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We construct two families of automorphic forms related to twisted fake monster
algebras and calculate their Fourier expansions. This gives a new proof of their
denominator identities and shows that they define automorphic forms of singular
weight. We also obtain new infinite product identities which are the denominator
identities of generalized Kac–Moody superalgebras. Finally we describe the reflec-
tion groups of the root lattices of these algebras. © 2001 Elsevier Science

1. INTRODUCTION

Borcherds, Gritsenko, and Nikulin have shown that there are interesting
relations between automorphic forms, generalized Kac–Moody algebras,
and hyperbolic reflection groups. They can be summarized roughly as
follows. First the denominator identities of nice generalized Kac–Moody
algebras often define automorphic forms. Second many nice reflection
groups of Lorentzian lattices are associated to automorphic forms whose
singularities are at the reflection hyperplanes of the reflection group.
Finally the root lattices of nice generalized Kac–Moody algebras often
have nice hyperbolic reflection groups. In all 3 cases it is not known what
the precise necessary conditions are. For example, it is not known when the
denominator function of a generalized Kac–Moody algebra is an auto-
morphic form.
In this paper we give some new examples for the above relations. We

construct two families of automorphic forms of singular weight. The
automorphic forms are the denominator functions of generalized Kac–
Moody algebras similar to the fake monster algebras. In the bosonic case
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the reflection groups of their root lattices are associated to automorphic
forms. We show that the reflection groups of the root lattices are similar to
those of II25, 1 and II9, 1.
We describe the sections of this paper in more detail.
In the second section we recall some results about lattices and the singu-

lar theta correspondence.
We use this correspondence in Section 3 to construct a family of auto-

morphic forms related to twisted fake monster algebras. This gives a
new proof of their denominator identities and shows that they define
automorphic forms.
In Section 4 we derive analogous results for twisted fake monster

superalgebras. In addition we get new infinite product identities which are
the denominator identities of generalized Kac–Moody superalgebras.
In the last section we describe the reflection groups of the root lattices of

the generalized Kac–Moody algebras in this paper. In the bosonic case they
are related to automorphic forms. In the super case we use Vinberg’s
algorithm to determine their fundamental domains.

2. LATTICES AND AUTOMORPHIC FORMS

In this section we fix some notations and recall some results on lattices
and the singular theta correspondence [B3].

2.1. Lattices

Let M be a rational lattice with dual MŒ. We write M(n) for the lattice
obtained from M by multiplying all norms with n. A root a of M is a
primitive vector of positive norm such that the reflection sa(x)=
x−2(x, a) a/a2 is an automorphism of M. This implies that 2a/a2 is in MŒ.
If M is even we define the level of M as the smallest positive integer n such
that nl2 ¥ 2Z for all l ¥MŒ. It follows nMŒ …M. If a is a root of M then a2

divides 2n.
The lattice II1, 1(n) consists of the elements (m1, m2) ¥ Z2 of norm

(m1, m2)2=−2nm1m2. The lattice has determinant n2 and the quotient of
the dual II1, 1(n)Œ by II1, 1(n) is Z2

n. We write the elements of II1, 1(n)Œ as
(m1/n, m2/n) with mi ¥ Z so that (m1/n, m2/n)2=−2m1m2/n. II1, 1(n) has
level n and II1, 1(n)Œ is isomorphic to II1, 1(1/n).
Let Ep

8 be the sublattice of E8 fixed by an automorphism of cycle shape
1mpm where p is a prime such that m=8/(p+1) is an integer. Then Ep

8 has
level p and determinant pm. The quotient Ep

8 Œ/E
p
8 is Z

m
p and Ep

8 Œ(p)=Ep
8 .

We give more details on these lattices in the last section.
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Let L be the Leech lattice and Lp the sublattice fixed by an auto-
morphism of cycle shape 1mpm where p is a prime such that m=24/(p+1)
is an integer. For p=2 resp. p=3 the lattice is the Barnes–Wall resp.
Coxeter–Todd lattice. Lp has similar properties as the Leech lattice. It has
no roots and L −p(p)=Lp. Furthermore Lp has level p and L

−

p/Lp=Zm
p .

2.2. The Singular Theta Correspondence

Borcherds’ singular theta correspondence [B3] gives a construction of
automorphic forms from vector valued modular forms. We use slightly
different notations here because we prefer to work with positive definite
rather than with negative definite lattices.
Let M be an even lattice of signature (b+, b−) and

F(y)= C
c ¥MŒ/M

fc(y) ec

be a function on the upper halfplane H with values in the group ring
C[MŒ/M]. F is a modular form of type rM and weight m if the compo-
nents satisfy

fc(Ty)=e(−c2/2) fc(y)

fc(Sy)=
`i b

+−b −

`|MŒ/M|
ym C

d ¥MŒ/M
e((c, d)) fd(y)

under the standard generators S=(01
−1
0) and T=(1 1

0 1) of SL2(Z). The first
condition means that the exponents in the Fourier expansion of fc are all
in Z− c2/2. We say that F is holomorphic on H and meromorphic at the
cusps if the components can be written

fc(y)= C
n ¥Q

[fc](n) qn

with coefficients [fc](n)=0 for n° 0.
In the next section we will construct vector valued modular forms using

products of Dedekind’s eta function g(y)=q1/24 <n > 0 (1−qn). The
following lemma will be useful to calculate their S-transformations.

Lemma 2.1. Let f(y)=g((ky+j)/m) where j, k, and m are integers and
let jŒ, kŒ, and mŒ be integers such that the matrix

A=R
j/kŒ −(jjŒ+kkŒ)/km

m/kŒ −jŒ/k
S
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is in SL2(Z), km=kŒmŒ and m/kŒ > 0. Then the S-transformation of f is
f(Sy)=e(A)`my/mŒi g((kŒy+jŒ)/mŒ) with e(A) as given in eq. (74.93) of
[R].

