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Abstract. A solution to a conjecture of Fleck, Hedetniemi and Oehmke {4] on J*-semigroups
of automata is presented. This also generalizes a resultin [1].

A finite automaton or machine is a system (S, I, §), where S and [ are
finite sets and 6 : S X /= §; here we will write si for 6(s, 7). Elements of
S are called states, and those of I are called inputs. A machine is autono-
mous if |I1=1. Let I'* be the set of non-empty strings of symbols from
I; we can extend & to be a function 6 : § X I* - S by defining, fori € [,
x € I*, s (i x) = (s i) x. A machine is strong (strongly connected) if, given
any s, t € S, there is a string w, € I* such that swg, = ¢.

In [1], Fleck, Hedetniemi and Oehmke define a semigroup structure
on machines as follows.

If s; t € § and x is a string of symbols from 7 (x € I*) such thatsx =1,
then we say that (s, x, t) is a triple of A;if x =i € I, then (s, x, sx) is an
elementary triple. Let U and V be finite sets of triples of 4; we define
the product U- V by

Uo V={(s,x,t): 3(s,y,r)E U, (r,z,t)E€ V such that x=y z} .
Under the operation o the finite sets of triples form a semigroup; we call

this semigroup Jd*(A4). The empty set is a zero for 3*(4).
The following conjecture was made in [4]:

* QOriginal version received 4 April 1973.
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If A and A’ are any two strong machines with the same number of
states, then &$*(A4) is isomorphically embedded in $*(4"), and vice-
versa.

In this note we settle the conjecture completely: it is true if neither
machine is autonomous, but if 4 is autonomous and A4’ is not, then,
while $*(A4) is isomorphically embedded in $*(A4"), the converse is not
true. A special case of this result, for positive machines which are not
autonomous, is presented (without proof) as Theorem 2 of [1].

Theorem 1. Let A = (S, I, 6) be a strong machine with n states and at
least two inputs, and let A' = (S', I', 8') be a strong automaton with
n' < n states. Then 3*(A') is isomorphic to a subsemigroup of 3*(A).

Proof. We first note that since A4 is strong, for any states s and ¢, not ne-
cessarily distinct, there is a string wg, of length at least one such that
Swg = 1.

Let ¢ be a one-to-one map from the states of A onto the states of 4';
unless |41 = 14", the domain of ¢ will be a proper subset § of S. Let A’
have input set I' = {i}, i}, ..., i,;a = II'l}. We defineamaph: SX I' > I*
in the following manner. First choose two distinct inputs n and 1 from
I Letse€ S and i; € I' be such that (¢(s), i;, t') is a triple of A"; choose
t € S such that ¢(¢) = ¢’ and define

where g = s(n/n). Clearly, h, is 1—1 for each s € S; also, for each s € §
and i; € I', the relation ¢(shs(i]'-)) = ¢(s)i; holds. (In fact, the pair (¢, &)
defines a generalization of the classical automata-theoretic notion of rea-
lization; this is dealt with in detail in [2], see also [3].) We can also extend
h to domain S X (I')* inductively by the usual device of setting hs(i]'-x' )=
hy(i}) h,(x"), where x' € (I')* and ¢ = shy(i;) € S.

We next show that the extended maps A are also one-to-one. Let
j1 ---Jm and k; ... k,,» be two non-empty strings over I' and let
hy(G{ ...im)=hyk, ...k, )= w. Then, by definition, there are states 7,
t € S such thatw = h,(G ) h,Gy ... j,y ) = (k) B (k4 ... k). But there
is a unique positive integer b such that the prefix of w having length
b + 1 is the string n? n. This uniquely determines j, = k; =i}, so that
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r=t=shy(iy). Then h,G, ...j,,) = h,(k, ... k,, ), and we can repeat the
above process until we arrive at m = m’ and jp = kp ,p=1,2,.., m.

Note that for the extended maps to be one-to-one it is not sufficient
to simply have / be one-to-one on symbols for each s € S. For, using
the above notation, suppose h,(j;) =c, h(k,)=cd, h,(G,)=de,
h(ky)=e.Thenhy(,j,)=hy(k, ky)=cde,butj, j, # k; k,.

We now have the machinery necessary to prove the theorem.

Let ' = {(s', x', ')} be a singleton in J*(4’) and set g(d') =
{(s, h(x"), t): ¢(s) =s'}; since ¢ is one-to-one and onto, g(db’) is a single-
ton. Note that we must have ¢(¢) = ¢'. Also, since h, i3 one-to-one for
each s € S,g(b}) =g(by) if and only if b = b};i.e., g is one-to-one. Let
by ={(s7,x],r)} and b5 = {(r', x5, t5)}. Let b, = {(s{, x;, 1)} =g(b'£)
and b, = {(r, x,, £,)} =g(b5). Then b o b, = {(s¢, hs1 (x7x5),t,)} isa
singleton of S*(M) and, as ¢(t,) = t5, b, o by =g(b] o b}). Thus
g(b) o g(by) =g(b] » b5). On the other hand, if 5] = {(s7, x|, 1)},
by = {(s5, x5, t5)},8b7) = {(sy. x|, t1)},8(b5) = {(s5, x5, t,)} and
t) # 55, thent, #s5,,s0 that b} o b, =0 and g(b}) - g(b,)=0.

