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Abstract

Recent psychological studies have strongly suggested that humans share common visual preferences for facial attractiveness. Here, we
present a learning model that automatically extracts measurements of facial features from raw images and obtains human-level perfor-
mance in predicting facial attractiveness ratings. The machine’s ratings are highly correlated with mean human ratings, markedly improv-
ing on recent machine learning studies of this task. Simulated psychophysical experiments with virtually manipulated images reveal
preferences in the machine’s judgments that are remarkably similar to those of humans. Thus, a model trained explicitly to capture a
specific operational performance criteria, implicitly captures basic human psychophysical characteristics.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Philosophers, artists and scientists have been trying to
capture the nature of beauty since the early days of philos-
ophy. Although in modern days a common layman’s
notion is that judgments of beauty are a matter of subjec-
tive opinion alone, recent findings suggest that people share
a common taste for facial attractiveness and that their pref-
erences may be an innate part of our primary constitution.
Several experiments have shown that 2–8 months old
infants prefer looking at faces rated by adults as more
attractive (Langlois et al., 1987). In addition, attractiveness
ratings show very high agreement between groups of raters
0042-6989/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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belonging to the same culture and even across cultures
(Cunningham, Roberts, Wu, Barbee, & Druen, 1995). Such
findings give rise to the quest for common factors which
determine human facial attractiveness. Accordingly, vari-
ous hypotheses, from cognitive, evolutional and social per-
spectives, have been put forward to describe and interpret
the common preferences for facial beauty.

Inspired by Sir Francis Galton’s photographic method
of composing faces (Galton, 1878), Langlois and Rogmann
have created averaged faces by morphing multiple images
together. Human judges found these averaged faces to be
attractive and rated them with attractiveness ratings higher
than the mean rating of the component faces composing
them, proposing that averageness is the answer for facial
attractiveness (Langlois & Roggman, 1990; Rubenstein,
Langlois, & Roggman, 2002). Investigating symmetry and
averageness of faces, Grammer and Thornhill concluded
that symmetry was more important than averageness in
facial attractiveness (Grammer & Thornhill, 1994). Other
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studies have agreed that average faces are attractive but
claim that faces with certain extreme features, such as
extreme sexually dimorphic traits, may be more attractive
than average faces (Little, Penton-Voak, Burt, & Perrett,
2002). Yet other researchers have suggested various condi-
tions which may contribute to facial attractiveness such as
neonate features, pleasant expressions and familiarity
(Zebrowitz & Rhodes, 2002). Finally, Cunningham et al.
have suggested a multiple fitness model in which there is
no single constructing line that determines attractiveness
(e.g. perception of fitness as implying an ideal romantic
partner). Instead, different categories of features signal dif-
ferent desirable qualities of the perceived target (Cunning-
ham, Barbee, & Philhower, 2002). Even so, the multiple
fitness model agrees that some facial qualities are univer-
sally physically attractive to people.

Apart from eliciting the facial characteristics which
account for attractiveness, modern researchers have aimed
to describe the mechanisms underlying these preferences.
Many contributors refer to the evolutionary origins of
attractiveness preferences (Andersson, 1994; Møller &
Swaddle, 1997; Thornhill & Gangsted, 1999). According
to this view, facial traits signal mate quality and imply
chances for reproductive success and parasite resistance.
Some evolutionary theorists suggest that preferred features
might not signal mate quality but that the ‘‘good taste’’ by
itself is an evolutionary adaptation (individuals with a pref-
erence for attractiveness will have attractive offspring that
will be favored as mates) (Thornhill & Gangsted, 1999).
Another mechanism explains attractiveness’ preferences
through a cognitive theory—a preference for attractive
faces might be induced as a by-product of general percep-
tion or recognition mechanisms (Rubenstein et al., 2002;
Zebrowitz & Rhodes, 2002): attractive faces might be
pleasant to look at since they are closer to the cognitive
representation of the face category in the mind. Halbers-
tadt and Rhodes have further demonstrated that not just
average faces are attractive but also birds, fish, and auto-
mobiles become more attractive after being averaged with
computer manipulation (Halberstadt & Rhodes, 2003).
Such findings led researchers to propose that as perceivers
can process an object more fluently, aesthetic response
becomes more positive (Reber, Schwarz, & Winkielman,
2004). A third view suggests that facial attractiveness orig-
inates in a social mechanism, where preferences may be
dependent on the learning history of the individual and
even on his social goals (Zebrowitz & Rhodes, 2002).

