistic scheme, we define 91(S) as the probabilistic

automafon whose states are the nodes of S, excluding its OR-nodes; its alphabet is

s =

‘4 G / p\
ORdb

\
‘5
2

a

I
ST6P

OR
-----OR

1 I1

7

HP\
STOP STOP

-p\
STOP

Fig. I.

84 .!I. fvutos lscrrg

PupnA, where P={p,,... , p,}; s0 is the root of S; F is the set of STOP-nodes;

and the transition function f: P u p u A + (N x N + CD) is defined by

f(p)(n, n’) = 1,

ifp # pn, l(n) =p, (n, n’)~ G,-, l(n, n’) =TRUE;

f(F)(n, n’) = I,

ifp fp,, l(n)=p, (n,n’)~G~, I(n,n’)=FALSE;

f(P,)(% n’) = Qn”, n’),

if f(n) =pn, (n, n”), (n”, n’) E G,-, l(n, n”) = TRUE;

f(KJn, n’) = l(n”, n’),

if l(n)=p,, (n, n”), (n”, n’) E Gg, 1(n, n”) = FALSE;

f(a)(n, n’) = I

if Z(n) = a, (n, n’) E Gs;

f(x)(n, n’) = 0 otherwise.

We will denote by LPRoB (S) the probabilistic language accepted by %(S).

Remark. If S does not have predicate nodes, action nodes will play the role of pn

in this definition, and we would have to add an artificial root node.

Proposition 3.12. (a) LPRoR(S) accepts only pairs (a, q) where q E Q n (0, 11, and

a = t'a' . . . t”a”t”+’ with a’eA, t’=r{ . . . rf, whererjE{p,,pj}.

(b) ((Y, q) E LPROB (S) zx under any interpretation I such that ~~,(a’ . . . a’) = qi”

for all t E (0, . . . , m}, j E { 1, . . . , n} we have

c
ctF(S,I,~,a’...a’)

prob(c) = q.

Proof. Both are immediate consequences of the way in which ‘zx(S) was defined. [7

Corollary 3.13. Zf S, -pRoeSz, then LPRoB(S1) = LPRoR(S2). So LPRoB(S) is well

defined, as it does not depend on the normal form chosen to define ‘3 (S).

Theorem 3.14. Let S, and S, be two probabilistic schemes. Then we have

S, - PROBSZ e L PRoB(S,) = LPROB(S,).

Corollary 3.15. The semantical equivalence of probabilistic Ianov’s schemes is deci-

dable.

Proof. If we have to compare S, and Sz, we only have to construct their normal

forms, and from them the automata %(S,) and ?I(&). Finally, we can apply

Proposition 3.2. q

Probabilistic Ianov’s schemes 85

4. Alternative treatments of nontermination in probabilistic schemes

The semantics of probabilistic schemes that we have just defined gives us the

probability of any possible output and also the probability of a nonstop computation.

Therefore we can classify it as a Plotkin-like semantics. Our next question would

be whether we can define some reasonable angelical-like or Smyth-like semantics.

The first one would give us the probability of any possible output and, then, by

complement to 1, also the probability of nonstop computations. So this new semantics

would be equivalent to the one earlier mentioned. On the other hand, a Smyth’s

semantics, defined by considering nontermination with positive probability as a

disaster, would be considerably different. In the following we will study it.

Definition 4.1. (a) We will take as semantical domain 9z”(D)= Y,,(D)u{NT},

with NT (nontermination) as its bottom element, and the order induced by the one

in p’,(D,), that is to say the trivial one: if p,, pz~ P’,(D) and p, up*, then p, = p2.

(b) Given a probabilistic scheme S and an interpretation I, we define the Smyth-

like semantics of S as the function YpR_SM(S, d) given by

ifdzD ~MU~~(S, d)(d’) = 1,

otherwise.

Unfortunately this semantics is not continuous relative to the natural ordering

over the set of normal form schemes that is obtained by taking LOOP as bottom.

This can be seen in the following example.

Example 4.2. Let S,, n EN, and S be as in Fig. 8. Then, we have (S,), + S, but

Y PR_sM(S,,, F) = NT and YpR.sM(S, e) = ((i)“: a”-‘[n EN) f NT.