Proof. Let Fm=( 0m
−1
0) be the Fricke involution. Then g((ky+j)/m)=

g(FmST jSFky). The lemma now follows from FmST jSFkS=AFmŒST jŒSFkŒ
and the transformation formula of the eta function.
Borcherds’ singular theta correspondence lifts a vector valued modular

form F to an automorphic form (Theorem 13.3 in [B3]).

Theorem 2.2. Let M be an even lattice of signature (b+, 2) and F a
modular form of weight 1−b+/2 and representation rM which is holomorphic
on H and meromorphic at the cusps and whose coefficients [fl](m) are
integers for m [ 0. Then there is a meromorphic function YM(ZM, F) for
Z ¥ P with the following properties.

(1) YM(ZM, F) is an automorphic form of weight [f0](0)/2 for the
group Aut(M, F) with respect to some unitary character.

(2) The only zeros or poles of YM lie on the rational quadratic divisors
l + for l ¥M with l2 > 0 and are zeros of order

C
0 < x
xl ¥MŒ

[fxl](−x2l2/2)

or poles if this number is negative.

(3) YM is a holomorphic function if the orders of all zeros are non-
negative. If in addition M has dimension at least 5, or if M has dimension 4
and contains no 2 dimensional isotropic sublattice, then YM is a holomorphic
automorphic form. If in addition [f0](0)=b+−2 then YM has singular
weight and the only nonzero Fourier coefficients of YM correspond to norm 0
vectors in L=K/Zz with K=M 5 z + .

(4) For each primitive norm 0 vector z in M and for each Weyl
chamber W of L the restriction Yz(Z, F) has an infinite product expansion
converging when Z is in the neighborhood of the cusp of z and Y ¥W which is
up to a constant

e((Z, r(L, W, FL))) D
l ¥ LŒ

(l, W) > 0

D
d ¥MŒ/M
d | K=l

(1−e((l, Z)+(d, zŒ)))[fd](−l
2/2).

A modular form can also give us some information on the reflection
group of a lattice (Theorem 12.1 in [B3]).
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Theorem 2.3. Let M be a Lorentzian lattice of dimension 1+b+ and F
a modular form of weight (1−b+)/2 and representation rM which is holo-
morphic on H and meromorphic at the cusps and whose coefficients [fl](m)
are real for m < 0. Suppose that if l is a positive norm vector in MŒ
and [fl](−l2/2) ] 0 then reflection in l + is in Aut(M, F, C). Then
Aut(M, F, C) is the semidirect product of a reflection subgroup and a
subgroup fixing the Weyl vector r(M, W, F) of a Weyl chamber W. In par-
ticular if the Weyl vector has negative norm then the reflection group of M
has finite index in the automorphism group and has only finitely many simple
roots. If the Weyl vector has zero norm but is nonzero then the quotient of the
automorphism group ofM by the reflection group has a free abelian subgroup
of finite index.

3. AUTOMORPHIC FORMS AND THE
FAKE MONSTER ALGEBRA

In this section we recall some results about the fake monster algebra and
the twisted denominator identities. Then we give a new proof of the twisted
denominator identities corresponding to certain automorphisms of prime
order and show that they define automorphic forms of singular weight. The
idea of the proof is to find appropriate lattices and modular forms and
then apply the singular theta correspondence.

3.1. The Fake Monster Algebra

The fake monster algebra is a Lie algebra constructed by Borcherds
describing the physical states of a bosonic string moving on a torus. It was
the first explicit example of a generalized Kac–Moody algebra. We sketch
two different constructions. The vertex algebra V of the even unimodular
Lorentzian lattice II25, 1 carries an action of the Virasoro algebra. Let
Pn={v ¥ V | L0v=nv and Lmv=0 for m > 0}. The vertex algebra induces
a product on the space P1/L−1P0 of physical states and turns it into a Lie
algebra. The fake monster algebra G is the quotient of P1/L−1P0 by the
kernel of a natural bilinear form. The other construction of this algebra
uses the BRST-operator. The vertex algebra of the integral lattice II25, 1 À Z
is acted on by the BRST-operator Q satisfying Q2=0. Here the space of
physical states is given by the cohomology group Ker(Q)/Im(Q). Again
the vertex algebra induces the Lie bracket on this space. This Lie algebra is
isomorphic to G.
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The fake monster algebra has the following properties. The root lattice is
the Lorentzian lattice II25, 1=L À II1, 1 where L is the Leech lattice with
elements a=(r, m, n) and norm a2=r2−2mn. A nonzero vector a ¥ II25, 1
is a root if and only if a2 [ 2. The multiplicity of a root a is given by
[1/D](−a2/2) where 1/D is the modular form 1/D(y)=1/g(y)24=q−1+24
+324q+3200q2+·· · . The real simple roots of the fake monster algebra
are the norm 2 vectors a in II25, 1 with (r, a)=−1 where r=(0, 0, 1) is the
Weyl vector and the imaginary simple roots are the positive multiples nr of
the Weyl vector with multiplicity 24. The Weyl group W is the reflection
group of II25, 1 and the positive roots are the roots a satisfying (a, r) < 0 or
a=nr for n > 0. The denominator identity is given by

er D
a ¥ II+25, 1

(1−ea)[1/D](−a
2/2)= C

w ¥W
det(w) w 1er D

n > 0
(1−enr)242 .

