Groups with non-central dimension quotients

Narain Gupta ${ }^{\mathrm{a}, *, 1}$, Yuri Kuz’min ${ }^{\mathrm{b}, 2}$
${ }^{a}$ Department of Mathematics, University of Manitoba, Winnipeg, Canada R3T 2N2
${ }^{6}$ Department of Mathematics, Moscow State University of Railways, Obraztcov St. 15, 101475 Moscow, Russia

Communicated by K.W. Gruenberg; received 15 February 1994; revised 2 June 1994

Abstract

Let G be a group and let $D_{n}(G)$ and $\gamma_{n}(G)$ be its nth dimension and nth lower central subgroups. In an earlier paper we proved that $D_{n}(G) / \gamma_{n}(G)$ is abelian. Here we prove that $D_{n}(G) / \gamma_{n}(G)$ is not, in general, central in $G / \gamma_{n}(G)$. In fact, for any s there exists a group G and an integer n such that $D_{n}(G) / \gamma_{n}(G)$ is not contained in the sth upper central subgroups of $G / \gamma_{n}(G)$.

1. Introduction

Let G be a group and let $\Delta=\Delta(G)$ be the augmentation ideal of its group ring $\mathbb{Z} G$. We recall that by definition

$$
D_{n}(G)=\left\{g \in G \mid g \equiv 1 \bmod \Delta^{n}\right\}
$$

is the nth dimension subgroup of G. While $D_{n}(G)$ always contains the nth lower central subgroup $\gamma_{n}(G)$, it is known that there exist groups with $D_{n}(G) \neq \gamma_{n}(G)$ (see [5] for $n=4$, and [2] for $n \geq 4$). The problem of identifying the subgroup $D_{n}(G)$ of G, or equivalently the subgroup $D_{n}(G) / \gamma_{n}(G)$ of $G / \gamma_{n}(G)$ is known as the dimension subgroup problem. By Sjogren's theorem [6] the dimension quotient $D_{n}(G) / \gamma_{n}(G)$ has finite exponent dividing a number e_{n} that does not depend on G. So if G can be generated by m elements then the nth dimension quotient is finite and its order is bounded in terms of m and n. In an earlier paper the authors have pointed out that $D_{n-1}(G) / \gamma_{n}(G)$ is contained in the intersection of all subgroups of $G / \gamma_{n}(G)$ which are maximal in the set

[^0]of abelian normal subgroups of $G / \gamma_{n}(G)$ [4]. In particular $D_{n}(G) / \gamma_{n}(G)$ is abelian. It was natural to ask then whether the dimension quotient $D_{n}(G) / \gamma_{n}(G)$ is, in fact, central in $G / \gamma_{n}(G)$ (see [4, 7, problem 12.22]). For metabelian groups the answer is positive. If G is metabelian then even $D_{n-1}(G) / \gamma_{n}(G)$ is central [1, p. 85].. Here we prove that already for solvable groups of length 3 the answer is negative. In fact we prove a more precise result.

Theorem 1. For any $s \geq 1$ there exists a group G, with nilpotent of class 3 commutator subgroup, such that for some n the dimension quotient $D_{n}(G) / \gamma_{n}(G)$ is not contained in the sth upper central subgroup of $G / \gamma_{n}(G)$.

In particular, for $s=1$ the theorem yields that $D_{n}(G) / \gamma_{n}(G)$ is not always central. Since $G / \gamma_{4}(G)$ is metabelian, $D_{4}(G) / \gamma_{4}(G)$ is central for any group G. The centrality of $D_{5}(G) / \gamma_{5}(G)$ was proved in [4]. Finding the least intcger n for which there exists a group G with non-central quotient $D_{n}(G) / \gamma_{n}(G)$, we leave as an open question. It would also be of interest to know whether the dimension quotients are central in case the commutator subgroup of G is nilpotent of class 2 .

