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Abstract. A solution to a conjecture of Fleck, Hedetniemi and Oehmke [4] on J *-semigroups 
of automata is presented. This also generalizes a result in [ 1 ] . 

A finite automaton or machine is a system (S, I, 6), where S and I are 
finite sets and 6 : S X I + S; here we will write s i for &s, i). Elements of 
S are called states, and those of I are called inputs. A machine is autono- 
mous if III= 1. Let I* be the set of non-empty strings of symbols from 
I; we can extend 6 to be a function 6 : S X I* + S by defining, for i E I, 
x E I*, s (ix) = (s i) x. A machine is strong (strongly connected) if, given 
any s, t E S, there is a string wst E I* such that s wst = t. 

In [ 11, Fleck, Hedetniemi and Oehmke define a semigroup structure 
on machines as follows. 

Ifs; t E S and x is a string of symbols from I (x E I*) such that sx = t, 
then we say that (s, x, t) is a triple of A ; if x = i E I, then (s, x, sx) is an 
elementary triple. Let U and V be finite sets of triples of A; we define 
the product Uo Y by 

Uo V = ((s, x, t): 3 (s, y, r) E U, (r, z, t) E V such that x = y z} . 

Under the operation 0 the finite sets of triples form a semigroup; we call 
this semigroup J*(A). The empty set is a zero for d*(A). 

The following conjecture was made in [4]: 

* Original version received 4 April 1973. 
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If A and A’ are any two strong machines with the same number of 
states, then 3*(A) is isomorphically embedded in d*(A’), and vice- 
versa. 

In this note we settle the conjecture completely: it is true if neither 
machine is autonomous, but if A is autonomous and A’ is not, then, 
while J*(A) is isomorphically embedded in J*(A’), the converse is not 
true. A special case of this result, for positive machines which are not 
autonomous, is presented (without proof) as Theorem 2 of [ 11. 

Theorem 1. Let A = (S, I, 6) be a strong machine with n states and at 
least two inputs, and let A’ = (S’, I’, 6’) be a strong automaton with 
n’ 2 n states. Then @(A’) is isomorphic to a subsemigroup of J*(A). 

Proof. We first note that since A is strong, for any states s and t, not ne- 
cessarily distinct, there is a string wst of length at least one such that 
s Wst = t. 

Let @ be a one-to-one map from the states of A onto the states of A’; 
unless IA I = IA’ I, the domain of $ will be a proper subset S of S. Let A’ 
have input set I’ = {ii, ii , . . . . ii ; a = II’ I}. We define a map h : ?? X I’ -+ I* 

in the following manner. First choose two distinct inputs 77 and y from 
I. Let s E S and ii’ E I’ be such that (G(s), ii, t’) is a triple of A’; choose 
t E 3 such that G(t) = t’ and define 

h(s, ij) = h,(ij) = qj 77 wqt , 

where y = s($$. Clearly, h, is 1 - 1 for each s E S; also, for each s E S 
and ij E I’, the relation gS(sh,(ij)) = @(s)ii holds. (In fact, the pair (@, h) 
defines a generalization of the classical automata-theoretic notion of rea- 
lization; this is dealt with in detail in [2], see also [31.) We can also extend 
h to domain S X (I’)* inductively by the usual device of setting h,(ijx’)= 
h,(ii) h,(x’), where x’ E (I’)* and t = sh,(ij) E 5. 

We next show that the extended maps h, are also one-to-one. Let 

il . . . j, and k, . . . km’ be two non-empty strings over I’ and let 

w-1 . . . j, ) = h,(k, . . . kml) = w. Then, by definition, there are states r, 
t E $ such that w = hsvl ) hr(jz . . . j, ) = h,(k, ) h,(k, . . . kml). But there 
is a unique positive integer b such that the prefix of w having length 
b + 1 is the string $ i. This uniquely determines jr = k, = ii, so that 
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Y = t = sh,(ib). Then hr(j2 . . . jm ) = h,(k, . . . km!), and we can repeat the 
above process until we arrive at m = m' and jp = k, , p = 1, 2, . . . . m. 

Note that for the extended maps to be one-to-one it is not sufficient 
to simply have h, be one-to-one on symbols for each s E s. For, using 
the above notation, suppose h,G, ) = c, h,(k, ) = cd, hr(&) = de, 
h,(k,) = c. Then h,(j, jz) = h,(k, k,) = cde, butj, j2 f k, k,. 

We now have the machinery necessary to prove the theorem. 
Let b’ = {(s’, x’, t’)} be a singleton in &*(A’) and set g(b’) = 

Us, h,(x’), 0: @(s) = ~‘1; since 4 is one-to-one and onto, g(b’) is a single- 
ton. Note that we must have G(t) = t’. Also, since h, is one-to-one for 
each s E g,g(b; ) =g(b;) if and only if b; = b;; i.e., g is one-to-one. Let 

b; = {(si, Xi, Y’)} and b; = {(Y’, x;, ti)}. Let b, = ((~1, x1, r)} =g(bi) 
and b, = {(Y, x2? t2)} =g(b;). Then b, 0 b, = ((~1, hs, (xix; ), t2 )I is a 
singleton of J *(M) and, as $(t2) = f;, b, 0 b2 = g(bi 0 b;). Thus 
g(bi)og(bi) =g(bi 0 b;). On the other hand, if bi = {(si , X; , ti )}, 
b; = Us;, x;,t;)},g(bi)={(sl,xl, tl>Mb~) = Us2, x2, t2)l and 

ti fs;,thentt fs2,sothatbiob;=Oandg(bi)og(b;)=O. 
Now let V’ be any element of J *(A’); V’ is a finite set of triples of 

M’. Extendg tog*by g*( V’) = {g(b’): b E V’}. Let &z(A) be 
{g*(V): V’ E d*(k)}. 