The sum in this identity defines the denominator function of the fake
monster algebra. It is an automorphic form for Aut(II26, 2).
The no-ghost theorem gives an action of the automorphism group of the

Leech lattice on the fake monster algebra which can be used to calculate
twisted denominator identities [B2].
We consider the case that the automorphism has cycle shape 1mpm where

p is a prime such that m=24/(p+1) an integer (cf. [B2, N]). Then the
corresponding twisted denominator identity is

er D
a ¥ L+

(1−ea)[f](−a
2/2) D

a ¥ pLŒ+
(1−ea)[f](−a

2/2p)

= C
w ¥W

det(w) w 1er D
n > 0

(1−enr)m (1−epnr)m2 .

with L=Lp À II1, 1 and f(y)=1/g(y)m g(py)m. The Weyl vector is r=
(0, 0, 1) and the Weyl group W is the reflection group of L. It is generated
by the norm 2 vectors in L and the norm 2p vectors in pLŒ … L. This iden-
tity is also the untwisted denominator identity of a generalized Kac–Moody
algebra. The real simple roots of this algebra are the roots a satisfying
(r, a)=−a2/2 and the imaginary simple roots are the positive multiples nr
of the the Weyl vector with multiplicity 2m if p divides n and m else. The
root lattice of the algebra is L and the multiplicity of a root a is given by
[f](−a2/2) if a is in L but not in pLŒ and by [f](−a2/2)+[f](−a2/2p)
if a is in pLŒ … L.
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3.2. Automorphic Forms

Now we give a proof of the twisted denominator identities of the fake
monster algebra corresponding to automorphisms of cycle shape 1mpm

using the singular theta correspondence. First we work out the case p=2
explicitly. The general case will be a simple generalization of this example.
Let

f(y)=1/g(y)8 g(2y)8=q−1+8+52q+256q2+1122q3+4352q4+·· · .

Then f is a modular form for C0(2) of weight −8 with singularities at the
cusps 0 and i.. The Fourier expansion of

f(y/2)=1/g(y/2)8 g(y)8=q−1/2+8+52q1/2+256q+· · ·

can be decomposed into two series with integral and half-integral expo-
nents in q. Define

g0(y)=(f(y/2)+f((y+1)/2))/2=8+256q+4352q2+·· ·

and

g1(y)=(f(y/2)−f((y+1)/2))/2=q−1/2+52q1/2+1122q3/2+·· · .

We will use the functions f, g0, and g1 to construct the vector valued
modular form F. Therefore we need their transformation properties under
the generators of SL2(Z). The T-transformations are clear. Lemma 2.1
implies the following S-transformations

f(Sy)=24f(y/2)/y8

f((Sy)/2)=f(y)/24y8

f((Sy+1)/2)=f((y+1)/2)/y8

so that

f(Sy)=24(g0(y)+g1(y))/y8

g0(Sy)=(f(y)/24+g0(y)−g1(y))/2y8

g1(Sy)=(f(y)/24−g0(y)+g1(y))/2y8 .

Another way to express this is to say that f generates a 3 dimensional
representation of SL2(Z) of weight −8. With respect to the basis
{f, g0, g1} the T-matrix and S-matrix are given by
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T=r
1 0 0

0 1 0

0 0 −1

s , S=1
2
r 0 25 25

2−4 1 −1

2−4 −1 1

s .

We describe the discriminant form of the Barnes–Wall lattice L2. (Note
that the description in [N] is false.) L −2/L2 has 135 nonzero elements of
norm 0 mod 1 and 120 elements with norm 1/2 mod 1. We call the first of
type 0 and the latter of type 1. The following tables show how many ele-
ments in L −2/L2 have given inner product with c. For c of type 0 we have

: 00 0 1

0 1 71 56
1
2 0 64 64

and for c of type 1

: 00 0 1

0 1 63 64
1
2 0 72 56

The lattice

M=L2 À II1, 1(2) À II1, 1

is an even lattice of level 2, determinant 210, and signature (18, 2). The
discriminant form of II1, 1(2) is Z2

2 with norm (a, b)2/2=−ab/2 mod 1.
This implies that the discriminant form of M has 527 nonzero elements of
norm 0 mod 1 and 496 with norm 1/2 mod 1. Using the above tables we
find for c of type 0 resp. type 1 in MŒ/M

: 00 0 1

0 1 271 240
1
2 0 256 256

: 00 0 1

0 1 255 256
1
2 0 272 240

Now we define the vector valued modular form F. Let

F(y)= C
c ¥MŒ/M

fc(y) ec
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with

fc(y)=f(y)+g0(y) if c=0

=g0(y) if − c2/2=0 mod 1

=g1(y) if − c2/2=1/2 mod 1.

Then F is a modular form of weight −8 and representation rM. Clearly F
transforms correctly under T. We show that F also transforms correctly
under S. Let c=0. Then

25y8fc(Sy)=25y8f(Sy)+25y8g0(Sy)

=f(y)+(29+24) g0(y)+(29−24) g1(y)

= C
d ¥MŒ/M

fd(y).

For c of type 0 we get

25y8fc(Sy)=25y8g0(Sy)

=f(y)+24g0(y)−24g1(y)

= C
d ¥MŒ/M

e((c, d)) fd(y) .

Finally for c of type 1

25y8fc(Sy)=25y8g1(Sy)

=f(y)−24g0(y)+24g1(y)

= C
d ¥MŒ/M

e((c, d)) fd(y) .

Hence F is a vector valued modular form for M.
The singular theta correspondence now implies that there is a holo-

morphic automorphic form YM for Aut(M, F) of weight 16/2=8. The
zeros of YM are zeros of order 1 coming from divisors of norm 2 vectors of
M and norm 1 vectors of MŒ.
The level of a primitive norm 0 vector of M divides 2. Near the corre-

sponding cusp we can expand YM in an infinite product. We can also work
out the Fourier expansion because YM has singular weight so that the
nonzero Fourier coefficients correspond to norm 0 vectors.
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At the level 1 cusp we decompose M=LÀ II1, 1 where L=L2 À II1, 1(2)
and take z as primitive norm 0 vector in II1, 1. Then the product expansion
of Yz(Z, F) is

e((r, Z)) D
l ¥ L+

(1−e((l, Z)))[f](−l
2/2) D

l ¥ LŒ+
(1−e((l, Z)))[f](−l

2)