2. Preliminaries and reductions to embedding theorems

In [3] the first author presented a family of groups with an unusual behavior of dimension subgroups. His result, in particular, yields the following theorem.

Theorem 2. For any $s \geq 1$ there exists a group G and an integer n such that $\gamma_{n+1}(G)=1$ but $D_{n+s}(G) \neq 1$.

Because of such a gap (from $n+1$ to $n+s$) it was tempting to conjecture that $\left[D_{n+1}(G), G\right] \neq 1$. However, a more careful analysis of the group G revealed that

$$
\gamma_{n}(G)=D_{n}(G)=D_{n+1}(G)=\cdots=D_{n+s}(G) .
$$

So actually there was no gap between $D_{n}(G)$ and $D_{n+s}(G)$, and even $D_{n}(G)$ was central. We have found a very simple proof of Theorem 2 that is based on the following general embedding theorem.

Theorem 3. Let H be a nilpotent group of class c. Then for any n there exists a nilpotent group G of class at most nc and an embedding $\mu: H \rightarrow G$ such that $\mu(H) \subseteq \gamma_{n}(G)$.

A proof of Theorem 3 will be given in the next section. Here we show how to deduce Theorem 2 from Theorem 3.

Lemma 4. If $\varphi: H \rightarrow G$ is a homomorphism such that $\varphi(H) \subseteq \gamma_{n}(G)$ then $\varphi\left(D_{m}(H)\right) \subseteq D_{n m}(G)$.

Proof. If $h \in D_{m}(G)$ then

$$
\begin{aligned}
& h-1=\sum_{\alpha} n_{\alpha}\left(h_{\alpha 1}-1\right) \cdots\left(h_{\alpha m}-1\right) \quad\left(h_{\alpha \beta} \in H, n_{\alpha} \in \mathbb{Z}\right), \\
& \varphi(h)-1=\sum_{\alpha} n_{\alpha}\left(\varphi\left(h_{\alpha 1}-1\right)\right) \cdots\left(\varphi\left(h_{\alpha m}-1\right)\right),
\end{aligned}
$$

and, since $\varphi\left(h_{\alpha \beta}\right) \in \gamma_{n}(G)$ implies $\varphi\left(h_{\alpha \beta}\right)-1 \in \Delta(G)^{n}$, we get $\varphi(h)-1 \in \Delta(G)^{n m}$ as desired.

Now let H be any counterexample to the dimension subgroup conjecture so that, for some $c, \gamma_{c+1}(H)=1$ but $D_{c+1}(H) \neq 1$, and let $\mu: H \rightarrow G$ be an embedding that satisfies the conditions of Theorem 3. Then, by Lemma 4, $\mu\left(D_{c+1}(H)\right) \subseteq D_{n(c+1)}(G)$, hence $D_{n(c+1)}(G) \neq 1$ but $\gamma_{n c+1}(G)=1$. Since the difference $n(c+1)-(n c+1)$ $=n-1$ can be arbitrary, Theorem 2 follows.
A similar trick allows us to deduce Theorem 1 from the following embedding theorem whose proof is also given in the next section.

Theorem 5. Let H be a finitely generated nilpotent group of class c, let $1 \neq h_{0} \in H$, and let $s \geq 1$. Then for some m (depending on h_{0} and s) and any $n \geq m$ there exists a nilpotent group G of class at most $n c$ and an embedding $\mu: H \rightarrow G$ such that $\mu(H) \subseteq \gamma_{n-m+1}(G)$ whereas $\mu\left(h_{0}\right) \notin Z_{s}(G)$, the sth upper central subgroup.