Other studies have used computational methods to ana-
lyze facial attractiveness. In several cases faces were aver-
aged using morphing tools (e.g. Perrett, May, &
Yoshikawa, 1994; Rubenstein et al., 2002). Laser scans of
faces were put into complete correspondence with the aver-
age face in order to examine the relationship between facial
attractiveness, age and averageness (ÓToole, Price, Vetter,
Bartlett, & Blanz, 1999). A genetic algorithm, guided by
interactive user selections was programmed to evolve a
‘‘most beautiful’’ female face (Johnston & Franklin,
1993). Machine learning methods have been used recently
to investigate whether a machine can predict attractiveness
ratings by learning a mapping from facial images to their
attractiveness scores (Eisenthal, Dror, & Ruppin, 2006).
The latter predictor achieved a correlation of 0.6 with aver-
age human ratings, demonstrating that facial beauty can be
learned by a machine, at least to some moderate extent.
However, as human raters significantly outperform the pre-
dictor of Eisenthal et al., the challenge of constructing a
facial attractiveness machine predictor with human-level
accuracy has remained open.

A primary goal of this study is to surpass these results
by developing a machine which obtains human-level per-
formance in predicting facial attractiveness and, thus,
passes what Kurzweil calls a subject matter expert turing

test (SME TT) (Kurzweil, 2005). Having accomplished
this, our second main goal is to conduct a series of simu-
lated psychophysical experiments and study the resem-
blance between human and machine judgments. This
latter task carries two potential rewards: first, to determine
whether the machine can aid in understanding the psycho-
physics of human facial attractiveness, capitalizing on the
ready accessibility of manipulating and studying its perfor-
mance, and second, to study whether learning an explicit
operational ratings prediction task also entails learning
implicit human-like biases, at least for the case of facial
attractiveness.

In the past decades machines have achieved human-level
performance in rule-based systems such as playing games
(Schaeffer & Herik, 2002) and in various expert systems
(Slezak, 1991). Impressive progress has been displayed in
simulating various tasks which involve face perception,
such as face detection (Hjelmas & Low, 2001), face recog-
nition (Becker, 1999; Zhao, Chellappa, Rosenfeld, & Phil-
lips, 2000) and tasks of facial category learning such as
emotion (Dailey, Cottrell, Padgett, & Adolphs, 2002) and
gender (Graf, Wichmann, Bülthoff, & Schölkopf, 2006)
recognition. The task of evaluating human attractiveness
ratings adds the notion of judgment of taste to the previous
achievements in machine perception of faces. Learning the
concept of facial attractiveness could form an important
demonstration of a computer’s ability to learn to master
a quantitative, basic, human judgment task.

To this end we have collected human scores of facial
attractiveness for a given dataset of female facial images.
We developed an algorithm for automatic extraction of a
very large set of geometric facial features, which, combined
with a set of global features, yields a principled representa-
tion of each facial image via a set of image-features in an
appropriate dimension-reduced space. Using this data of
facial representations and their associated rating scores,
we have employed standard supervised learning algorithms
to construct a facial attractiveness prediction machine.
Given a new, unseen face, this machine predicts its human
attractiveness score in an accurate manner. We then turned
to performing a series of simulated psychophysical experi-
ments, modeled after known experiments in the psycholog-



A. Kagian et al. / Vision Research 48 (2008) 235–243 237
ical literature, to study the resemblance between human
and machine preferences. These experiments are particu-
larly interesting since the machine is trained on an explicit
operational ratings prediction task with no defined instruc-
tions specifying the human-like biases in question.
Fig. 1. Facial coordinates with hair and skin sample regions as
represented by the facial feature extractor. Coordinates are used for
calculating geometric features and asymmetry. Sample regions are used for
extracting color values and smoothness. (The sample image, used for
illustration only, is of T.G. and is presented with her full consent.)
2. Materials and methods