Now let V' be any element of & *(4'); V' is a finite set of triples of
M'. Extend g to g"by g*(V') = {g(b"): b€ V'}. Let $%.(4) be
{g°(V): V' € S*(A4")}.

Now, if V|, V), € 5*(4"),

g¥(V)e g*(Vy) = {U{g(®)): b€ V}1° [Ulg(d)): d; € V}}]

= Ulg(b)og(d): bj€ Vy,d) € V}}
L]
= U {gbjed):bje Vy,di€ V)
L
=UR(f): i€ V) o Vy} =g*(Vy o V).

Thus ch;,(A) is a subsemigroup of 3*(4), and g* is a homomorphism.
We wish to show that g* is one-to-one. Suppose g*(V}) = g*(V3). Choose
a triple b} € V7, and let {b} =g({b}). Then there is a triple b}, € V,
such that {b} =g({b3}). If b = (s, w, 1), b} = (¢(s), x|, ¢(?)) and b, =
(6(5), x5, ¢(1)), where w = hy(x]) = hy(x}). Then, since A, is one-to-one,
Xy =x5,s0b] =b) and V] & V. The symmetric argument gives V| =
V', so that g* is 1 —1, and hence g* is an isomorphism between *(A4")
and &%.(4).
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Corollary 2. Let A and A' be strong machines, with |S1=|S"|. Then,
unless A is autonomous but A’ is not, 3*(A') is isomorphic to a sub-
semigroup of 3*(A).

Proof. If M is not autonomous, then $*(4") = csj.(A), by the theorem.
On the other hand, if both machines are autonomous, then they are iso-
morphic, so the result follows trivially.

We now proceed to consider the remaining case of the conjecture For
n 2 2,let R, be the complete reset machine (Q,, X,,, §,), where 0,
{qy ... 9, % X, ='{xy ..., x,,} and for any j, q;x;=q;. Also, let C, be the
unique strong autonomous machine (X,,, {1}, §,), where K, =
{ki, kg, ... kK and k1 = kg5 ] < i< nand k,1=k,.

Theorem 3. The semigroup $*(R,,) cannot be isomorphically embedded
in 3*(C,).

Proof. Let ¢ : S*(R,) > T* & I*(C,) be an isomorphism. In any semi-
group & with zero, for each s € J, define st = {¢t: st # 0} and s =

{¢: ts # 0}. Since ¢ is an isomorphism, it follows that for each s € 3*(R,),
d(st) = ¢(s)* and @¢(s7) = ¢(s)" . (Further results on these annihilation ope-
rations appear,n [5].)

For any triple b = (r, x, t), define i(b) =r and f(b) = ¢t; for a set S of
triples i(S) = {i(b): b € S} and f(S) = {f(b): b € S}. Clearly, for any semi-
group element s, s+ = {u: f(s) N i(u) # 0} and s7 = {u: flw) N i(s) # Q).

Let the set of elementary triples of < *(R )be B = {bu “'(q,, q])}
For eachi,j and k, b =b,, and bi; = by;. Note that if i # j, there is no
elementary triple b such that both byib and by;b are non-zero. Suppose
that for two triples b and brq ,P # q, there is an element e € f(cp(b,p )N
f(qb(b,q)) Then e cannot be an element of i(¢(b)) for any b € B, as other-
wise both ¢>(b )¢(b) # 0 and ¢>(b ) ¢(b) # 0, and hence both b, b and
b,qb, would be non-zero. However for each elementary triple brp,
¢(b,.p )* # (@. Thus each set f(#(d,;)), i =1, ..., n, must contain some ele-
ment from K, which is not contained in any of the others. This is only
possible if each set f(¢(b,;)) is a singleton. As this analysis holds for each
r, it follows that there is a mapping nn: Q,, K such that f(¢(b,])) =
n(q],. Similarly, there must be a mapping u : @, A1 K, such that
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i((b(b,-]-)) = u(q;); however, since b; by, # 0, it must be the case that for
each j, u(q;) = n(q;).

Thus, for each elementary triple b, ¢(b,-]-) is a set of triples {(n(q;),
179 1(g;)): nye > 0, 1< k< Ny}. Consider ay =by, by, by by, and
ay =byy by byy byy. Clearly, i(ay ) = iay) = n(q,) and flag) = flay) =
n(q,). If (n(q{), 1", n(q,)) € ¢(a;), then n can be written as follows:
n=npk, Tk, Tk, YNk, But, of course, n = niok, t o1k, t
Ni2k, + N2k, SO that (n(gy), 17, 1(q,)) € ¢(a,). Conversely, ¢(a;) C
@(ary ), so that ¢(a;) = ¢(a, ) even though a; # a,; hence ¢ is not an
isomorphism.

Corollary 4. If A is a strong machine with n states and at least 2 inputs,
then 3*(A) cannot be isomorphically embedded in 3*(C,).

Proof. This follows immediately since, by the previous result, S*(R,,)
can be isomorphically embedded in $*(A4).
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