= C
w ¥W

det(w) e((wr, Z)) D
n > 0

(1−e((nwr, Z)))8 (1−e((2nwr, Z)))8,

where r=(0, 0, 1/2) and W is the reflection group generated by the norm
1 vectors of LŒ and the norm 2 vectors of L … LŒ. Note that the vectors of
LŒ have integral norms because L has level 2.
Next we write M=L À II1, 1(2) with L=L2 À II1, 1 and take z as primi-

tive norm 0 vector in II1, 1(2). We say that z has level 2 because
|MŒ/M|=22 |LŒ/L|. At this cusp the product expansion of Yz(Z, F) is

e((r, Z)) D
l ¥ L+

(1−e((l, Z)))[f](−l
2/2) D

l ¥ 2LŒ+
(1−e((l, Z)))[f](−l

2/4)

= C
w ¥W

det(w) e((wr, Z)) D
n > 0

(1−e((nwr, Z)))8 (1−e((2nwr, Z)))8,

where r=(0, 0, 1) and W is the reflection group generated by the norm 2
vectors of L and the norm 4 vectors of 2LŒ … L.
The expansion of YM at the level 2 cusp is the twisted denominator

identity of the fake monster algebra corresponding to an automorphism of
cycle shape 1828. This gives a new proof of this identity and shows that the
denominator function of the corresponding generalized Kac–Moody
algebra is an automorphic form of singular weight. The two expansions of
YM look rather similar and are really the same. If we rescale the dual of
L2 À II1, 1(2) with a factor 2 then the expansion of YM at the level 1 cusp
goes over into the expansion at the other cusp.
Now we turn to the general case. Let p be a prime such that m=

24/(p+1) is an integer. The eta product

f(y)=1/g(y)m g(py)m=q−1+m+· · ·

is a modular form of weight −m for a level p subgroup of SL2(Z) with
singularities at the cusps 0 and i..

f(y/p)=1/g(y/p)m g(y)m=q−1/p+m+· · ·
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can be written

f(y/p)=g0(y)+g1(y)+· · ·+gp−1(y),

where the functions gj have Fourier expansions of the form ; [gj](n) qn

with n ¥ Z+j/p. We will use the functions f, g0, ..., gp−1 to construct a
vector valued modular form. The T-transformations of these functions are
clear and their S-transformations can be calculated with Lemma 2.1.
Let

M=Lp À II1, 1(p) À II1, 1 .

Then M is an even lattice of level p, determinant pm+2, and signature
(2m+2, 2). We define

F(y)= C
c ¥MŒ/M

fc(y) ec

with

fc(y)=f(y)+g0(y) if c=0

=gj(y) if − c2/2=j/p mod 1 .

Then we have

Proposition 3.1. F is a modular form of weight −m and representation
rM which is holomorphic on H and meromorphic at the cusps.

From the singular theta correspondence we get

Theorem 3.2. There is a holomorphic automorphic form YM for
Aut(M, F) of singular weight m. The zeros of YM are zeros of order 1
coming from divisors of norm 2 vectors of M and norm 2/p vectors of MŒ.
YM has the following expansions.
At the level 1 cusp we decompose M=L À II1, 1 with L=Lp À II1, 1(p)

and take z as primitive norm 0 vector in II1, 1. Then the product expansion of
Yz(Z, F) is

e((r, Z)) D
l ¥ L+

(1−e((l, Z)))[f](−l
2/2) D

l ¥ LŒ+
(1−e((l, Z)))[f](−pl

2/2)

= C
w ¥W

det(w) e((wr, Z)) D
n > 0

(1−e((nwr, Z)))m (1−e((pnwr, Z)))m

AUTOMORPHIC FORMS 311



where r=(0, 0, 1/p) in LŒ and W is the reflection group generated by the
norm 2/p vectors of LŒ and the norm 2 vectors of L.
Next we write M=L À II1, 1(p) with L=Lp À II1, 1 so that |MŒ/M|=

p2 |LŒ/L| and take z as primitive norm 0 vector in II1, 1(p). Then we get the
following level p expansion of Yz(Z, F)

e((r, Z)) D
l ¥ L+

(1−e((l, Z)))[f](−l
2/2) D

l ¥ pLŒ+
(1−e((l, Z)))[f](−l

2/2p)

= C
w ¥W

det(w) e((wr, Z)) D
n > 0

(1−e((nwr, Z)))m (1−e((pnwr, Z)))m

with r=(0, 0, 1) andW the reflection group generated by the norm 2 vectors
of L and the norm 2p vectors of pLŒ … L.
The two expansions are identical upon rescaling the lattice (Lp À II1, 1(p))Œ

by p.

This implies

Corollary 3.3. The denominator function of the generalized Kac–
Moody algebra obtained by twisting the fake monster algebra with an auto-
morphism of cycle shape 1mpm defines a holomorphic automorphic form of
singular weight.

4. AUTOMORPHIC FORMS AND THE
FAKE MONSTER SUPERALGEBRA

In this section we prove analogous results as in Section 3 for the fake
monster superalgebra. The main difference is that the expansions of the
automorphic forms at the level 1 and the level p cusp do not coincide so
that we get new infinite product identities which are the denominator
identities of generalized Kac–Moody superalgebras.