To deduce Theorem 1 from Theorem 5 consider an arbitrary finitely generated group H such that $\gamma_{c+1}(H)=1$ but $D_{c+1}(H) \neq 1$. Fix a natural number s and an element $h_{0} \in D_{c+1}(H), h_{0} \neq 1$. Further choose m such that for any $n \geq m$ there exists an embedding $\mu: H \rightarrow G$ satisfying the conditions of Theorem 5. Then $\gamma_{n c+1}(G)=1$ and (by Lemma 4)

$$
D_{(n-m+1)(c+1)}(G) \supseteq \mu\left(D_{c+1}(H)\right) .
$$

For sufficiently large n the difference

$$
(n-m+1)(c+1)-(n c+1)=n-(m-1)(c+1)-1
$$

is non-negative, so $D_{n c+1}(G) \supseteq D_{(n-m+1)(c+1)}(G)$ and $\mu\left(h_{0}\right)$ is an element from $D_{n c+1}(G)$ that is not contained in $Z_{s}(G)$. It will be clear from the proof of Theorem 5 that if $\gamma_{c+1}(H)=1$ then one can choose G so that $\gamma_{c+1}\left(G^{\prime}\right)=1$. In the example due to Rips [5] $\gamma_{4}(H)=1$ and $D_{4}(H) \neq 1$, so G can be chosen with $\gamma_{4}\left(G^{\prime}\right)=1$.

Since $\left[D_{k}(G), G\right] \subseteq D_{k+1}(G)$, we also note that Theorem 1 is a generalization of Theorem 2.

3. Proofs of Theorems $\mathbf{3}$ and $\mathbf{5}$

Let F be the free nilpotent group of class c with free generators $x_{\alpha}(\alpha \in I)$. Consider n isomorphic copies $F^{(i)}$ of $F(i=1, \ldots, n)$. We shall denote by $x_{\alpha}^{(i)}$ the free generators of $F^{(i)}$. Further, let F_{n} be the nilpotent (of class c) product of the groups $F^{(i)}$. Thus F_{n} is free nilpotent on $x_{\alpha}^{(i)}(\alpha \in I ; i=1, \ldots, n)$. Evidently the map

$$
x_{\alpha}^{(n)} \longrightarrow x_{\alpha}^{(n)}, \quad x_{\alpha}^{(i)} \longrightarrow x_{\alpha}^{(i)} x_{\alpha}^{(i+1)} \quad(i<n)
$$

can be extended to an automorphism of F_{n}. Let (x) be infinite cyclic. Define a semidirect product $\left.\Phi_{n}=F_{n}\right\rangle\langle x\rangle$ assuming that conjugation by x induces on F_{n} the above automorphism. Hence

$$
\begin{equation*}
\left[x_{\alpha}^{(n)}, x\right]=1, \quad\left[x_{\alpha}^{(i)}, x\right]=x_{\alpha}^{(i+1)} \quad(i<n) \tag{1}
\end{equation*}
$$

Let $m \leq n$. Sending elements $x_{\alpha}^{(i)} \in \Phi_{m}$ to elements $x_{\alpha}^{(n-m+i)} \in \Phi_{n}$ we get an embedding

$$
\mu_{m n}: \Phi_{m} \longrightarrow \Phi_{n} .
$$

It is also clear that putting in Φ_{n} additional relations

$$
x_{\alpha}^{(i)}=1 \quad(i=m+1, \ldots, n)
$$

we get an epimorphism

$$
\sigma_{n m}: \Phi_{n} \longrightarrow \Phi_{m}
$$

Note that Φ_{n} is nilpotent of class $n c$. To see this, let $\Phi_{n, 1}=\Phi_{n}$ and let $\Phi_{n, k}(k>1)$ be the subgroup of Φ_{n} generated by commutators

$$
\left[x_{\alpha_{1}}^{\left(i_{1}\right)}, \ldots, x_{\alpha_{1}}^{\left(i_{1}\right)}\right]
$$

with $i_{1}+\cdots+i_{t} \geq k$ (the arrangement of brackets is arbitrary). Then $\Phi_{n, k}$ $(1 \leq k \leq n c+1)$ is a central series of length $n c$. It is easily seen that there exist non-trivial commutators of weight $n c$, so Φ_{n} has class exactly $n c$.