Therefore, we cannot define a denotational semantics equivalent to our Smyth’s

semantics. And we could think that the equivalence induced by it is not decidable,

arguing that in finite time we can only approximate the semantics of S by that of

some S,,. Fortunately this intuitive idea is not correct, as this new equivalence

between probabilistic schemes is decidable, too. Next we will prove it.

To detect nontermination with positive probability, we have to introduce the

notion of ‘sets of nodes with positive probability of nontermination’; these will be

sO
= LOOP . . . sn+l = OR

/\

‘/2
STOP a

s =

Fig. 8

the sets of nodes such that, if the precomputations that begin by executing some

chain of actions (Y lead us to each one of their nodes, then their extensions will not

terminate with some positive probability.

Definition 4.3. We will define sets of nodes with positive probability of nontermination

(snppnt) as those sets of OR-nodes {n,, . . , nL} of a normal form probabilistic

scheme such that, under any (free) interpretation Z, there is some i E { 1, . . . , k} such

that a precomputation in Pc,(S,,, E) does not stop with positive probability.

These sets do not depend on the probabilities over the arcs of S, but only on its

nondeterministic structure. So we will introduce a similar definition for nondeter-

ministic schemes.

Definition 4.4. We will define sets of nodes with partial computation without completion

(snpcwc) as those sets of OR-nodes {n, , . . . , nk} of a nondeterministic scheme in

normal form such that, under any (free) interpretation Z, there is some i E { 1, . , k}

and c E Cy(S,,, E) that cannot be extended to a final computation.

Theorem 4.5. The snpcwc’s of an nf (normal form) nondeterministic scheme can be

detected by an algorithm

The proof needs some previous lemmas.

Lemma 4.6. Given an nf nondeterministic scheme S, and a set of roots of some blocks

in S, {r,,. . . , rk}, if there is some free interpretation I such that.for all i E (1, . . . , k},

any c, E C’j(S,,, E) can be extended to some c: E C,(S,, E) that stops, then for each i

we can find Ii with the same property as I, and such that there is some c E Ct, (S,, , E)

that stops, and whose length, measured by the number of blocks that it traverses, is

less or equal than some constant M that only depends on the number of blocks

constituting S.

Proof. Let B the number of blocks in S. We take as ML the number of k-tuples

that can be made up by subsets of the set { 1, . . , B + 2) (The elements of this set

represent the blocks of S and the states LOOP and STOP.) We consider the tree of

computations of (S,, , . . . , S,,), so that each node of the tree corresponds to some

cz E A* and is labelled by the tuple of sets of blocks that can be reached from r, by

some c E C, (S,, E) executing (Y, and including LOOP or STOP if there is some prefix

of (Y and some c E C,(S,,, E) executing it, looping or stopping afterwards. Then if

I verifies the hypothesis, we will have for each i some CE C,(S,,, E) that stops. We

will take (Y = Act(c) and consider the node of the tree associated to (Y. If it is in a

level below ML, we are done, and we can take I, = 1. Otherwise, in the branch of

the tree that takes us to the considered node, there will be some nodes labelled in

the same way. If LYE, a2 are the sequences associated to two of them, we will change

Probabilistic lanov’s schemes 87

I, taking cp’(cu,p) = q(crJ?), for all /3 E A*, and cp’ equal to cp for the rest of the

chains. It is clear that 1’ verifies the same property as 1, but now we have a node

associated to a final computation c E C,(S,, F) in a lower level. Iterating this process,

we will take c to a level below Mk, obtaining the desired interpretation. 0

Corollary 4.7. Under the same hypothesis as in Lemma 4.6, there will be some (free)

interpretation I’ with the same property as I, and such that for each i E { 1, . . . , k} there

is some c, E C,(S,, F) that stops and has length less than k. M.