4.1. The Fake Monster Superalgebra

The fake monster superalgebra [S1] is a supersymmetric generalized Kac–
Moody superalgebra describing the physical states of a superstring moving
on a torus. It can be constructed similar to the fake monster algebra as the
cohomology group of a BRST-operator acting on the vertex algebra of a
rational 18 dimensional lattice. The fake monster superalgebra has root
lattice II9, 1=E8 À II1, 1 with elements a=(r, m, n) and norm a2=r2−2mn.
The roots are the nonzero vectors a with a2 [ 0. The multiplicity of a root
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a is given bymult0(a)=mult1(a)=[f](−a2/2)wheref(y)=8g(2y)8/g(y)16

=8+128q+1152q2+·· · is a modular form for C0(2) of weight −4. The
simple roots of the fake monster superalgebra are the norm 0 vectors in the
closure of the positive cone of II9, 1. This implies that the Weyl group is
trivial and the Weyl vector is 0. The denominator identity is given by

D
a ¥ II+9, 1

(1−ea)[f](−a
2/2)

(1+ea)[f](−a
2/2)

=1+C a(l) el,

where a(l) is the coefficient of qn in

g(y)16

g(2y)8
=1−16q+112q2−448q3+1136q4− · · ·

if l is n times a primitive norm 0 vector in II+9, 1 and 0 else.
Using the no-ghost theorem we can construct an action of 2.Aut(E8) on

the fake monster superalgebra and calculate twisted denominator identities
[S2]. Let p be a prime such that m=8/(p+1) is integral. Then the twisted
denominator identity corresponding to an automorphism of cycle shape
1mpm is

D
a ¥ L+

(1−ea)[f](−a
2/2)

(1+ea)[f](−a
2/2)

D
a ¥ pLŒ+

(1−ea)[f](−a
2/2p)

(1+ea)[f](−a
2/2p)

=1+C a(l) el,

where L=Ep
8 À II1, 1 and f(y)=m(g(2py) g(2y))m/(g(py) g(y))2m. a(l) is

the coefficient of qn in (g(py) g(y))2m/(g(2py) g(2y))m if l is n times a pri-
mitive norm 0 vector in L+ and 0 else. This is the untwisted denominator
identity of a supersymmetric generalized Kac–Moody superalgebra whose
simple roots are the norm 0 vectors in the closure of the positive cone of L.
The even and the odd multiplicity of a simple root l is 2m if l is n times
a primitive vector with p dividing n and m else. The root lattice of the
algebra is L and the multiplicities of a root a are mult0(a)=mult1(a)
=[f](−a2/2) if a is in L but not in pLŒ and mult0(a)=mult1(a)=
[f](−a2/2)+[f](−a2/2p) if a is in pLŒ … L.

4.2. Automorphic Forms

Now we construct the automorphic forms whose expansions give the
denominator identities of the twisted fake monster superalgebras and some
new identities. In contrast to the bosonic case the components of the vector
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valued modular form depend not only on the norms of the elements in
MŒ/M but also on their orders.
We start with the case p=3 as an example. Let

f(y)=2
g(6y)2 g(2y)2

g(3y)4 g(y)4
=2+8q+24q2+72q3+184q4+·· ·

and

c(y)=
g(3y/2)2 g(y/2)2

g(3y)4 g(y)4
=q−1/2−2+3q1/2−8q+15q3/2−24q2+·· · .

Then f is a modular form for C0(6) of weight −2.
f and c are related by supersymmetry (cf. [S2]) which means that the

Fourier expansion of

d(y)=f(y)+c(y)=q−1/2+3q1/2+15q3/2+43q5/2+·· ·

contains only half-integral powers of q. We write

f(y/3)=g0(y)+g2(y)+g4(y)

with

g0(y)=(f(y/3)+f((y+1)/3)+f((y+2)/3))/3

=2+72q+984q2+·· ·

g2(y)=(f(y/3)+e2f((y+1)/3)+ef((y+2)/3))/3

=8q1/3+184q4/3+2112q7/3+·· ·

g4(y)=(f(y/3)+ef((y+1)/3)+e2f((y+2)/3))/3

=24q2/3+432q5/3+4344q8/3+·· · ,

where e=e2pi/3 and

d(y/3)=l1(y)+l3(y)+l5(y)

with
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l1(y)=(d(y/3)+e2d((y+2)/3)+ed((y+4)/3))/3
=3q1/6+114q7/6+1437q13/6+·· ·

l3(y)=(d(y/3)+d((y+2)/3))+d((y+4)/3))/3

=15q3/6+285q9/6+3051q15/6+·· ·

l5(y)=(d(y/3)+ed((y+2)/3)+e2d((y+4)/3))/3

=q−1/6+43q5/6+662q11/6+·· · .

f and d generate an 8 dimensional representation of SL2(Z) of weight −2.
With respect to the basis {f, g0, g2, g4, d, l1, l3, l5} the T-matrix and
S-matrix are given by

T=|
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 e 0 0 0 0 0

0 0 0 e2 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 − e2 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 − e

}
and

S= 1
18
|

0 27 27 27 0 −27 −27 −27

1 −6 3 3 −1 −3 6 −3

1 3 3 −6 −1 6 −3 −3

1 3 −6 3 −1 −3 −3 6

0 −81 −81 −81 0 −27 −27 −27

−3 −9 18 −9 −1 −3 −3 6

−3 18 −9 −9 −1 −3 6 −3

−3 −9 −9 18 −1 6 −3 −3

} .
The S-matrix satisfies S2=1.
We define the even lattice

M=E3
8 À II1, 1(6) À II1, 1
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of level 6, signature (6, 2), and determinant 324. The discriminant form of
M can be described as follows. The lattice E3

8 is A2 À A2 and has discrimi-
nant form Z2

3 with norm (n, m)2/2=(n2+m2)/3 mod 1. The elements in
II1, 1(6)Œ/II1, 1(6)=Z2

6 have norm (a, b)2/2=−ab/6 mod 1.
Now let

F(y)= C
c ¥MŒ/M

fc(y) ec

with

fc(y)=f(y)+g0(y) if c=0

=−f(y)−g0(y) if −c2/2=0 and c has order 2

=d(y)+l3(y) if −c2/2=1/2 and c has order 2

=lj(y) if −c2/2=j/6 where j is odd and c has order 6

=gj(y) if −c2/2=j/6 where j is even and c has order 3

=−gj(y) if −c2/2=j/6 where j is even and c has order 6.