Now, if Vi, V; E d*(A’), 

g*(V’r)og*(V;) =,[U{g(bi): b;E Vi}] 0 [U(g(di): di E V;}] 

= U {g(bi)o g(di): bi E Vi, di E Vb} 
i, i 

= U (g(b; 0 d;): b; E V; , d; E V;> 
i, i 

= U(g(fi): fiE Vi O Vi} =g*(Vi 0 V;> . 

Thus d:,(A) is a subsemigroup of 3*(A), andg* is a homomorphism. 
We wish to show that g* is one-to-one. Suppose g*( Vi ) = g*( Vi). Choose 
a triple bi E Vi , and let {b,} = g({bi)). Then there is a triple b; E Vi 
such that {b) = g({b;}). If b = (s, w, t), b; = (G(s), xi, @(t>) and b; = 
@(s), ~‘2, W>), where w = h,(xi ) = h,(x;). Then, since h, is one-to-one, 
X; =x;,so b; = bi and Vi C_ Vi. The symmetric argument gives Vi = 
Vl, so that g* is l- 1, and hence g* is an isomorphism between ccj*(A’) 
and 62,(A). 
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Corollary 2. Let A and A’ be strong machines, with ISI = IS’ I. Then, 
unless A is autonomous but A’ is not, J”(A’) is isomorphic to a sub- 
semigroup of J*(A). 

Proof. If M is not autonomous, then 3*(A’) s d:,(A), by the theorem. 
On the other hand, if both machines are autonomous, then they are iso- 
morphic, so the result follows trivially. 

We now proceed to consider the remaining case of the conjecture. For 
n 2 2, let R, be the complete reset machine (Qn, Xn, S,), where Q, = 
(41, ***, qn 1, x, = ’ b 1, * * - f xn} and for any i, qixi = qj- Also, let C, be the 
unique strong autonomous machine (K,, { l}, Sk), where K, = 
(k,, k,, . . . . k,}andkil =k,+r;l <_i<nandk,l=kr. 

Theorem 3. The semigroup J *(R, ) cannot be isomorphically embedded 
in d*(C,). 

Proof. Let $ : J *(R,) + 7* E J*(C, ) be an isomorphism. In any semi- 
group 3 with zero, for each s E CJ, define s1 = {t: st # 0) and sT = 
{t: ts f 0). Since @ is an isomorphism, it follows that for each s E J*(R,), 
@(sl) = @(s)l and @(sT ) = @(s)~. (Further results on these annihilation ope- 
rations appear-in. [ 51.) 

For any triple b = (r, x, t), define i(b) = r and f(b) = t; for a set S of 
triples i(S) = {i(b): b E S) and f(S) = cf(b): b E S}. Clearly, for any semi- 
group element s, s1 = (u: f(s) n i(b) f 9) and sT = {u: f(u) n i(s) # 9). 

Let the set of elementary triples of J “(R,) be B = {bii =‘(qi, Xi) 4;)). 
For each i, j and k, blT = b:k and b~i = bii- Note that if i f j, there is no 
elementary triple b such that both b,ib and b,b are non-zero. Suppose 
that for two triples b, and b,, p # q, there is an element e E f($(b, )) n 
f($(d,)). Then e cannot be an element of i@(b)) for any b E B, as other- 
wise both @(b, ) @(b) # 0 and $(b, ) @(b) f 0, and hence both b, b and 
b, b, would be non-zero. However, for each elementary triple b, , 
@(b,)‘- # 9. Thus each set f($(b,& i = 1, . . . . n, must contain some ele- 
ment from K, which is not contained in any of the others. This is only 
possible if each set f[$(bri)) is a singleton. As this analysis holds for each 
r, it follows that there is a mapping q : Q, l-l > K, such that f(@(b$) = 
q(q,.). Similarly, there must be a mapping I-( : Qn l-l > K,., such that 
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i(@(bij)) = p(qi); however, since bij bjk f 0, it must be the case that for 
each i, cu(q$ = r7(q). 

Thus, for each elementary triple b,, $(bij) is a set of triples i(q(qi), 
i *ijk , r1(qi)): “ijk > 0, 1 I k I Nij) e Consider al = b,, b,, b,, b,, and 
cu2 = b,, b,, b,, b,,. Clearly, i(crl) = i(ar2) = q(ql) andf(q) =f(a2) = 
77(q2). If (q(ql ), In, q(q2)) E $(a 1 ), then n can be written as follows: 
n = ?‘rr&lq + ??22k2 + n21k3 + n12k4. But, of course, n. = nt2kl + n21k3 + 

n 12k4 + n22k2 3 so that My1 A In, 77(q2 1) E $J(~~). Conversely, cP(a2) c 
$(a 1 ), so that @(a1 ) = #(‘Ye) even though a1 f ar2 ; hence @ is not an 
isomorphism. 

Corollary 4. If A is a strong machine with n states and at least 2 inputs, 
then J*(A) cannot be isomorphically embedded in c~*(C, ). 

Proof. This follows immediately since, by the previous result, J *(R, ) 
can be isomorphically embedded in J*(A). 
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