Proof. First we apply Lemma 4.6 to r,, obtaining I, such that some c, E C,l(S,, , F)

stops, having length sr s M. We will use the same tree as constructed for the proof

of Lemma 4.6 pruning it at level s,. Next we consider r2 and check if any second

components of the labels over the nodes of that level contain STOP. If so, we will

have some c7 E C,,(S,, E) that stops and has length less than s, . We take I1 = I, and

go ahead with r3. Otherwise, we will take some of the nodes with a nonempty second

component, say {r:, . . . , r:}. Obviously, we can apply Lemma 4.6 to this set, getting

1; such that there is some c; E C,,(S,;, e) that stops and has length s2 G M. Then we

take cy, = Act(c,) and define 1, by +(LY,/~) = cp;(/3) for all p E A*, and cpz equal to

‘p, for the rest of the sequences. So c, remains in C,?(S,,, F) and ci turns on some

cz E C,z(S,, , E) that stops, having length s, + sz s 2 . M. Finally, we prune the new

tree (under 1J at level s, + s2 and consider r,. Step by step we define Z,, . . . , 4. It
is clear that the last one verifies the conditions of the searched I’. 0

Lemma 4.8. IflV={n ,,..., nk} is not an snpcwc of S, we can find an interpretation

I” with some periodicity properties (to be explained in the proof) such that for each

i E { 1, . . . , k} any c E Cy,,(S,,, e) can be extended to a final computation, whose length

is not greater than that of c plus 2 . B. M, with B and M as in Lemma 4.6.

Proof. If N is not an snpcwc of S, there is some I such that any c E C’j(S,,, E) can

be extended to a final computation. If we consider for each a E A the set R, of

roots of blocks in S that can be reached from some n, by an arc labelled by a, then

R, verifies the hypothesis of Corollary 4.7. So we can construct a forest (finite set

of trees) in the following way:

- There will be a tree for each a E A, such that R, f 0, with its root labelled R,,.
_ By applying Corollary 4.7 to one of these sets, R say, we will have an interpreta-

tion I, such that for each r E R there is some c E CIR(ST, F) that stops with length

less than B 9 M. We will consider for each (Y E A* the sets R, of blocks of S that

can be reached by some c E CyR(S,, E) executing (Y with length B. M. Clearly, if

R, # 0, it verifies the hypothesis of Corollary 4.7, and we will add to the tree whose

root is R a node below it labelled by R,.

- We add, in the same way, new nodes below any of the previously introduced

ones and stop the growth of each branch when it has two equally labelled nodes.

88 D. Frutos Escrig

To define I” over Q we take cx = a. a1 . . . a,. a,+, , where Icyi = B. M for all

j E {l, . . , t} and Ia,+,1 < B. M. We check if there is a sequence of nodes in our

forest, m,, . . , m,, such that (1) m, is labelled by R, and, for any j E (0, . . , t - l},

either mj+, is a son of m,, or mj is a leaf of some tree and m,,, is a son of the other

node in the same branch as m,, labelled as m,; and (2) a,,, is the sequence of

actions that made m,,, appear below its father. If so, we define (p;(a) = ~;(a,+,),

where 1’ is the interpretation associated, by applying Corollary 4.7, to the label of

m, in the second step of the construction of the forest. Otherwise, we can define I”

over (Y in an arbitrary way. Let us check that I” so defined verifies the lemma.

Indeed, if c E C~,,(S,,, F), Act(c) = cy. We break down (Y as before and it is clear that

c ends with some c, E C’i(S,,., F) with n’ in the label of m,. Then either c, has an

extension that stops with length less than M. B, or it has an extension of this length

that does not stop. In the first case, we are done. In the second case, we can extend

the sequence m, , . . . , m, by a new node m,,, , so that the extended sequence cz has

the same properties as the original and C~ ends over some n” in the label of m,,, .

If I”’ is the interpretation associated to m,,, , we have some cj E C,.,.(S,,,,, F) that

stops with length less than B. M. As we have defined I”, we can extend cz by cj,

getting the desired extension of c. q

Now we can give the algorithm to accomplish Theorem 4.5.

Algorithm. We will consider the restrictions of free interpretations to sequences of

length at most B. M (there are finitely many) and we will use these restrictions to

construct a forest as the one defined in the proof of Lemma 4.8. We will accomplish

this construction by the following backtracking procedure:

- We expand each node of the forest that is not a leaf, as defined in the aforemen-

tioned proof, by considering an interpretation I’ such that (i) if {r, , . . . , rk} is the

label of the considered node, we have for each i E (1,. . . , k} some cj E C,.(S,, F)

that stops with length less than B. M; and (ii) none of the sons induced when

applying I’ contains LOOP in its label.