As usual c2/2 is taken mod 1. Then F is a modular form of weight −2 and
representation rM.
The singular theta correspondence implies that there is a holomorphic

automorphic form YM for Aut(M, F) of weight 4/2=2. The zeros of YM

are zeros of order 1 coming from divisors of norm 1/3 vectors in MŒ and
from divisors a in MŒ of norm 1 with 2a ¥M.
The level of a primitive norm 0 vector in M divides 6. We can work out

the Fourier expansion at the corresponding cusp using that YM has singu-
lar weight.
We start with the expansion at the level 1 cusp. We decompose

M=L À II1, 1 where L=E3
8 À II1, 1(6) and take z as primitive norm 0

vector in II1, 1. Then the product expansion of Yz(Z, F) is

e((r, Z)) D
a ¥ LŒ+

2a ¥ L

(1−e((a, Z))) ±[f+d](−a
2/2) D

a ¥ LŒ+
(1−e((a, Z))) ±[f+d](−3a

2/2)

= C
w ¥W

det(w) e((wr, Z)) D
n > 0

(1−e((nwr, Z)))(−1)
n 2 (1−e((3nwr, Z)))(−1)

n 2,

where the sign in the exponent of the first product is − if a2 is even and the
image of a has even order in LŒ/L, i.e., order 2, and + else and the sign in
the exponent of the second product is − if 3a2/2 is integral and a has even
order and + in the other cases. Note that a ¥ LŒ with 2a ¥ L implies a2 ¥ Z
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because L is even and has level 6. The Weyl vector is r=(0, 0, 1/6) and
the Weyl group W is generated by the a in LŒ with a2=1/3 and the a in LŒ
of norm 1 with 2a ¥ L. We remark that the roots of LŒ are the vectors a of
norm 1/3, 2/3, 1, and 2 with resp. 6a ¥ L, 3a ¥ L, 2a ¥ L and a ¥ L. This
implies that W has infinite index in the full reflection group of LŒ.
This identity is the denominator identity of a generalized Kac–Moody

superalgebra with the following simple roots. The real simple roots are the
simple roots of the reflection group W, i.e., the roots a satisfying
(r, a)=−a2/2. The imaginary simple roots are the positive multiples nr of
the Weyl vector with multiplicity (−1)n 4 if 3 divides n and (−1)n 2 else.
Here we use the convention that odd roots have negative multiplicity. Note
that there are no odd real simple roots. The root lattice of this algebra is
LŒ. A root a is odd if and only if 3a2/2 is integral and a has even order.
The multiplicity of an even root a ¥ LŒ is mult(a)=[f+d](−3a2/2) if
2a ¨ L and mult(a)=[f+d](−a2/2)+[f+d](−3a2/2) if 2a ¥ L. Up to a
sign the same formula holds for the odd roots.
Next we write M=L À II1, 1(6) with L=E3

8 À II1, 1 and take z as primi-
tive norm 0 vector in II1, 1(6). Then |MŒ/M|=62 |LŒ/L| so that z has level
6. The product expansion of Yz(Z, F) is

D
a ¥ L+

(1−e((a, Z)))[f](−a
2/2)

(1+e((a, Z)))[f](−a
2/2)

D
a ¥ 3LŒ+

(1−e((a, Z)))[f](−a
2/6)

(1+e((a, Z)))[f](−a
2/6)

=1+C a(l) e((l, Z)),

where a(l) is the coefficient of qn in

g(3y)4 g(y)4

g(6y)2 g(2y)2
=1−4q+4q2−4q3+20q4−24q5+4q6− · · ·

if l is n times a primitive norm 0 vector in L+ and 0 else.
This is the twisted denominator identity of the fake monster superalge-

bra corresponding to an automorphism of cycle shape 1232.
We can calculate a level 2 expansion by taking the primitive norm 0

vector z=((1, 0), (2, 0)) in II1, 1 À II1, 1(6). Then L=(M 5 z + )/Zz=E3
8 À

II1, 1(3). We find the product expansion

D
a ¥ L+

(1−e((a, Z)))[f](−a
2/2)

(1+e((a, Z)))[f](−a
2/2)

D
a ¥ LŒ+

(1−e((a, Z)))[f](−3a
2/2)

(1+e((a, Z)))[f](−3a
2/2)

=1+C a(l) e((l, Z))
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where a(l) is the coefficient of qn in

g(3y)4 g(y)4

g(6y)2 g(2y)2
=1−4q+4q2−4q3+20q4−24q5+4q6− · · ·

if l is n times a primitive norm 0 vector in LŒ+ and 0 else.
When we rescale the lattice LŒ=E3

8(1/3) À II1, 1(1/3) by 3 we obtain the
expansion at the level 6 cusp.
The general case is as follows. Let p be a prime such that m=8/(p+1)

is an integer. Define

f(y)=m
g(2py)m g(2y)m

g(py)2m g(y)2m
=m+2m2q+· · ·

and

c(y)=
g(py/2)m g(y/2)m

g(py)2m g(y)2m
=q−1/2−m+· · · .

f is a modular form of level 2p and weight −m.
A supersymmetry relation implies that d(y)=f(y)+c(y) contains only

half-integral powers of q.
We write

f(y/p)=g0(y)+g2(y)+· · ·+g2p−2(y),

where the functions gj have Fourier expansions of the form ; [gj](n) qn

with n ¥ Z+j/p and similarly for

d(y/p)=l1(y)+l3(y)+· · ·+l2p−1(y) .

