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Abstract. Boolean operations, tree homomorphisms and their converses, and forest product, in
special cases o-catenation, x-product, x-quotient and x-iteration, preserve the regularity of forests.
These closure properties are proved algebraically by using congruences of term algebras which
saturate the forests operated on and constructing, by means of them, a congruence which saturates
the product forest. The index of the constructed congruence is finite, if the congruences saturating
the forests to operate are of finite indexes. The cardinalities of ranked and frontier alphabets are
arbitrary. The preservation of recognizability is a straightforward consequence of those congruence
constructions and the Nerode type of congruence characterization for recognizable forests.
Furthermore, the constructed congruences can also be applied directly to construct explictly tree
automatas to recognize the product forests.

1. Introduction

The recognizable forcsts are defined to be forests recoginized by finite tree
automata. Ceviating from the general custom to define the finite trec automata with
finite ranked and frcntier alphabets, here they are also allowed to be infinite. The
sets of states are of course finite. The proofs of the closure properties can be done
by constructing suitable finite recognizers and regular grammars. However, in
consequence Of the universal algebraic nature of recognizable forests, the proofs
are here based on constructions of saturating congruences, and the formalism is a
universai aigebraic one. We now have a new method to construct the required
automata to recognize product forests.

2. Preliminary definitions

Special notation

The set {1,2,...} is denoted by N and N, = N U {0}. The notation | (A;|ie ) is
the union and () (A;|i € I) the intersection of an indexed family (A, |i € I). The set
of all equivalence relations on A is denoted by Eq(A). For 0 Eq(A) and a€ A,
a0 ={bladb} is the 6-class of an element a. The cardinality of the set of all
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equivalence classes modulc ¢ (|A/ 6]), the index of 8, is denoted by in 6. Furthermore,
for any subset B of A, we introduce the notation

Bo=J (bO|be B).

If T=T6 for T< A, it is said, that 9 saturates T.

Definition 2.1. An operator domain is a pair consisting of a set X (of operators),
and a mapping r: 2 > N, that assigns to every o € X a finite arity, or rank, r(c). An
operator domain is simply denoted by the set of its operators. For every number
meN,, we use the notion

3,={oceX|r(c)=m}

to symbolize the set of all m-ary operators in 3.

Definition 2.2. A 2-algebra s is a pair consisting of a nonempty set A and a mapping
that assigns to every operator o € 3 an m-ary operation on A, o : A™ - A, where
m=r(o) and A™ is the mih cartesian power of A. We write & =(A, X).

Definition 2.3. Let 3 be an operator domain and X a set (cf variables), disjoint
from 3. The set of X-terms, Fs(X), [3] is the smallest set, such that

Xu3ycFs(X) and of(t,...,t,)e Fs(X)

whenever meN, ce X, and t,,..., 1, € Fs(X).

Here ZX-terms are regarded as formal representations of trees, and the set of
variables is called a frontier alphabet, the operator domain a ranked alphabet, the
2X-terms X X-trees and any subset of the set Fx(X) a XX-forest. If we do not want
to specify the alphabets, we shaii speak simply about trees and forests. From now
on, the cases where X =§ or 2, =0 are not specifically handled, but the results hold
in these cases, too.

Agreement. The symbols X and Y are reserved for frontier alphabets and the

symbols X and £ for ranked alphabets.

Definition 2.4. If Fs(X)# 9, the S-algebra #.(X)=(Fx(X), 2) defined so that
O-";.‘.(X}(tl’ LN} tm) = O.(119 R ] tm)

forallmeN,,oe X, andi,,..., 1, € F.(X),is called the SX-term algchra. If there
is no danger of confusion, we write simply o instead of o>~
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Definition 2.5. For a 2 X-tree t, the height hg(1), the root root(t) and the set of
subtrees sub{¢) are defined as follows:

(i) if re X U X, then hg(t) =0, root(t) = 1, and sub(t) = {¢};

(ii) if t=0o(t,,...,1,), where meN, o€ X, and 1,,...,1, are 2X-trees, then

hg(1) =1+max{hg(t,)|1<i<m},
root(t)=a and sub(?)={r}ulJ (sub(t,)|1<i<m).