- Any node that is not a leaf and can neither be expanded as explained before

will be considered as a failure node of the process, so that it will bring about a

backtracking step of our construction.

If, finally, we get a forest as the one in Lemma 4.8, then N is not an snpcwc,

and conversely.

Proof of Theorem 4.5. Obviously our algorithm is effective. On the other hand, if

N is not an snpcwc, Lemma 4.8 tells us that some forest as constructed by the

algorithm exists and, since the search is exhaustive, it will be found. Conversely, if

there exists a forest as the one in the proof of the lemma, we can define the associated

interpretation I” that bears witness to N not being an snpcwc. 0

Probabilistic Ianov’s schemes 89

Now we will relate snppnt’s and snpcwc’s.

Proposition 4.9. The snppnt’s of an (nf) probabilistic scheme S are exactly the snpcwc’s

of the associated nondeterministic scheme S.

Proof. (a) Let N be an snpcwc of S. Then, under any I, we have an n E N and a

c E Cp(S,, E) that cannot be extended to a final computation. But c, having some

positive probability, can be considered as an element of PC, (S,, E) and, therefore,

we have a computation of S,,, under Z, that does not stop with at least the same

probability. So N is an snppnt of S. (b) Conversely, if N is not an snpcwc of S,

we have some interpretation I” as defined in Lemma 4.8, so that each c E Cy(S,, E)

has an extension to a final computation whose length is less than 2 . B. M plus the

length of c. This extension will be executed, when c is finished, with a probability

greater than some fixed e > 0 (we can take F~) equal to the least probability over the

arc’s in S and F as E:.“~). Thus, a computation in Pc,(S,, E) will stop having

length less than 2 . B. M with probability greater than a; and if its length is greater

than k. (2 . B. M), it will stop with length less than (k-t 1) . (2 . B. M) with proba-

bility greater than F. So, a computation in Pc,(S,, E) will have length greater than

k. (2 . B. M) with probability (1 -E)” or less. Thus it will not stop, with length

greater than anything, with probability (1 - F)~ = 0. So I” proves that N is not an

snppnt of S. Cl

By knowing the snppnt’s of S we will associate a probabilistic automaton to it.

Proposition 4.10. Given an nf nondeterministic scheme S, we can construct a finite

automaton 91d(S) that tells us, given a word t’a’ . . . fkakfk+‘, which is the set oj

OR-nodes in S that can be reached by some c E Cy(S, e), Act(c) = a, after passing the

test tkt’, under Z, such that (P,,(a’ . . . a’) = q:+’ for all jE (0,. . , k}, i E (1,. . . , n},

where tJ = q{ . q!,.

Proof. Very similar to the classical proof to get a finite automaton equivalent to a

given nondeterministic automaton. 0

Definition 4.11. We will associate to each (nf) probabilistic scheme S, a probabilistic

automaton 91sM(S) simulating ‘3(S) and ‘IXd(S-) in parallel, so that, if the input

begins by some prefix such that Yld(S) gives for it an snppnt of S, then BISM(S)

rejects the input; otherwise SISM(S) behaves as R(S) having the same acceptor

states. We will denote by LPR-“M (S) the language accepted by 9LSM(S).

Theorem 4.12. Given nf probabilistic schemes S, , Sz, we have

s, -g s, e LPR.SM(S,) = LpR-SM(SJ

90 D. Frutos Escrig

Proof. (*) If JL’~-‘~(S,) # LPR-sM(SJ, we have an interpretation Z and a sequence

CY E A* such that, if w is the associated word w = t’a’ . . . tka”tk+‘, we have

(q, : w) E Lp”-SM(S,), (qz:w)EL PR-SM(SJ

with q1 f q2 (q, > q2 say). Then in S,, once we have executed CY and passed a final

test of predicates, we arrive to a set of nodes N that is not an snppnt of S,. The

same is true for each prefix p = u’ . . a’ of CY. So that, by changing Z over the

sequences a’ . . . a’by (Vt, Vb # a’+‘, and V y E A*) and over ay (V y E A*), by

applying the definition of snppnt, we can get I’ such that under I’, the computations

of S, stop with probability 1. So YsM_PR(Sr , E) # NT and, as I’ is equal to Z over

a and its prefixes, we also have

ySM-PR(s,. F)(a) = 91’

But for the same reason we would have

In any case,

so that S, + zyS2.