2.1. Rating the facial database

The chosen database was composed of 91 facial images of American
females, taken by the Japanese photographer Akira Gomi. All 91 samples
were frontal color photographs of young Caucasian females with a neutral
expression. All samples were of similar age, skin color and gender. The
subjects’ portraits had no accessories or other distracting items such as
jewelry. We focused on female faces since experimental results shows that
there is a greater agreement on human ratings of female faces while male
face preferences are more largely influenced by the menstrual cycle and
self-perceived attractiveness of the raters (Little et al., 2002). All 91 facial
images in the dataset were rated for attractiveness by 28 human raters (15
males, 13 females) on a 7-point Likert scale (1 = very unattractive,
7 = very attractive). Ratings were collected with a specifically designed
html interface. Each rater was asked to view the entire set before rating
in order to acquire a notion of attractiveness scale. There was no time limit
for judging the attractiveness of each sample and raters could go back and
adjust the ratings of previously rated samples. The images were presented
to each rater in a random order and each image was presented on a sep-
arate page. The final attractiveness rating of each sample was its mean rat-
ing across all raters. To validate that the number of ratings collected
adequately represented the ‘‘collective attractiveness rating’’ we randomly
divided the raters into two disjoint groups of equal size. For each facial
image, we calculated the mean rating on each group, and calculated the
Pearson correlation between the mean ratings of the two groups. This pro-
cess was repeated 1000 times. The mean correlation between two groups
was 0.92 (r = 0.01). It should be noted that the split-half correlations
reported were high in all 1000 trials (as evident from the low standard
deviation) and not only over the average. This correlation corresponds
well to the known level of consistency among groups of raters reported
in the literature (e.g. Cunningham et al., 1995). Hence, the mean ratings
collected are stable indicators of attractiveness that can be used for the
learning task. The facial set contained faces in all ranges of attractiveness.
Final attractiveness ratings range from 1.42 to 5.75 and the mean rating
was 3.33 (r = 0.94).

2.2. Data preprocessing and representation

Preliminary experimentation with various ways of representing a facial
image (e.g. Eisenthal et al., 2006) have systematically shown that features
based on measured proportions, distances and angles of faces are most
effective in capturing the notion of facial attractiveness. To extract facial
features we developed an automatic engine that is capable of identifying
eyes, nose, lips, eyebrows and head contour. In total, we measured 84
coordinates describing the locations of those facial features (Fig. 1). Sev-
eral regions are automatically suggested for sampling mean hair color,
mean skin color and skin texture. The feature extraction process was basi-
cally automatic but some coordinates needed to be manually adjusted in
some of the images. The facial coordinates are used to create a dis-

tances-vector of all 3486 distances between all pairs of coordinates in the
complete graph created by all coordinates. For each image, all distances
are normalized by face length (as measured from the coordinate at the
top of the forehead to the coordinate at the bottom of the chin). In a sim-
ilar manner, a slopes-vector of all the 3486 slopes of the lines connecting
the facial coordinates is computed. Central fluctuating asymmetry
(CFA) is calculated from the coordinates as well. CFA corresponds to
the sum of the absolute values of the differences of the midpoints of adja-
cent horizontal lines which connect matching bilateral facial coordinates
(see Grammer & Thornhill, 1994). The application also provides, for each
face, hue, saturation and value (HSV) values of hair color and skin color,
and a measurement of skin smoothness. Smoothness of skin was calcu-
lated with an edge-detection algorithm in which many detected edges sug-
gest a low level of skin smoothness. Combining the distances-vector and
the slopes-vector yields a vector representation of 6972 geometric features

for each image. Since strong correlations are expected among the features
in such representation, principal component analysis (PCA) was applied to
the 6972 geometric features, producing 90 principal components that span
the sub-space defined by the 91 image vector representations. The geomet-
ric features are projected on those 90 principal components to produce 90
decorrelated eigenfeatures representing the geometric features of the
images. Eight non-geometric measured features were not included in the
PCA analysis, including CFA, smoothness, hair color coordinates
(HSV) and skin color coordinates. These features are assumed to be
directly connected to human perception of facial attractiveness and are
hence kept at their original values. These 8 features were added to the
90 geometric eigenfeatures, resulting in a total of 98 image-features repre-
senting each facial image in the dataset.
2.3. Predictor construction and validation

We experimented with several induction algorithms including simple
Linear Regression, Least Squares Support Vector Machine (LS-SVM)
both linear as well as non-linear (Suykens, Van Gestel, De Brabanter,
De Moor, & Vandewalle, 2002) and Gaussian Processes (GP) (Rasmussen
& Williams, 2006). However, as the LS-SVM and GP showed no substan-
tial advantage over Linear Regression, the latter was used and is presented
in the sequel.