We define for a TX-forest T, root(T) = {root(t)|te T}.

Definition 2.6. Let (T_‘.lxeX ) be an X-indexed family of 3X-forests. For each
subset X’ of the frontier alphabet X and each XX-tree r, we define the forest
t(x < T,|x € X'), mostly written simply as t(x < T), as follows:
() if te X', then t(x« T,)=T,;
(ii) if te (X\X')U 3, then t1(x<«T,)=1;
(iii) if t=0o(1,,...,1,), where meN, o Z,, and 1,,..., t, are SX-trees, then

t(x<-Tx)={0'(sl,...,sm)|s,-€t,~(x<—Tx).,i=1,...,m}.

In the case X'={x,,..., x,}, we also use the notation t(x,« T, ,...,x,« T, ) for
t(x« T,clxeX'), and if t=0(x,,...,x,), where o€ X, we speak about the o-
catenation of the forests T, ,..., T, . For a £X-forest T, it is defined

T(x« T)=U(t(x«T,)|te T).
Definition 2.7. Let S and T be XX-forests and ze€ X. The z-product of S and T is
ihe forest prcduct
S, T=T(z« S).
The z-quotient of T by S is the forest
S T={peFs(X)|S-.pnT#0},
where T is called the dividend forest. The z-iteration of T is the forest
T =U(T™ [neN,),
where 7% ={z}, and
T =T™"uT™-,T, neN,.
Definition 2.8. For each number meN,, we ir.troduce a new alphabet (distinct),

E,=1{&,..., &}, which is assumed to be disjoint from all ranked alphabets used.
Supposc we are given a mapping hy : X - F,(Y), and for each m € N, a mapping
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h,:3,~> Fo(YUZE,). The tice homomorphism determined by these mappings is
the mapping [4] h: Fs(X)- F;(Y) defined such that

(i) h(x)=hx(x) for each x€ X, and

(ii) h(o(ty, .-y tm))=hu (o) &« (1)), ..., &n< (L)) wheneverm e Ny, o€ Z,,
and t;,..., ., € Fs(X).

If whenever me N, and o€ £,,, no letter of the alphabet =, appear. more than
once in h,,(o), we call h linear. Furthermore, h is said to be alphabetic, if h(X)< Y,
and for each meNyand o€ X, h,(o)=w(é,..., &), where we 2,

Definition 2.9. A (frontier-to-root) 2 X-recognizer (a tree recognizer) [4] is a triple
A=(d, a,A"),

where of =(A, X) is a Z-algebra, a: X - A is a mapping and A’ (c A) is the set of
final states. If A is finite, we call A a finite recognizer. In particular a £X-recognizer
{(F:(X), 1%, T), where T is a ZX-forest and 1x : X = X is an identity mapping, is
denoted by Fr.

Defizition 2.10. Let A= (s, a, A’) be a ZX-recognizer and a the extension of a to
a homomorphism from the term algebra #s(X) to a X-algebra . It is said, that
A recognizes a XX-forest T or that A is a XX-recognizer of T, if T=
{te Fx(X)|&(t)e A’}. A TX-forest, recognized by a finite iree recognizer, is said
to be recognizable.

Definition 2.11. Let A=(¢, a, A’) be a IX-recognizer, and 0 a congruence of &
saturating the set of final states A’. The quotient 3X-recognizer of A in respect of 6
is the 2 X-recognizer

A/0=(4/0, @y, A'/0),

where a,: X > A/ 89 is such a mapping that for each x € X, a,(x)=a(x)9.

Since a forest T is recognized by both F; and each of its quotieit recognizers
[1, 2, 4], we obtain, after generalizing Nerode’s theorem on reguiar languages and
right congruences of the free monoid [5], the congruence characterization for
recognizable forests [2, 4]. Finiteness of the index of a congruence saturating T is
a sufficient and necessary condition for the recognizability of T.