(‘+) If s, + PR SM S2, we will have some Z such that under Z

ySM-PR(S,, El # ySM-PR(s2, &I.

But, then, one of them must be NT, since otherwise JL~~-‘~(S,) and LPR-sM(S2)

would reflect the unequal values of these semantics. We will suppose

ySM-PR(S,, &) = N-I-# 9SM-PR(s2, &I.

But, then, L. PR-sM(S2) reflects the values of 9’sM.pR(S2, E) over the sequences in A*

and their sum must be 1. This cannot be true for S,, since then a computation of

S, would stop with probability 1. This would contradict Y’sM_pR(S,, E) being equal

to NT. 0

Corollary 4.13. SM-equivalence between probabilistic Zanov’s schemes is decidable.

Proof. You only have to apply Theorems 3.8 and 4.5, Definition 4.11, Theorem 4.12

and Proposition 3.2. 0

5. Trace semantics of probabilistic Ianov’s schemes

First of all we have to introduce a new probabilistic powerdomain as now our

original domain, S(A) with its prefix ordering, is not a flat domain.

Probabilistic Ianov’s schemes 91

Definition 5.1. (a) Scott’s topology over S(A) is the one that has as basis the family

{U,((YEA*UA*.STOP},

where U, ={/~ES(A)I~E/~}.

(b) Cantor’s topology over S(A) is the one that has as subbasis the family

{U,~~EA*~A*.STOP}U{N,~~~EA*~A*.STOP},

where N, = S(A) - U,,.

(c) Borel’s u-algebra over S(A), 93(S(A)), is the one induced by Scott’s (eq.

Cantor’s) topology.

(d) Probability distributions over S(A) are the probability measures over 93 (S(a)).

Definition 5.2. The operational trace semantics of a probabilistic Ianov’s scheme S

is given by the function 9’~R_sEQ(S, a) associating to each (Y E A* the function that

gives for each p E A* u A* . STOP the probability with which a computation of

PC, (S, a) begins executing p; that is, the sum of the probabilities of the precomputa-

tions that execute /3, executing its last action in its last step.

Definition 5.3. From .Y,+sEo we can define YbR_sEo that associates to each pair

(S, a), a function defined over the basis of Cantor’s topology over S(A) as:

where

X={~ES(A)I(P~~,V...VP~~,)A

PPrlIA.’ .~P~%TJ,

with {n} and (7,) two sets of incomparable elements, such that

VjE{l,..., m} EliE{l,..., n} YiCvj,

but

VjE{l,..., m} iEliE{l,...,n} yi2n,

Remark. It is not difficult to check that any X in the basis of Cantor’s topology

over S(A) can be defined as above.

Proposition 5.4. YbR_SEQ is well dejined and jinitely additive.

Proof. We will denote by Xlr,~(,,) the set

X={~ES(A)I(P~~,V...VP~~,)A

PZT,A\‘. .fiP~%nI-

92 D. Frutos Escrig

We have to check that

Xtv,1{7,1 = XM7;1 * {Yi~={YIlA{17j~z{rl~~

for we use the fact that the yi are minimal elements in X and the hypothesis, in

Definition 5.3, about the families {n} and { nj}. So .ip~R_sEq is well defined. To check

additivity we take X = X1r,t(o,) and X’= X(v:~~7,:~ sothatXnX’=@andXuX’=X”

where X”= X1vt:li,,;l; the general case would be similar. It is easy to check that X

can be broken down into Xi’s given by

so that the Xi’s are pairwise disjoint, and the 7,‘s get classified since for each one

of them there is exactly one yi such that y, c vj. Now, we have

To prove the proposition, we can suppose that {yi} and (7:) are unitary sets. Then,

we will be in one of two cases: (i) y, and -yi are incomparable; (ii) yin y{ (or

conversely). In (i) 7, and TJ are incomparable, so that

X” = XY1,YMV,Mr);J

and, clearly,

%R.SEQ(S, a)(X”) = %GSEQ(S, Q)(X)+%,.s,o(S, a)(X’).