A key ingredient in our method is to use a proper image-features selec-
tion strategy. To this end we used subset feature selection, implemented by
ranking the image-features by their Pearson correlation with the target.
Other ranking functions produced no substantial gain. To measure the per-
formance of our method we removed one sample from the whole dataset.
This sample served as a test set. We found, for each left out test sample,
the optimal number of image-features by performing leave-one-out-
cross-validation (LOOCV) on the remaining samples and selecting the
number of features that minimized the absolute difference between the
algorithm’s output and the targets of the training set. Ranking of features
was conducted independently for each held out image and performance
was measured by aggregating together the scores of all images. In other
words, while setting aside a test sample, we used LOOCV on the remaining
training samples in order to optimize the number of features to select, mi,
and afterwards used this number of features to predict a single, fixed attrac-
tiveness score for the left out test sample, that is, the score for a test exam-
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ple was predicted using a single model based on the training set only. This
process was repeated n = 91 times, once for each image sample, resulting
with a vector of attractiveness predictions for all images. In order to avoid
overfitting, the entire learning procedure (including feature selection) is
repeated from scratch for each data partition, so that a different number
of features are selected for each data partition. The number of selected fea-
tures, mi, ranges between 50 and 77. mi = 67 features were most frequently
selected. To examine the influence of resetting the number of selected fea-
tures at each fold, we tested the predictor in a leave-one-out-cross-valida-
tion, on the entire dataset, while keeping the number of selected features
constant in all iterations (and not reselecting it each time). The fixed num-
ber of selected features ranged between m = 1 (a single feature) and m = 98
(all features). The best Pearson correlation of 0.87 was achieved with
m = 64. These 64 features include 7 of the 8 non-geometric features (all
but Hair-hue). The remaining 57 geometric eigenfeatures explain 96% of
the variance of the geometric features. For all 54 6 m 6 74, Pearson and
Spearman correlations were above 0.8. As is evident, a fixed number of
selected features can yield better performance than the one our method
of reselection produced. Still, we did not use a fixed value for the number
of selected features, m, since we did not want to rely on test performance
when choosing the constant value of m in order to avoid overfitting. It
should be noted that we tried to use the same feature selection and training
procedure with the original geometric features (without PCA) instead of
using the eigenfeatures. This, however, has failed to produce good predic-
tors due to strong correlations between the original geometric features (the
maximal Pearson correlation obtained was 0.26).

Once the predictor was constructed and validated, we turn to simulate
a number of psychophysical experiments that were previously conducted
with human subjects.

2.3.1. Experiment 1

We created virtual face composites for the machine to rate by simulat-
ing a morphing technique similar to the one used by Rubenstein et al.
(2002). Coordinate values of the original component faces were averaged
to create a new set of coordinates for the virtual face composite. These
coordinates were used to calculate the geometrical features and CFA of
the averaged face. Smoothness and HSV values for the composite face
were calculated by averaging the corresponding values of the component
faces (HSV values are converted to RGB before averaging). To study
the effect of the number of component faces, nc, on the attractiveness score
of face composites we produced 1000 virtual morph images for each value
of nc between 2 and 50, and used our attractiveness predictor to compute
the attractiveness scores of the resulting composites.

2.3.2. Experiment 2

In order to further examine the importance of symmetry on the
machine’s attractiveness judgments of averaged composites, we repeated
the virtual composites experiment (Experiment 1) using perfectly symmetric
faces as image components. Perfectly symmetric virtual versions of the ori-
ginal images were created by a similar technique to the one used by Rhodes,
Sumich, and Byatt (1999), that is, each original face was virtually morphed
with its mirror image in order to create a perfectly symmetric version of it.
Averaging together perfectly symmetric component faces produces perfectly
symmetric face composites. In the same manner as in Experiment 1, 1000 vir-
tual composites were created for each number of components, nc, between 2
and 50, and the machine rated them for attractiveness.