3. The congruence theory of closure properties of regular tree languages

Theorem 3.1. The union, intersection, difference and complement of two rocognizable
Jorests are recognizable [5, 6].
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Proof. Let 6, p, y€ Eq(A) and 8 < p, x. If S and T are subsets of A, such that S is
saturated by p and T by yx, respectively, then obviously 6 saturates the sets SuU T,
SN T, S\T and A\S. Now the claim of the theorem foliows from the congruence
characterization for recognizable forests because a finite intersection of congruences
of finite indexes is a congruence of finite index. [

Definition 3.2. For 6,, 6, € Eq( Fx (X)) we define the equivalence relation on Fx(X),
0, * 8,, the X-product of 8, and 6., as follows. Let p and g be ZX-trees. Then
(p,q)e 8, * 6,, iff the conditions (i)-(iii) hold:

(i) po,q;

(ii) for each XX tree s and all £X-forests S,, x € X, such that g € s(x « S,), there
is a 2X-tree t and X X-forests T,, x€ X, for which 10, s, T.0,=S.0, for all xe X,
and pe t(x <« T.);

(iii) the condition (ii) holds, if we interchange p and q.

Theorem 3.3. For a finite X, the X-product of equivalence relations of finite indexes
is of finite index. If 8 € Eq(Fx(X)) saturates a ZX-forest T, and for each xe X
0. € EqQ(Fx (X)) saturates a 3X-forest T, then T(x < T,) is saturated by the X-product
of 8 and () (0.|x € X). The X-product of congruences is a congruence.

Proof. Let pbea 2X-tree and 60,, A.€ Eq(F=(X)). Whenever (Sx |x € X) is a family
of 2X-forests, we obtain

|{s6,|pe s(x < S,), se Fx(X)}|<in@,,
and whenever € X and ¢ is a Y X-tree
{T.0:|pet(x«T,), T,c Fs(X), x€ X}
=liT/6,| T < Fu(X)}|=2""
If g 0, * 6, p, then cvery possible “splitting” of the tree p, (s6,, (5.8.|x € X)), for

which p € 50,(x « S,0,), must also be a splitting of the tree g, and conversely. Hence
by an upper limit of the cardinality of the subsets of possible splitting we obtain

sain 02)!)(!

in #, % 6,<in 6,(2'" % ).

This yields the first claim of our theorem.

Let T, 8 and T,, 6., x< X, be defined as in the theorem, and let us use 6 to
denote the equivalence relation ﬂ(o_\,lxe X). Let a XX-tree p be in the forest
t(x< T,), where t€ T, and let a 2X-tree g be in the same 0 * 6-class as p. Thgreforg
there exists a tree s and X-indexed forests (S.|xe X), such that s61, S.6=T.6,
xe X, and g e s(x <« S,).

Because t€ T and 0 saturates T, s must be in T. Furthermore acwrding:.
statement that, for each xe X, 6, saturates T,., we thus obtain T,=T7.0
whenever x € X. Hence

ge T(x<S,) T(x<S6)=T(x<T,).
Thus the forest T(x <« T,) is shown to be saturated by 0 = 6.

felily
LV REY Y
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0
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Then, let 6, and 8, b: corgruences of Fs(X), meN, oce X2, and let p,,..., p.,
G, ---,qm be such X-trees that p, 6, * d, q;, i=1,..., m. We use the notation

p=0(pr,...,pm) and q=0(q,,...,qm).

Definition 3.2 yields p; 6, g;, i=1...., m, and since @, is a congruence, condition
(i) of Definiticn 3.2 holds for the pair (p, q).

Condition (ii) is proved by induction on the tree s. Let g€ s(x < S,), where
hg(s) =0. Since hg(g) >0, s must be in X. Obviously g€ §,. On the other hand
pe s(x e« T,), where

T—{S" for x # s,
*T S, u{p} forx=s.

We still have p 0, g, hence 7.0, = 5,8,. Thus, in consequence of the fact that s ¢, s,
condition (ii) is fulfilled for the pair (p, q).