In (ii), as sets in the basis of the topology are convex, we would have a nk equal

to y:, so that

X”zX iYll,(Sl....% 111-1.V11+1..... V,,,Mrl:i,

then, to compute Y”;‘R.sEo(S, LY)(X”) we have to add and subtract YPR.sEo(S, cr)(nk)

to the sum of Y&ro(S, Q)(X) and Y’h&S, a)(X’). 0

Corollary 5.5. We can extend YbR_sEQ to %(S(A)) getting a measure .Y&sEQ.

Proof. It is obvious that the sets in the basis of Cantor’s topology are clopen and,

as this topological space is compact (see [9]), there will be no infinite family of

nonempty and disjoint sets from that basis, whose union is a new set of it. So

.Y’bR_sEo is a measure over that basis. This basis is a semiring. So YP,.sEy can be

extended (see [2] for details) to the v-algebra generated by Cantor’s topology, that

is %‘(S(A)). I7

Remark. We have defined an ‘operational’ semantics of every scheme. We have

quoted the word ‘operational’, since, strictly speaking, we can only expect that

9 PR-sEo and %GS~Q are operational, as B(S(A)) is not a denumerable set. And we

would even have some problems, when we try to compute YPR.sEo(S, a)(p) directly,

as an infinite sum would be sometimes required. However, this sum becomes a finite

one, when S is in normal form. We can suppose this, as we can effectively obtain

the normal form of every scheme.

Probabilistic lanov’s schemes 93

Next we will define a denotational semantics which equivalent to Y,,_s,o.

Definition 5.6. The domain ofprobability distributions over S(A), P,(S(A)), has as

elements the probability measures over %‘(S(A)), ordered by c, which is defined

as follows

m&m’ iff V~EA*UA*.STOP

Proposition 5.7. P’,(S(A)) is a cpo.

Proof. First of all E is an ordering: If we have m, m’E B,(S(A)) such that m(U,) =

m’(U,) for all (Y E A* u A* * STOP, then for X = Xtv,)(V,,) we have

m(X)=C m(&)-C m(u,,)

=C m’(UJ -C m’(U,,) = m’(X).

So m and m’, restricted to the basis of Cantor’s topology, are equal and, as this

basis is a semiring generating the c-algebra CB(S(A)), the extension algorithm used

in the proof of Corollary 5.5 tells us that m = m’. If { mi 1 i E I} is a directed subset

of P,(S(A)), we can take m(U,) = supit I mi(U,) for all (Y E A* u A* . STOP, extend-

ing it to LB(S(A)), as in Definition 5.3 and Corollary 5.5, to obtain a measure since

it is clear that m is finitely additive. Obviously, m is the lub of {mi 1 i E I} in B,(S(A)).

Definition 5.8. The denotational trace semantics of probabilistic schemes is given

by the function 9’pdpR_sEo, defined by means of the following set of equations:

L&&TOP&r) = (1: STOP);

Here a. m is the measure defined by a. m(X) = m(X - a), with

X-u={~ES(A)IU~~EX}.

Proposition 5.9. Yd,R.S,Q is well de$ned.

Proof. We have to check that the operators a. m and xi qi. m, are continuous. But

these are immediate consequences of the way the order between probability distribu-

tions is defined and the results of Proposition 5.7. q

94 D. Fruros Escrig

Theorem 5.10. For each probabilistic Ianov’s scheme S, under any free interpretation

Z, and for all a E A*, we have

xkSEQ(S, a) = %LSEQUSl(4.

Proof. To prove that two probability distributions are the same, it is sufficient to

check that their values over the sets U, are equal. So we will prove that

YPR-SEQ(S, a)(P) = %LEQUSll(~)(r/,).

First, we will prove that, if we consider the set of equations that defines 9’pdpR.sEQ[S]

and, for any subscheme S’ of S, we have a function fs. associating to every CY E A*

a ‘measure’ over the family B = {U, I/3 E A* u A * . STOP} (that is to say, the restric-

tion to B of a measure over %I(S(A))) so that these functions verify the mentioned

set of equations, then their extensions, fS, to %(S(A)) verify the system, too. The

check is very simple and we will only show the third condition:

But

f&,,(a) = a .fs*,,(a. a).

and

fXs,,M 43) =facs,,(a)(U,),

a .f.i!,(a. a)(Uo) =fZ,(a * a)(& -a).