Now consider a nilpotent group H of class c given as a factor group $H=F / R$ $(R \triangleleft F)$. Denote by $R^{(k)}$ the isomorphic copy of R in $F^{(k)}(k \leq n)$, and let $R_{n}^{(k)}$ be its normal closure in Φ_{n}. Then by definition

$$
G_{n}^{(k)}=\Phi_{n} / R_{n}^{(k)}
$$

The maps $\mu_{m n}$ and $\sigma_{n m}$ induce homomorphisms

$$
\mu_{m n}^{(k)}: G_{m}^{(k)} \longrightarrow G_{n}^{(n-m+k)}, \sigma_{n m}^{(k)}: G_{n}^{(k)} \longrightarrow G_{m}^{(k)} \quad(k \leq m \leq n) .
$$

Define also a homomorphism

$$
\mu_{n}^{(k)}: H \longrightarrow G_{n}^{(k)}
$$

to be the composition of the isomorphism $F / R \rightarrow F^{(k)} / R^{(k)}$ and the natural map $F^{(k)} / R^{(k)} \rightarrow \Phi_{n} / R_{n}^{(k)}$.

Lemma 6. The maps $\mu_{m n}^{(k)}$ and $\mu_{n}^{(k)}$ are monomorphisms.

Proof. We start with $\mu_{m n}^{(k)}$. The injection $\mu_{m n}: \Phi_{m} \rightarrow \Phi_{n}$ maps $R^{(k)}$ isomorphically onto $R^{(r)}$ where $r=n-m+k$. Let $R_{n}^{(r)}$ be the normal closurc of $R^{(r)}$ in Φ_{n} and let $R_{m}^{(r)}$ be its normal closure in $\mu_{m n}\left(\Phi_{m}\right)$. Then $\mu_{m n}^{(k)}$ is injective if and only if $R_{n}^{(r)} \cap \mu_{m n}\left(F_{m}\right)=R_{m}^{(r)}$. Consider also the subgroup $\bar{R}_{m}^{(r)}$, the normal closure of $R_{m}^{(r)}$ in F_{n}. Since there exists a retraction $\pi: F_{n} \rightarrow \mu_{m n}\left(F_{m}\right)$, we have $\bar{R}_{m}^{(r)} \cap \mu_{m n}\left(F_{m}\right)=R_{m}^{(r)}$, so it suffices to prove that $\bar{R}_{m}^{(r)}=R_{m}^{(r)}$ or, equivalently, that $\bar{R}_{m}^{(r)} \triangleleft \Phi_{n}$. This, however, is a special case of the following elementary lemma.

Lemma 7. Let $G=A \backslash B$ be a semidirect product of groups A and B, and let Y be a B-invariant subset of A. Then the normal closure \bar{Y} of Y in A is also normal in G.

Indeed, the elements $a^{-1} y a(a \in A, y \in Y)$ generate \bar{Y} as a subgroup. But the set of such elements is B-invariant because if $b \in B$ then

$$
b^{-1}\left(a^{-1} y a\right) b=\left(b^{-1} a b\right)^{-1}\left(b^{-1} y b\right)\left(b^{-1} a b\right)=c^{-1} z c
$$

where $c \in A, z \in Y$.
Passing to $\mu_{n}^{(k)}$ we consider the diagram

The map $\mu_{1}^{(1)}$ is surely injective because $G_{1}^{(1)} \simeq H \times\langle x\rangle$, and we proved already that $\mu_{1 k}^{(1)}$ is injective. It follows from the diagram that so is $\mu_{n}^{(k)}$. This finishes the proof of Lemma 6.

In particular we have the embedding $\mu_{n}^{(n)}: H \rightarrow G_{n}^{(n)}$. It is evident from the definitions that $\mu_{n}^{(n)}(H) \subseteq \gamma_{n}\left(G_{n}^{(n)}\right)$. Since $G_{n}^{(n)}$ is nilpotent of class at most $n c$ it proves Theorem 3.