Then let g€ s(x <« S,), where hg(s)>0. Now it follows from the definition of g,
that for each index ie€{l,...,m} there must exist such a XX-tree s; that
g € si(x < S.), and furthermore s =o0¢(s,,...,s,). Therefore, on the basis of our
statement p;0,* 0,q;, i=1,..., m, we also must have for each ie{l,..., m} a
3X-tree t; and a family of forests (T,;|x € X), such that ¢, 0, s;, T..0,= S.6,, x€ X,
and p; € ;{x < Ty).

By using the notion t =o(t,, ..., t,), we obtain t 6, s, because 0, is a congruence.
Furthermore

U(Ttillﬁism)a.’.:‘s.teZ’ xEX,
and
pet(x<U(Ts[1<sism)).

Therefore ¢ fulfills condition (ii). This finally shows, that condition (ii) holds for
the pair (p, ¢).

Since ¢q;6,* 0, p;, i=1,...,m, it can be proved in a way analogous with the
previous argument, that (ii) holds for the pair (g, p). Hence (iii) holds for the
pair (p, q). This finally shows that p @, * 6, q, and hence the X-product preserves
congruence. [

Corollary 3.4. If X is finite, then T(x < T,) i- a recognizable foresi wheiiever T and
the forests T, are recognizable (cf. [4, 5, 6]).

Proof. A finite intersection of congruences of finite indexes is a congruence of finite
index. So, according to the congruence characterization for recognizable forests,
the claim of our corollary is a straightforward consequence of Theorem 3.3. [
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Definition 3.5. Let x€ X and 6 € E¢(Fs(X)). Let us define the equivalence relation
on Fx(X), 6, the x-power of 6, as follows. For each 3X-tree p and g, (p, q) € 6**,
iff the conditions (i)-(iii) hold:
(i) pbgqg;
(ii) for each 2X-tree s and ZX-forest S, such that g€ $** -, s, there is a ZX-tree
t and a IX-forest T, for which t8s, T0=S60, and pe T**-, 1,
(iii) condition (ii) holds, if we exchange p and gq.

Analogously with the proof of Theorem 3.3 we obtain Theorem 3.6, because
Definitions 3.2 and 3.5 are much alike. Hence by the congruence characterization
we obtain Corollary 3.7 directly.

Theorem 3.6. Let x € X. The x-powers preserve finiteness of index. The x-iteration of
a forest is saturated by the x-power of such an equivalence relation that saturates the
Jorest. The x-power of a congruence is a congruence.

Courollary 3.7. Let x € X. The x-iterations preserve recognizability (cf. [4, 5, 6]).

Definition 3.8. For all xe X, Sc Fs(X) and #€Eq(Fs(X)), let us define an
equivalence relation on F=(X), 0(x, S), the x-S-quotient of 6, such that for any p,
q€ FE(X), Pﬂ(x, S) qa iﬁ

(S-xp)/0=(S"xq)/6.
Theorem 3.9. Let x€ X and S c Fx(X). The x-S-quotients preserve finiteness of index.

For T< Fs(X) the x-quotient ST is saturated by the x-S-quotient of such an
equivalence relation that saturates T. The x-S-quotient of a congruence is a congruence.

Proof. Let xc X, S< Fsx(X) and 0 € Equ Fs=(X)). The first claim is evident, because
in 6(x, S)<2"",

Then let T be some IX-forest saturated by 6, a £X-tree p in the x-quotient ST
and a ZX-tree ¢ in the same 6(x, S)-class as p. It follows that S-, pn T#0 and
(S'xp)0=(5,q)6, hence S-,qn T#@, because T = T0. This yields that q is also
in S™*T. Thus we have shown the second claim of the theorem to be true.