2.3.3. Experiment 3

Analogously to Zaidel, Chen, and German (1995) who have created
chimeric facial composites by attaching one-half of the face to its mirror
image, Right–right and left–left virtual chimeric composites were pro-
duced from the extracted coordinates of all original images and the
machine was used to predict their attractiveness ratings. Learning was
repeated for each chimeric composite with the original image used for each
chimeric composition being excluded from the training set, to avoid a mis-
leading positive bias as a consequence of the fact that the original image
contains many features which are identical to those of the matching
composite.
2.4. Facial features and attractiveness

The original measured facial features were ranked according to their
correlation to human and machine ratings and the Spearman rank corre-
lation between the two rankings was calculated. This analysis was repeated
three times: (a) with 6980 predictor-features, (b) with 28 features investi-
gated in previous studies and (c) with 13 features previously found to be
significantly related to facial attractiveness. To determine the P-value of
the rank correlation we repeated the features ranking 100 times with shuf-
fled machine and human ratings. In none of the shuffled trials was the rank
correlation as high as with the actual ratings. The 28 features we focused
on are (features marked with an * were previously found to be significantly
correlated with facial attractiveness): (1) forehead height, (2) eye height*,
(3) eye width*, (4) separation of eyes*, (5) nose tip width, (6) nostril width*,
(7) nose length (to eye top), (8) nose area*, (9) upper lip thickness, (10)
lower lip thickness, (11) chin length*, (12) cheekbone width*, (13) jaw
(cheek) width*, (14) mid-face length, (15) eyebrow height*, (16) mouth
width* (features 1–16 are taken from Cunningham, 1986), (17) outer eye
corner width*, (18) inner eye corner width, (19) cheek width, (20) cheek-
bone prominence*, (21) lower face proportions (features 17–12 are taken
from Grammer & Thornhill, 1994), (22) forehead height (to eyes), (23)
brow height, (24) brow curvature, (25) lower face length, (26) nose length,
(27) mouth height*, (28) cheekbone height (features 22–28 are taken from
Grammer, Fink, Juette, Ronzal, & Thornhill, 2002). (See Supporting Infor-

mation for a detailed description of the calculation of these 28 feature mea-
surements according to the raw coordinate representation.)

3. Results

3.1. Prediction accuracy of facial attractiveness

Machine attractiveness ratings of all sample images
obtained a high Pearson correlation of 0.82 (P-
value < 10�23) with the mean ratings of human raters (the
learning targets), corresponding to a normalized mean
squared error of 0.39. This accuracy is a marked improve-
ment over the recently published performance results of a
Pearson correlation of 0.6 on a similar dataset (Eisenthal
et al., 2006). The average correlation of an individual
human rater to the mean ratings of all other human raters
in our dataset is 0.67 and the average correlation between
the mean ratings of groups of human raters is 0.92 (see Sec-
tion 2). The Spearman rank correlation between machine
and mean human ratings is 0.83. To further validate the cor-
relation measures we removed the most attractive 12% and
the least attractive 12% of the samples from the dataset and
recalculated the correlations. Correlation values remained
high with 0.80 (Pearson) and 0.81 (Spearman). To get a
notion of the contribution of the 8 global, non-geometric
features to attractiveness prediction, we have trained the
predictor while removing them one at a time. This resulted
in correlations of 0.68 when excluding asymmetry, 0.80
when excluding smoothness, 0.77 when excluding hair color
(3 attributes) and 0.77 when excluding skin color (3 attri-
butes). Excluding all non-geometric features and using geo-
metric features alone yielded a correlation of 0.74.

3.2. Similarity of machine and human judgments

The ratings of each rater (28 human raters and the
machine predictor) form a 91 dimensional rating vector



Fig. 2. Distribution of mean Euclidean distance from each human rater to
all other raters in the ratings space. The machine’s average distance from
all other raters (left bar) is smaller than the average distance of each of the
human raters to all others.
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describing its attractiveness ratings of all 91 images. These
vectors can be embedded in a 91 dimensional ratings space.
The Euclidean distance between all raters (human and
machine) in this space was computed. Compared with each
of the human raters, the ratings of the machine were the
closest, on average, to the ratings of all other human raters
(Fig. 2).