We will use the functions f, g0, ..., g2p−2 and d, l1, ..., l2p−1 to construct a
vector valued modular form. Their transformations under T are clear and
their S-transformations follow from Lemma 2.1.
The quotient Ep

8 Œ/E
p
8=Zm

p is a vector space over Zp with an orthogonal
basis {c1, ..., cm} satisfying c

2
j/2=1/p mod 1. Define the even lattice

M=Ep
8 À II1, 1(2p) À II1, 1

of level 2p, determinant 22pm+2 and signature (2m+2, 2) and let

F(y)= C
c ¥MŒ/M

fc(y) ec
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with

fc(y)=f(y)+g0(y) if c=0

=−f(y)−g0(y) if − c2/2=0 and c has order 2

=d(y)+lp(y) if − c2/2=1/2 and c has order 2

=lj(y) if − c2/2=j/2p with j odd and c of order 2p

=gj(y) if − c2/2=j/2p with j even and c of order p

=−gj(y) if − c2/2=j/2p with j even and c of order 2p.

Then we have

Proposition 4.1. F is a modular form of weight −m and representation
rM which is holomorphic on H and meromorphic at the cusps.

From the singular theta correspondence we get

Theorem 4.2. There is a holomorphic automorphic form YM for
Aut(M, F) of weight m. The zeros of YM are zeros of order 1 coming from
divisors of norm 1/p vectors inMŒ and from divisors a inMŒ with norm 1 and
2a ¥M. YM has singular weight so that the only nonzero Fourier coefficients
of YM correspond to norm 0 vectors.
At the level 1 cusp we decompose M=L À II1, 1 with L=Ep

8 À II1, 1(2p)
and take z as primitive norm 0 vector in II1, 1. Then the product expansion of
Yz(Z, F) is

e((r, Z)) D
a ¥ LŒ+

2a ¥ L

(1−e((a, Z))) ±[f+d](−a
2/2) D

a ¥ LŒ+
(1−e((a, Z))) ±[f+d](−pa

2/2)

= C
w ¥W

det(w) e((wr, Z)) D
n > 0

(1−e((nwr, Z)))(−1)
n m (1−e((pnwr, Z)))(−1)

n m,

where the sign in the exponent of the first product is − if a2 is even and the
image of a has even order in LŒ/L, i.e. order 2, and+ else and the sign in the
exponent of the second product is − if pa2/2 is integral and a has even order
and + in the other cases. The Weyl vector is r=(0, 0, 1/2p) and the Weyl
group W is generated by the a in LŒ with a2=1/p and the a in LŒ of norm 1
with 2a ¥ L.
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Next we write M=LÀ II1, 1(2p) with L=Ep
8 À II1, 1 so that |MŒ/M|=

22p2|LŒ/L| and take z as primitive norm 0 vector in II1, 1(2p). Then we get the
following level 2p expansion of Yz(Z, F)

D
a ¥ L+

(1−e((a, Z)))[f](−a
2/2)

(1+e((a, Z)))[f](−a
2/2)

D
a ¥ pLŒ+

(1−e((a, Z)))[f](−a
2/2p)

(1+e((a, Z)))[f](−a
2/2p)

=1+C a(l) e((l, Z)),

where a(l) is the coefficient of qn in

g(py)2m g(y)2m

g(2py)m g(2y)m
=1−2mq+· · ·

if l is n times a primitive norm 0 vector in L+ and 0 else.

The expansion of YM at the level 2p cusp shows

Corollary 4.3. The denominator function of the generalized Kac–
Moody superalgebra obtained by twisting the fake monster superalgebra with
an element of cycle shape 1mpm defines a holomorphic automorphic form of
singular weight.

The expansion of YM at the other cusp implies

Corollary 4.4. There is a generalized Kac–Moody superalgebra with
the following properties. The root lattice is the dual LŒ of the lattice
L=Ep

8 À II1, 1(2p). The Weyl group W is the group generated by the reflec-
tions in the norm 1/p vectors of LŒ and the norm 1 vectors a in LŒ with
2a ¥ L. The Weyl vector is r=(0, 0, 1/2p). The real simple roots are the
simple roots of W, i.e., the roots satisfying (r, a)=−a2/2. The imaginary
simple roots are the positive multiples nr of the Weyl vector with multiplicity
(−1)n 2m if p divides n and (−1)n m else. A root a is odd if and only if pa2/2
is integral and a has even order. The multiplicity of an even root a ¥ LŒ
is mult(a)=[f+d](−pa2/2) if 2a ¨ L and mult(a)=[f+d](−a2/2)+
[f+d](−pa2/2) if 2a ¥ L. For odd roots the same formula holds with oppo-
site signs. The denominator identity is given by the expansion of YM at the
level 1 cusp.

5. HYPERBOLIC REFLECTION GROUPS

In this section we describe the reflection groups of the root lattices of the
twisted fake monster algebras. In the bosonic case we get some information
about these groups from the singular theta correspondence. In the super
case we work out their fundamental domains using Vinberg’s algorithm.
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5.1. Lorentzian Lattices

Let L be a Lorentzian lattice of dimension n. There are 2 cones of nega-
tive norm vectors in L é R. The vectors of norm −1 in one of these cones
form a copy of the n−1 dimensional hyperbolic space H. The auto-
morphism group Aut(L) of L is the direct product of Z2 and the subgroup
Aut(L)+ fixing the 2 cones of negative norm vectors. The reflection group
W of L is the subgroup of Aut(L)+ generated by reflections in the roots of
L. W acts on L é R and by restriction on H. The reflection hyperspaces
divide H into Weyl chambers. We choose one Weyl chamber D and call it
the fundamental Weyl chamber. Then Aut(L)+ is the semidirect product
Aut(L)+=C.W where C is the subgroup of Aut(L)+ fixing D. W is called
arithmetic if C is finite. The roots corresponding to the faces of D form a
set of simple roots of L. The reflections in these roots generate W. The
angles between the simple roots and thus the defining relations of W are
usually described through the Dynkin diagram of L.
Vinberg [V] describes the following algorithm for finding a set of simple

roots of L.
Choose a vector w in L with w2 [ 0. The roots orthogonal to w form a

root system which is finite if w2 < 0 and affine else. Choose a fundamental
Weyl chamber C for this root system. Then there is unique fundamental
Weyl chamber D of W containing w and contained in C, and its simple
roots can be found as follows.
All the simple roots of C are simple roots of D. Order the roots a

which have negative inner product (a, w) with respect to the distance
−(a, w)/`a2 of their hyperplanes from w.
Take a root a as a simple root for D if and only if it has inner product at

most 0 with all the simple roots we already have. It is sufficient to check
this for the simple roots whose hyperplanes are strictly closer to w than the
hyperplane of a.
If at some point the roots we have already found by this algorithm span

L é R and contain at least one Dynkin diagram that is spherical of rank
n−1 or affine of rank n−2, and every spherical diagram of rank n−2 in
such a diagram is contained in a second such diagram, then these roots
form a complete set of simple roots for D (cf., for example, Theorem 1.4 in
[B1]).