Let 6 then be a congruence of #s(X),meN,cec X, andletp,,...,Pm, G155 qm
be such IX-trees that p, 6(x,S) q;, i=1,...,m If

p=0{(pi,....,pn) and q=0(q,...,qm),
then
(S.xp)/e;_a-(xla---axm)(xl(_s'xpla -~-,xm(-S'xpm)/0
={o.(tl""9tm)/oltles'xpls"'stmes'xpm}
={aZ= Xy, ..., un)| €S- p/0,...,un€S < p/0}
={0°9“‘(X)/6(u1a---,“m)|ules'x‘1|/0,---, Un €S < qm/0}

= (S Tx ‘7)/’ 0.
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It follows that p 9(x, S) q, and therefore 6(x, S) is a congruence. [J

As a straightforward consequence of Theorem 3.9 and the congruence
characterization, we obtain the next result.

Corollary 3.10. Let x€ X. The x-quotients preserve recognizability, if the dividend
Jorest is recognizable (cf. [4, 6]).

Definition 3.11. For any 2Y-tree p and any tree homomorphism h: F. (X) - F,(Y),
we introduce the set of such XX-trees which » maps to p like a “‘generalized”
alphabetic tree homomorphism:

al(p, h) ={te Fs(X)|h(t) = p, (¥x < {X ~sub{1))) hg(h(x)) =0,
(Vo e (2ynsub(t))) hg(he(o)) =0, (Vo e root(sub(:)\{ X U 2y)))
hr(a')(a-)e{w(fi,, tecy ‘fi,,)lw eﬂna nENa 1 = ila ces i,,Sr(O')}}.

The tree homomorphism h: Fs(X)-> F,(Y) is called regular for the equivalence
relation 6 (€ Eq(Fx(X))), if whenever p is an Q2Y-tree, the converse of h satisfies
the inclusion

h™'(p) < al(p, h)e.

For all equivalence relations 6 € Eq(Fx (X)) and tree homomorphism h: Fs(X)~>
Fu(Y), let us define an equivalence relation on F,(Y), 9(k), the h-map of 6, so
that whenever p, ge F,(Y), then p 0(h) q, iff

al(p, h)/6=al(q, h)/ 6.

Theorem 3.12. Let h: Fs(X)- F,(Y) be a tree homomorphism. The h-maps preserve
finiteness of index. If h is regular for an equivalence relation which saturates a forest
T, then h(T) is saturated by the h-map of the equivalence relation. If h is linear, the
h-map of a congruence is also a congruence.

Proof. Let 6 € Eq(Fx(X)) and h:Fs(X)- F,(Y) be a tree homomorphism. The
first claim of our theorem is evident as in 6(h)< 2™

Let then f: Fx(X) - F,(Y) be a tree homomorphism, regular for 6. Let T be a
2X-forest saturated by 6, p as a £2Y-tree in the forest f(T) and g a 2Y-tree in the

same 6(f)-class as p. Since al(p,f)< f~'(p) we obtain on ihe besis of Definition
3.11 that

al(q, /)6 =al(p,f)0=7""(p)s.

Since f (p)n T#@and T =T, al(q, f)n T # ¢, and therefore besides p, the tree
q is in the forest f( T). This concludes the proof of the second claim of our theorem.
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Then suppose 8 is a congruence of (X, and h: Fx(X)—> F,(Y) is a linear tree
homomorphism. Furthermore, let meN, we (2, and the NY-trees p,,...

<3 pi"ii
di»---»4m b€ such that p,@(a)q;, i=1,...,m This agrees with the following
notation:

P=0(piy..sPm) g=w(q,...,qm),

R =rootl{w(&,, ..., & )eh(Z,)|mneN, we,, 1<i,...,i,<n}).
Next we show thatif ¢;,..., 1, are 2Y-trees and t = w(t,,..., 1,,), then al(r, h) £ Q,
iff

weN, AR and al(s;, h)#0, i=1,...,m (1)

First suppose al(t, h) # ) and u € al(¢, h). Thus there must exist such neN, pe X,
and such £X-trees u,, ..., u, and indexes i,,...,I,€11,..., n} that

hn(p) =w(§i|e s gi,,,)9
u, €al(y, h), j=1,...,m,
uzp(ulv-' M un)'

So, condition (1) holds.
Next presume (1). Now there must exist ke N, 7€ 2, indexes j;,...,Jjm€
{1,..., k} and ZX-trees v; ., U;,, such that

et
hk(’r) =w(§j,a seey gj,,,)s
v,esl(t;, h), i=1,...,m.