We will distinguish two cases: p = a . p’ and P = b * /3’ with b f a. In the first we have

fZ,(a. aHup -a) =fZ,,(a. a)(up,)

=&(a. a)(Q),

and

On the other hand, if /? = b. p’, then

a.fs,(a. a)(&)=0

=fs*,(a. a)(+)

=fcl(a.a)(U,-a).

But it is clear that the function YpR_SEQ(S’, a) verifies the set of equations that

defines .Y~R_SEo[S’~(~), so that Y’FR_sEQ (S’, a) verifies it, too. Thus, we have

~~~~~~~~~ ~(P)z %SEQusn(mb) 
for all p E A* u A* . STOP. 



f’robabilisric Ianov’s schemes 95 

The converse inequalities will be proved by introducing the functions 

%&Eo(S, a) approximating YpR_sEo (S, CX) and defined in the same way, but con- 

sidering only precomputations of length n at most. It is clear that 

Y PR-SEQ(S, a)(P) = EE skSE,(S, cf)(P) 

and we only have to prove that 

Y” PR~SEQ(S, a)(P)< %CsEQuSn(~)( Q) 

for all n EN. This is proved by an easy induction 

OR(q, : S,, . , qk : Sk), we have 

over n. For instance, if S = 

s iC, 9i' ~POpR-SEQUStll(a)(U~) 

= %SEQUSDW( U/3). 0 

Finally we will study the equivalence of probabilistic schemes relative to trace 

semantics. We will introduce, as in Proposition 1.23, a new probabilistic language 

associated to every probabilistic scheme. 

Definition 5.11. Let S be a probabilistic Ianov’s scheme. We define the probabilistic 

regular language L”(S) as the language accepted by the automaton %‘(S), that is 

defined as ‘8(S), but taking as F the set of all the action states in %(S). 

Proposition 5.12. Let a = t’u’ . . . t”‘u”‘t”‘+’ with u’EA, t’= rf . . . r;, where P= 

{p, , . . . , p,} and rj E {p,, E}. Then, if I is a free interpretation such that 

ViE{O ,..., m} Vjli{l,..., n} cp~,(u’...u’)=r~., 

we have that (q : a) E Lf( S) ifs under I executes a computation that begins executing 

the sequence of actions u’ . . . urn with probability q. 

Proof. As %I’(S) is defined, it simulates the precomputations of S under arbitrary 

free interpretations. And as S and S are strongly equivalent, they execute a precom- 

putation that begins executing some given chain of actions with the same probability. 

Definition 5.13. Let S, and S2 be two probabilistic Ianov’s schemes. We say that 

they are truce equivalent (S, - PR SEQS2) iff under any free interpretation we have 

%kSE&,~ = %SE&Zb 



96 D. Frutos Escrig 

Theorem 5.14. S, -PR SEQS2 e US,) = L(S,) A Lf(S,) = L’(S,). 

Proof. (+): Let p E A*, we have 

yPR-SEQ(sl, &)(P) = %R-SEQ(‘%, &j(P) 

under any free interpretation. So that, if (Y = t’a’ . . . t”‘u”‘t”‘+‘, we can take I such 

that 

ViE{O,..., m} VjE{l,..., n} ~Ja’...a’)=rj. 

Then we have 

(q:o!)ELf(S,) e (q:a)Lf(S2). 

To prove that L( S,) = L( S,), we can argue as before but considering /3 E A* . STOP. 

(G): We only have to reverse the reasoning in the proof of (+). 17 

Corollary 5.15. Trace equivalence of probabilistic lanov’s schemes is decidable. 

Remark. In the nondeterministic case, we need another language, L’(S), characteriz- 

ing looping computations, to achieve Proposition 1.23. We could define such a 

language for probabilistic schemes, too. But as our remark after Definition 3.3 shows, 

we would have 

L(S) = L(S,) A J5’(S,) = Lf(S,) * L’(S) = L’(S), 

that is because such a language is superfluous in the probabilistic case. 

Corollary 5.16. Trace equivalence and strong equivalence of probabilistic Ianov’s 

schemes, are the same property. 

6. Conclusion 

We have seen that all the results about the semantics of nondeterministic Ianov’s 

schemes in Section 1 (see also [2,4]) can be translated to probabilistic schemes. 