Although, by construction, the machine’s rating vector
lies near the mean of human ratings, it may still be very dif-
ferent from any individual human rating vector. This may
happen, e.g. when the distribution of human ratings forms
several clusters or is non-convex. To assure this is not the
case, we counted the number of human ratings vectors
within small multidimensional spheres around each human
rater as well as the rating of the machine. The machine had
more human neighbors than the mean number of neigh-
bors that a human rater had, even when the radiuses of
the spheres were very small, testifying that it does not fall
between clusters. Finally, to visualize the machine ratings
among human ratings we applied PCA to machine and
human ratings in the rating space and projected all ratings
onto the resulting first 2 and 3 principal components.
Indeed, the machine is well placed in a mid-zone of human
raters (Fig. 3).

3.3. Human-like biases in the machine’s performance

3.3.1. Experiment 1: The averageness hypothesis: A

preference for averaged face composites

Rubenstein et al. (2002) discuss a morphing technique to
create mathematically averaged faces from multiple face
images. They report that averaged faces made of 16 and
32 original component images were rated by humans
higher in attractiveness than the mean attractiveness rat-
ings of their component faces and higher than composites
consisting of fewer faces. In their experiment, 32-compo-
nent composites were found to be the most attractive. In
accordance with these experimental results, the predictor
manifests a human-like bias for higher scores for averaged
composites over their components’ mean score. Fig. 4a
shows the percent of components which were rated as less
attractive than their corresponding composite, for each
number of components nc. As evident, the attractiveness
rating of a composite surpasses a larger percent of its com-
ponents’ ratings as nc increases. Fig. 4a also shows the
mean scores of 1000 composites and the mean scores of
their components, for each nc (scores are normalized to
the range [0,1]). Their actual attractiveness scores are
reported in Table 1. As expected, the mean scores of the
component images are independent of nc, while composites’
scores increase with nc (see Supporting Information for a
more detailed analysis of the difference between composites
and components scores).

Recent studies have provided evidence that skin texture
influences judgments of facial attractiveness (Fink, Gram-
mer, & Thornhill, 2001). Since blurring and smoothing of
faces occur when faces are averaged together (Rubenstein
et al., 2002), the smooth complexion of composites may
underlie the attractiveness of averaged composites. In our
experiment, a preference for averageness is found even
though our method of virtual-morphing does not produce
the smoothening effect and the mean smoothness value of
composites corresponds to the mean smoothness value in
the original dataset, for all nc (see Fig. 4b). Researchers
have also suggested that averaged faces are attractive since
they are exceptionally symmetric (Alley & Cunningham,
1991). Fig. 3a and b shows that the mean level of asymme-
try (CFA, see Section 2) is indeed highly correlated with the
mean scores of the composites (Pearson correlation of
�0.91, P-value < 10�19). However, examining the correla-
tion between the rest of the image-features and the compos-
ites’ scores reveals that this high correlation is not at all
unique to asymmetry. In fact, as the images are being mor-
phed, the changes in 45 of the 98 image-features are
strongly correlated with the changes in attractiveness
scores (|Pearson correlation| > 0.9). The high correlation
between these numerous features and attractiveness scores
of averaged faces indicates that symmetry level is not an
exceptional factor in the machine’s preference for averaged
faces. Instead, it suggests that averaging causes many fea-
tures to change in a direction which causes an increase in
attractiveness.

It has been argued that although averaged faces are
found to be attractive, very attractive faces are not average
(Alley & Cunningham, 1991). A virtual composite made of
the 12 most attractive faces in the set (as rated by humans)
was rated by the machine with a high score of 5.6 while
1000 composites made of 50 faces from random levels of
attractiveness got a maximum score of only 5.3. (Their
mean score was only 3.94 as reported in Table 1.) This type
of preference resembles the findings of Perrett et al. (1994)



Fig. 3. Location of machine ratings among the 28 human ratings. Ratings were projected into 2 dimensions (a) and 3 dimensions (b) by performing PCA
on all ratings and projecting them on the first principal components. The projected data explain 29.8% of the variance in (a) and 36.6% in (b).

Fig. 4. Experiment 1: The averageness hypothesis: (a) percent of components that were rated as less attractive than their corresponding composite,
accompanied with mean scores of composites and the mean scores of their components (scores are normalized to the range [0,1], actual attractiveness
scores are reported in Table 1). (b) Mean values of smoothness and asymmetry of 1000 composites for each number of components, nc.