5.2. Reflection Groups

First we consider the root lattices of the fake monster algebras. They are
similar to the lattice II25, 1=L À II1, 1. Let L=Lp À II1, 1. The roots of L
are the norm 2 vectors in L and the norm 2p vectors in pLŒ. The reflection
group of L is also the Weyl group of the fake monster algebra with root
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lattice L. Let M=L À II1, 1(p) and fM+d(y) be the components of the
modular form F with representation rM given in Section 3.2. We define

FL(y)= C
c ¥ LŒ/L

fL+c(y) ec

with components

fL+c(y)= C
d ¥MŒ/M
d | K=c

fM+d(y),

where z is a primitive norm 0 vector in II1, 1,(p) and K=M 5 z + . It is easy
to see that FL is a modular form of type rL and weight −m (cf. Theorem
5.3 in [B3]). The components fL+c(y) can be described explicitly as

fL+c(y)=hL +
p +c + (y)/D(y),

where L +
p is the orthogonal complement of Lp in L and c+c + ¥ L. The

singular theta correspondence associates an automorphic form to FL whose
singularities are exactly at the reflection hyperplanes of W. Theorem 2.3
implies

Proposition 5.1. The norm 0 vector r=(0, 0, 1) is a Weyl vector for L
and the simple roots of L are the roots a satisfying (r, a)=−a2/2.
Furthermore the quotient Aut(L)+/W contains a free abelian subgroup of
finite index.

The lattice Lp has no roots so that Aut(L)+/W is actually equal to the
group of affine automorphisms of Lp by Theorem 3.3 of [B1].
Now we consider the root lattices of the fake monster superalgebras. We

will see that they are similar to the lattice II9, 1=E8 À II1, 1. Here we apply
Vinberg’s algorithm rather than Theorem 2.3 because the latter would not
give much information on the reflection groups.
The lattice E3

8 is isomorphic to A2 À A2. Let v1=(1, −1, 0), v2=
(0, 1, −1), and v3=(−1, 0, 1) be 3 roots of A2. We choose the vector w=
(0, 0, 1, 1) in L=A2 À A2 À II1, 1 with norm w2=−2 and apply Vinberg’s
algorithm to determine the simple roots of L. We find the following
complete set of simple roots

a1=(v1, 0, 0, 0), a5=(0, 0, 1, −1)

a2=(v2, 0, 0, 0), a6=(v3, 0, 0, 1)

a3=(0, v1, 0, 0), a7=(0, v3, 0, 1)

a4=(0, v2, 0, 0).
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Proposition 5.2. The Lorentzian lattice L=E3
8 À II1, 1 has 7 simple

roots and Dynkin diagram

The reflection group of L is arithmetic and C=Z2
2.

The vector r=(v3, v3, 3, 4) of norm r2=−20 satisfies (r, ai)=−a2i /2
for all simple roots. The only other roots satisfying this relation are
(x, 0, 0, 0) and (0, x, 0, 0) with x=(1, 1, −2) or x=(2, −1, −1). But these
roots are not simple.
The root lattice of the other fake monster superalgebra is the dual of

E3
8 À II1, 1(6). We rescale this lattice by 2p=6 to obtain the even lattice

L=E3
8(2) À II1, 1. This lattice has level 6 and roots of norm 2, 4, 6, and 12

in L, L 5 2LŒ, L 5 3LŒ, and 6LŒ. As above we find

Proposition 5.3. L has 11 simple roots and C=Z2
2.

We remark that L does not have a Weyl vector.
E7

8 is the 2 dimensional lattice with elements (m1, m2) where either m1

and m2 are in Z and m1+m2 is even or m1 and m2 are in Z+1/2 and
m1+m2 is odd, and norm (m1, m2)2=m2

1+7m2
2. The roots of E

7
8 are the

norm 2 vectors ±(1/2, 1/2) and the norm 14 vectors ±(7/2, −1/2). We
define the vectors v1=(1/2, 1/2), v2=(7/2, −1/2), and x=(−2, 0).
Let L=E7

8 À II1, 1. Choosing w=(0, 1, 1) we find the following simple
roots

a1=(v1, 0, 0), a4=(−v1, 0, 1)

a2=(0, 1, −1), a5=(x, 1, 1)

a3=(v2, 0, 0), a6=(−v2, 0, 7).

Proposition 5.4. The Lorentzian lattice L has 6 simple roots with
Dynkin diagram

The reflection group of L has index 2 in Aut(L)+.
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The vector r=(x, 2, 3) of norm −8 satisfies (r, ai)=−a2i /2 for all
simple roots. There are no other roots with this property.
When we rescale the root lattice of the other fake monster superalgebra

by 14 we obtain the lattice L=E7
8(2) À II1, 1 of level 14. This lattice has

roots of norm 2, 4, 14 and 28 in L, L 5 2LŒ, L 5 7LŒ and 14LŒ. We have

Proposition 5.5. The Lorentzian lattice L has 8 simple roots and a Weyl
vector of norm −4. The Dynkin diagram of L is

The reflection group of L is arithmetic and has index 2 in Aut(L)+.

We remark that L has 2 simple roots of each possible root length.
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