We have even obtained some results that are not true in the nondeterministic case 

(for instance, Theorem 5.10 and the result in the remark after Corollary 5.15). 

Nevertheless there is an important result about nondeterministic schemes that cannot 

be translated to the probabilistic case. Roughly it says that any nondeterministic 

scheme admits a ‘determined’ normal form, 3, verifying that, if two partial computa- 

tions of S execute the same chain of actions, executing the last one in its last step, 

then they must be equal. This property makes the proof of Theorem 1.15 easier 

since we do not need to work with sets of nodes, as in the proof of Theorem 4.12, 

to obtain the result of Corollary 4.13. Unfortunately, there are some probabilistic 

schemes that do not admit a ‘determined’ normal form, as was proved in [2]. 



Probabilisric Ianov’s schemes 97 

Therefore, the use of sets of nodes in the aforementioned proof is mandatory. If S, 

and S, were in dnf, we could ask ourselves if it is easier to decide if they are Smyth 

equivalent. The answer is yes; you can find the corresponding decision algorithm 

in [2]. Moreover, we have found an algorithm to construct the dnf of a scheme, if 

one exists; so that ‘to have a dnf’ is a decidable property. This construction will 

appear in a forthcoming paper. On the other hand, the proof of the algorithm to 

decide Smyth’s equivalence of dnf schemes is interesting by itself. It is a rather 

beautiful proof, at least in the biased eyes of this author. It is based on the use of 

the so-called ‘static interpretations’, which are defined by choosing a fixed answer 

for each predicate node in the scheme, so that the scheme becomes a new one 

without predicate nodes. 

Another interesting subject is the complexity of all the given algorithms (see also 

[5,101). 

Acknowledgment 

Finally, I want to thank K. Indermark, who directed my Ph.D. Thesis and suggested 

the subject of this paper, and M. Nivat, who encouraged me to write this extended 

version after reading the preliminary version at CAAP-86. 

References 

[l] J. Engelfriet, Simple program schemes and formal languages, in: Lecture Notes in Computer Science 

20 (Springer, Berlin, 1974). 

[2] D. Frutos Escrig, Algunas cuestiones relacionadas con la semantica de construcciones probabilis- 

ticas, Tesis Doctoral, Fat. C. Matematicas, Univ. Complutense, Madrid, July 1985. 

[3] D. Frutos Escrig, Some probabilistic powerdomains in the category SFP, in: Proceedings STACS-86, 

Lecture Notes in Computer Science 210 (Springer, Berlin, 1986). 

[4] D. Frutos Escrig and K. Indermark, Equivalence relations of nondeterministic Ianov’s schemes, 

Schriften zur lnformatik und Angewanten Mathematik, RWTH Aachen, 1987. 

[5] S. Hart, M. Sharir and A. Pnueli, Termination of probabilistic concurrent programs, ACM TOPLAS 

5 (3) (1983) 356-380. 

[6] Y. Ianov, The logical schemes of algorithms, Problemy Kibernet. 1 (1960) 82-140. 

[7] K. Indermark, On a class of schematic languages, in: R. Aguilar, ed., Formal Languages and 

Programming (North-Holland, Amsterdam, 1976) 1-13. 

[8] A. Paz, Inrroducrion fo Probabilistic Aufomata (Academic Press, New York, 1971). 

[9] G. Plotkin, A powerdomain construction, SIAM J. Compuf. 5 (3) (1976) 452-487. 

[lo] L. E. Rosier and Hsu-Chun Yen, On the complexity of deciding fair termination of probabilistic 
concurrent finite-state programs, in: Proceedings ICALP-86, Lecture Notes in Computer Science 

226 (Springer, Berlin, 1986). 

[ll] M. B. Smyth, Powerdomains, in: Lecture Notes in Computer Science 45 (Springer, Berlin, 1978) 

537-543. 