Table 1
Mean results over 1000 composites made of varying numbers of
component images

Number of
components in
composite

Mean
composite
score

Mean
components
score

Components rated
lower than composite
(%)

2 3.46 3.34 55
4 3.66 3.33 64
12 3.74 3.32 70
25 3.82 3.32 75
50 3.94 3.33 81
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in which a highly attractive composite, morphed from only
attractive faces, was preferred by humans over a composite
made of 60 images of all levels of attractiveness.
3.3.2. Experiment 2: Perfectly symmetric averaged faces

Rhodes et al. (1999) inquired whether changes in attrac-
tiveness produced by manipulating the averageness of indi-
vidual faces should disappear when all the images are made
perfectly symmetric. They created perfectly symmetric
composites by morphing original images with their match-
ing mirror images. In their experiment human subjects
showed a preference for averaged face composites even
when the effect of symmetry is controlled for. Similarly,
in our experiment, the effect of symmetry was neutralized
by using only perfectly symmetric component faces which
yielded perfectly symmetric composites (see Fig. 5b). It
can be seen that the results presented in Fig. 5a are similar
to those of Experiment 1 (Fig. 4a). That is, even though the



Fig. 5. Mean results over 1000 perfectly symmetric composites made of varying numbers of perfectly symmetric image components: (a) percent of
components which were rated as less attractive than their corresponding composite, accompanied with mean scores of composites and the mean scores of
their components (scores are normalized to the range [0, 1]). (b) Mean values of smoothness and asymmetry of 1000 composites for each number of
components, nc.
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effect of symmetry is controlled for, attractiveness scores of
averaged face composites increases with the number of
components, nc. Mean values of smoothness and asymme-
try of the composites are presented in Fig. 5b. These results
show that the machine’s preference for averaged compos-
ites is not dependent on symmetry alone, in accordance
with the experimental results of Rhodes et al. (1999) and
with our conclusions from Experiment 1 (see Supporting
Information for a more detailed analysis of the difference
between perfectly symmetric composites and components
scores).

3.3.3. Experiment 3: Asymmetry of facial attractiveness
perception

A recent study examining the asymmetry of attractive-

ness perception has offered an intriguing relationship
between facial attractiveness and hemispheric specializa-
tion (Zaidel et al., 1995). In this research, right–right and
left–left chimeric composites (where ‘left’ refers to the sub-
ject’s side of the face) were created by attaching each half
of the face to its mirror image. Human subjects were asked
to look at left–left and right–right composites of the same
image and judge which one is more attractive. For women’s
faces, right–right composites, composed of the right half of
the subject’s face, got twice as many ‘more attractive’
responses than left–left composites. Interestingly, similar
results to those were found in Experiment 3 in which we
simulated this phenomenon by comparing the machine’s
rating of facial attractiveness for left–left and right–right
composites. The machine gave 63 out of 91 right–right
composites a higher rating than their matching left–left
composite, while only 28 left–left composites were judged
as more attractive. A paired t-test shows these results to
be statistically significant with P-value < 10�7 (scores of
chimeric composites are approximately normally distrib-
uted). When rating composites created from a certain
image the machine was trained without the original image
in its training set. Since the machine representation of the
images is completely symmetric, any asymmetric bias
revealed is likely to be an implicit manifestation of a psy-
chophysical bias of the human raters. It is interesting to
see that the machine manifests the same kind of asymmetry
bias reported by Zaidel et al. (1995), though it has never
been explicitly trained for that.