To prove Theorem 5 we use the embedding

$$
\mu_{n}^{(n-m+1)}: H \longrightarrow G_{n}^{(n-m+1)} .
$$

Again $G_{n}^{(n-m+1)}$ has class at most $n c$. Besides, the image of H is contained in $\gamma_{n-m+1}\left(G_{n}^{(n-m+1)}\right)$. We are going to show that for a given $s \geq 1$ and
$h_{0} \in H\left(h_{0} \neq 1\right)$ there exists m such that $\mu_{n}^{(n-m+1)}\left(h_{0}\right) \notin Z_{s}\left(G_{n}^{(n-m+1)}\right)(n \geq m)$. Consider the diagram

By Lemma 6 all the three maps are injective, so it is sufficient to prove that if m is sufficiently large then $\mu_{m}^{(1)}\left(h_{0}\right) \notin Z_{s}\left(G_{m}^{(1)}\right)$.

Suppose first that H is a finite p-group for some prime p. Identify H with its image in $G_{m}^{(1)}$ and use the usual notation for Engel commutator

$$
\left[h_{0}, s x\right]=[h_{0}, \underbrace{x, \ldots, x}_{s}] .
$$

To verify that $h_{0} \notin Z_{s}\left(G_{m}^{(1)}\right)$ we shall find a homomorphism of $G_{m}^{(1)}$ in a wreath product such that the image of this commutator is non-trivial.

We recall that the wreath product A wr B of groups A and B is the semidirect product $K \backslash B$ where K (the base group) is a discrete direct product of groups $A(b)$ $(b \in B)$ isomorphic to A (under the isomorphism $a \rightarrow a(b)$) and B acts on K by multiplication:

$$
b_{2}^{-1} a\left(b_{1}\right) b_{2}=a\left(b_{1} b_{2}\right) \quad\left(b_{1}, b_{2} \in B\right) .
$$

Now fix t such that $\left.p^{t}\right\rangle s$ and let $\langle y\rangle$ be cyclic of order p^{t}. Then the wreath product $W=H \mathrm{wr}\langle y\rangle$ is a finite p-group. It follows that W is nilpotent of class, say c^{\prime}. We claim that if $m \geq c^{\prime}$ then the map

$$
x \longrightarrow y, \quad h \longrightarrow h(1) \quad(h \in H)
$$

can be extended to a homomorphism $G_{m}^{(1)} \rightarrow W$. Indeed, let h_{α} be the images of $x_{\alpha} \in F$ in $H=F / R$. Define elements $h_{\alpha}^{(i)} \in W(i=1, \ldots, m)$ by induction:

$$
h_{\alpha}^{(1)}=h_{\alpha}(1), \quad h_{\alpha}^{(i+1)}=\left[h_{\alpha}^{(i)}, y\right] \quad(1 \leq i<m) .
$$

The subgroup generated by elements $h_{x}^{(i)}$ is nilpotent of class at most c, hence the map $x_{\alpha}^{(i)} \rightarrow h_{\alpha}^{(i)}$ can be extended to a homomorphism of F_{m} to the base group of the wreath product W. The semidirect product $\left.\Phi_{m}=F_{m}\right\rangle\langle x\rangle$ is defined by relations (1) (substitute m for n). But the same relations are valid for elements $y, h_{\alpha}^{(i)}$ in W. For $i<m$ it follows directly from the definitions and $\left[h_{\alpha}^{(m)}, y\right]=1$ just because

$$
\left[h_{\alpha}^{(m)}, y\right] \in \gamma_{m+1}(W) \subseteq \gamma_{c^{\prime}+1}(W)=1
$$