The m-tuple {v,,...,v; ) is then extended to a k-tuple (v,,..., v;) by choosing
each v, j2{ji,...,jm}, arbitrarily from a set al(z, h), i=1,..., m. Because h is
linear, we obiain

h(i(vy, ..., o)) =&, ..., § &< h(y),. .., &< h(v))
=w(h(y,),..., (v, ))
=wl(ty,..., L) =1

Now 7(v,,..., v.)€al(t, h), and therefore al{i, h) # 0.
Suppose then wc £2,,\R or je{l,..., m} is such an index that al(p,, h)=90. As
pi6(h) g, i=1,..., m, we have

al(p, h)=al(q, h)=0,

hence p6(h) q.
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Nexi let we 2,,n R and al(p;, h) #0, i=1,..., m, whence the sets al(p, h) and
al(g, h) are notempty. Choose s € al( p, ). Now we musthave ne N, o € 2,,, 3 X-trees
Si,..., 5, and indexes i,,..., i, {i,..., n} such that

h(o)=w(&,...,&,)
s,,,eal(pj, h), j=1,...,m,
s=0(Sy,.. ,S8n).

On the basis of our statement

al(p;, h)/ 0 =al(q;, h)/0, je{l,...,m}.

Hence for each index i;, there must be such a tree §5; €al(g;, h) that s; 65;. Let us
write ¢, =§; forj=1,...,m,and a;=s, for i€ {i,,...,i,}. Since 6 is a congruence,
we obtain s6ola,,...,a,), and evidently o(a,,...,a,)<cal(q, h), because h is
linear. Therefore al(p, h)/9 < al(q, h)/ 6.

On the basis of ihe fact that p,6(h) q;, i=1,...,m, an analogous argument
with the previous one yields al(q, h)/0 < al(p, h)/ 6, as @ is symmeiric. So, finally
we have al(p, h)/6=al(q, h)/6. 1t follows that p@(h) g, and theretore 9(h) is a
congruence. [l

Corollary 3.13. Suppose T is a recognizable 3X-forc.t and h: F<(X) - F,(Y) a linear
tree homomorphism. If h is also regular for a congruence of finite index, which saturates
T, then h(T) is also recognizable. Particularly alphabetic tree homomorphisms preserve
recugnizability (cf. [4, 5, 6]).

Proof. Let h:F<(X)-> F,(Y) be an alphabetic tree homomorphism. Hence
al(p, h) = h™'(p) for every 2Y-tree p, and thus h is regular for every equivalence
relation on Fs(X). Gbviously h is also linear, and therefore the claims of the
corollary are consequences of the congruence characterization and Theorem
3.12. O

By using tree automata, we obtain a known and more general result according
to which linear tree homomorphisms always preserve recognizability [4].

Theorem 3.14. Let h: Fx(X) - F,(Y) be a t-2¢ homomorphism and T a QY-forest.
If T is recognizable, then h™'(T) is also recognizable (cf. [4, 6]).

Proof. Suppose h:Fx(X)- F,(Y) is a tree homomcrphism and T & recognizable
2Y-forest. According to the congruence characterization there exists a congruence
6 of F,(Y) which saturates T and is of finite index The product h-6-h™' of
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relations h, @ and h™' is obviously a congruence of %s(X) and satisfies
in(h-0-h™')<in 8. Let p be some IX-tree in the forest h '(7) and let g
be a TX-tree in the same h- 6-h '-class as p. ihen h(p) 8 h(q) and h(p)eT,
whence h(g)e T, as T = Td. It follows that q is als¢ in h~'(T). Hence h- 6- h™!
saturates h~'(T). The congruence characterization implies now that h™'(T) is
recognizable. []
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