3.4. Facial features and attractiveness

After establishing that our machine exhibits human-like
biases, we turn to compare its processing with those
reported in the pertaining human psychophysics literature.
A number of studies have singled out facial features that
are especially relevant to facial attractiveness, by identify-
ing significant correlations between facial features measure-
ments and human attractiveness ratings (Cunningham
et al., 2002; Grammer & Thornhill, 1994; Little et al.,
2002). In analogy, facial features that are significantly cor-
related with the machine’s ratings may be considered as
important in determining the machine’s perception of
attractiveness. In order to examine whether the important
features according to the machine are similar to those of
humans, we calculated the correlation between each of
the 6980 features used by our predictor (6972 geometric
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features and 8 non-geometric measurements) and the
machine and human ratings (separately). The features were
ranked according to their absolute correlation to attrac-
tiveness ratings which resulted with two feature rankings:
human and machine. The Spearman rank correlation
between human and machine ranking was 0.57 and signif-
icant (P-value < 0.01, see Section 2). To further compare
between feature rankings of humans and machine, we
repeated the above computation focusing on 28 facial fea-
tures which were previously studied in the literature of
human facial attractiveness (see Section 2). Those 28 fea-
tures were now ranked according to machine and human
ratings and the Spearman rank correlation between the
two rankings was 0.68 (P-value < 0.01). Out of those 28
features, only 13 were found to be significantly related to
facial attractiveness in the original studies (Cunningham
et al., 2002; Grammer & Thornhill, 1994; Little et al.,
2002). Ranking these 13 facial features according to
machine and human ratings, yields a Spearman rank corre-
lation of 0.75 (P-value < 0.01) between the rankings. These
results provide further evidence of the human-like nature
of the machine’s perception of attractiveness, as they show
that features that were previously related to facial attrac-
tiveness are ranked similarly according to the machine
and according to human raters.

4. Discussion

In this work, we constructed a high quality training set
for learning facial attractiveness of human faces. Using a
combination of extensive automatic facial feature extrac-
tion, dimension reduction and feature selection, and super-
vised learning methodologies; we created the first accurate
facial attractiveness predictor. Our results add the task of
facial attractiveness prediction to the collection of abstract
tasks that have been successfully accomplished with current
machine learning techniques. While previous machines that
successfully passed a subject matter expert turing test
(SME TT) have dealt with rule-based cognitive systems,
such as playing games, or perceptual tasks of category
learning, such as emotion recognition, our machine pre-
dicts continuous facial attractiveness ratings and passes a
perceptual SME TT that concerns simulating judgment
of taste. Whether to compare the machine’s performance
in the task to the performance of an individual human rater
or to a group of raters is an interesting issue: the machine is
an ‘individual rater’ which learns ‘group average ratings’
and thus is essentially a hybrid between the two. For that
reason we report on both benchmarks, that is, the human
individual-to-group mean correlation of 0.67 and the human
group-to-group mean correlation of 0.92, and indeed, we
find the machine’s performance (correlation of 0.82)
between the two. One of the main improvements over pre-
vious similar works, such as the work of Eisenthal et al.
(2006), is the much richer representation of 84 facial coor-
dinates and 6972 distance and angle features (induced from
the full graph on the facial coordinates). This suggests that
improving the facial representation might be valuable for
future research. One promising suggestion is to employ a
non-metric facial representation which may expedite the
learning of human facial attractiveness.

Examining the machine and human raters’ representa-
tions in the ratings space identifies the ratings of the
machine near the center of the distribution of human rat-
ings, and closest, on average, to other human raters. The
ranking of facial features according to their correlations
with machine ratings is correlated significantly with the
ranking of those features according to human ratings.
The similarity between human and machine preferences
has prompted us to further study the machine’s operation.
To this end, we have found that the machine favors aver-
aged faces made of several component faces. While this
preference is known to be common to humans as well,
researchers have previously offered different reasons for
favoring averageness. Our analysis has revealed that sym-
metry is strongly related to the attractiveness of averaged
faces, but is definitely not the only factor in the equation,
since about half of the image-features relate to the ratings
of averaged composites in a similar manner as symmetry
and since a preference for averaged faces was found even
when the effect of symmetry was neutralized. This suggests
that a general movement of features toward attractiveness,
rather than a simple increase in symmetry, is responsible
for the attractiveness of averaged faces. This movement
suggests a convergence towards a prototypical facial repre-
sentation that matches the cognitive explanations of the
averageness hypothesis (Rubenstein et al., 2002). Obvi-
ously, this is true only for the machine, but given the
human-like biases displayed by our predictor, this may
extend also to human perception of facial attractiveness.
Overall, it is quite surprising and pleasing to find that a
model trained explicitly to capture a specific operational
performance criteria such as attractiveness rating (weak
AI), implicitly and concomitantly captures basic human
psychophysical biases and demonstrates a wide range of
human-level characteristics of facial attractiveness judg-
ment (strong AI), as revealed by studying its
‘‘psychophysics’’.
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