It follows that the map $x \rightarrow y, x_{\alpha}^{(i)} \rightarrow h_{\alpha}^{(i)}(1)$ can be extended to a homomorphism $\Phi_{m} \rightarrow W$. Since $R^{(1)}$, the isomorphic copy of R in $F^{(1)}$, is contained in the kernel, we can define the induced map $G_{m}^{(1)} \rightarrow W$. To finish the proof of Theorem 5 in case H is a finite p-group it suffices to show $\left[h_{0}(1), s y\right] \neq 1$. Put $K_{0}=1$ and for $1 \leq \mathrm{i} \leq \mathrm{p}^{t}$ let K_{i} be the subgroup of W generated by elements $h\left(y^{k}\right)$ with $k<i\left(i=1, \ldots, p^{t}\right)$. If
$a \in K_{i} \backslash K_{i-1}\left(0<i<p^{t}\right)$ then $y^{-1} a y \in K_{i+1} \backslash K_{i}$ and hence $[a, y] \in K_{i+1} \backslash K_{i}$. Since $h_{0}(1) \in K_{1} \backslash K_{0}$ and $s<p^{1}$ it follows by induction that $\left[h_{0}(1), s y\right] \in K_{s+1} \backslash K_{s}$. In particular this element is not trivial.

Now let H be an arbitrary finitely generated nilpotent group, $h_{0} \in H, h_{0} \neq 1$. There exists a prime number p and an epimorphism $\varphi: H \rightarrow \bar{H}$ on a finite p-group \bar{H} such that $\varphi\left(h_{0}\right) \neq 1$. If $H=F / R$ then $\bar{H}=F / \bar{R}$ where \bar{R} is the preimage of $\operatorname{Ker} \varphi$ in F. Using presentations $H=F / R$ and $\bar{H}=F / \bar{R}$ we can construct the groups $G_{m}^{(1)}, \bar{G}_{m}^{(1)}$ and embeddings $\mu_{m}^{(1)}: H \rightarrow G_{m}^{(1)}, \quad \bar{\mu}_{m}^{(1)}: \bar{H} \rightarrow \bar{G}_{m}^{(1)}$. The induced epimorphism $\varphi_{m}^{(1)}: G_{m}^{(1)} \rightarrow \bar{G}_{m}^{(1)}$ makes the following diagram commutative:

As we already know, if m is sufficiently large then $\bar{\mu}_{m}^{(1)}\left(\varphi\left(h_{0}\right)\right) \notin Z_{s}\left(\bar{G}_{m}^{(1)}\right)$, or equivalently $\varphi_{m}^{(1)}\left(\mu_{m}^{(1)}\left(h_{0}\right)\right) \notin Z_{s}\left(\bar{G}_{m}^{(1)}\right)$. Since $\varphi_{m}^{(1)}$ is an epimorphism, $\mu_{m}^{(1)}\left(h_{0}\right) \notin Z_{s}\left(G_{m}^{(1)}\right)$. This completes the proof of Theorem 5.

Acknowledgements

The main part of this work was carried out while the second author was visiting the University of Manitoba. He thanks the Department of Mathematics for its hospitality.

References

[1] N. Gupta, Free Group Rings, Contemporary Math. Series, Vol. 66 (Amer. Mathematical Society, Providence, RI, 1987).
[2] N. Gupta, The dimension subgroup conjecture, Bull. London Math. Soc. 22 (1990) 453-456.
[3] N. Gupta, On groups without dimension property, Int. J. Algebra Comput. 1 (1991) 247-252.
[4] N. Gupta and Y. Kuz'min, On varietal quotients defined by ideals generated by Fox derivatives, J. Pure Appl. Algebra 78 (1992) 165-172.
[5] E. Rips, On the fourth integer dimension subgroup, Israel J. Math. 12 (1972) 342-346.
[6] J.A. Sjogren, Dimension and lower central subgroups, J. Pure Appl. Algebra 14 (1979) 175-194.
[7] Kourovka Notebook, Novosibirsk (12th edition, 1992).

[^0]: * Corresponding author.
 ${ }^{1}$ Supported by NSERC Canada.
 ${ }^{2}$ Supported by ISF (Grant MDLO00).

