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Abstract 

Let G be a group and let D,(G) and y,(G) be its nth dimension and nth lower central 
subgroups. In an earlier paper we proved that D,(G)/y,(G) is abelian. Here we prove 
that D,(G)/y,(G) is not, in general, central in G/y,(G). In fact, for any s there exists a group G and 
an integer n such that D,(G)/y,(G) is not contained in the sth upper central subgroups 

of G/?,(G). 

1. Introduction 

Let G be a group and let A = A(G) be the augmentation ideal of its group ring ZG. 
We recall that by definition 

D,(G)={gEGIg-lmodd”} 

is the nth dimension subgroup of G. While D,(G) always contains the nth lower central 
subgroup y,(G), it is known that there exist groups with D,(G) # y.(G) (see [S] for 
n = 4, and [2] for n 2 4). The problem of identifying the subgroup D,(G) of G, or 
equivalently the subgroup D,(G)/y,(G) of G/y,(G) is known as the dimension subgroup 

problem. By Sjogren’s theorem [6] the dimension quotient D,(G)/y,,(G) has finite 
exponent dividing a number e, that does not depend on G. So if G can be generated by 
m elements then the nth dimension quotient is finite and its order is bounded in terms 
of m and n. In an earlier paper the authors have pointed out that D,_ l(G)/yn(G) is 
contained in the intersection of all subgroups of G/y,(G) which are maximal in the set 
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of abelian normal subgroups of G/y,(G) [4]. In particular D,(G)/y,(G) is abelian. It was 

natural to ask then whether the dimension quotient D,(G)/?,(G) is, in fact, central in 

G/y.(G) (see [4, 7, problem 12.221). For metabelian groups the answer is positive. If 

G is metabelian then even D,_ r(G)/?,,(G) is central [l, p. 851.. Here we prove that 

already for solvable groups of length 3 the answer is negative. In fact we prove a more 

precise result. 

Theorem 1. For any s 2 1 there exists a group G, with nilpotent of class 3 commutator 

subgroup, such thatfor some n the dimension quotient D,(G)/y,(G) is not contained in the 

sth upper central subgroup of G/y,(G). 

In particular, for s = 1 the theorem yields that D,(G)IY,,(G) is not always central. 

Since GIy,(G) is metabelian, D,(G)/y,(G) is central for any group G. The centrality of 

D,(G)/?,(G) was proved in [4]. Finding the least integer y1 for which there exists 

a group G with non-central quotient D,(G)/y,,(G), we leave as an open question. It 

would also be of interest to know whether the dimension quotients are central in case 

the commutator subgroup of G is nilpotent of class 2. 

2. Preliminaries and reductions to embedding theorems 

In [3] the first author presented a family of groups with an unusual behavior of 

dimension subgroups. His result, in particular, yields the following theorem. 

Theorem 2. For any s 2 1 there exists a group G and un integer n such that y,,+ r(G) = 1 

but D,+,(G) # 1. 

Because of such a gap (from n + 1 to n + s) it was tempting to conjecture 

that CD,+ l(G),G] # 1. However, a more careful analysis of the group G revealed 

that 

y,,(G) = D,,(G) = D,+,(G) = ... = D,+,(G). 

So actually there was no gap between D,(G) and D,+,(G), and even D,,(G) was central. 

We have found a very simple proof of Theorem 2 that is based on the following 

general embedding theorem. 

Theorem 3. Let H be a nilpotent group of class c. Thenfor any n there exists a nilpotent 

group G of class at most nc and an embedding u: H + G such that u(H) s y,(G). 

A proof of Theorem 3 will be given in the next section. Here we show how to deduce 

Theorem 2 from Theorem 3. 
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Lemma 4. If q:H+G is a homomorphism such that q(H) s y,(G) then 

q (D,(H)) c D,,(G). 

Proof. If h E D,,,(G) then 

h - 1 = 1 n,(hUI - l)...(h,,- 1) (ha,SEH,n,EQ 
n 

cp(h) - 1 = C n,(dh,l - 1)) ... (a)(ham - 1)L 

and, since cp(h,,) E y,(G) implies q(hbB) - 1 E d(G )“, we get q(h) - 1 E d(GYm as 
desired. 0 

Now let H be any counterexample to the dimension subgroup conjecture so that, 
for some c, yC+ 1 (H) = 1 but D,, 1(H) # 1, and let p : H + G be an embedding that 
satisfies the conditions of Theorem 3. Then, by Lemma 4, p(D,+ 1(H)) s DnCC + ,,(G), 

hence D .c,+~j(G) Z 1 but ~nc+l (G) = 1. Since the difference n(c + 1) - (nc + 1) 
= n - 1 can be arbitrary, Theorem 2 follows. 

A similar trick allows us to deduce Theorem 1 from the following embedding 
theorem whose proof is also given in the next section. 

Theorem 5. Let H be aBnitely generated nilpotent group of class c, let 1 # ho E H, and 

lets 2 1. Thenfor some m (depending on h,, and s) and any n 2 m there exists a nilpotent 

group G of class at most nc and an embedding ,n : H -+ G such that p(H) G Y”_,,, + , (G) 

whereas p(h,) 6 Z,(G), the sth upper central subgroup. 

To deduce Theorem 1 from Theorem 5 consider an arbitrary finitely generated 
group H such that Y,+~(H) = 1 but D,+,(H) # 1. Fix a natural number s and an 
element ho E DC+ ,(H), ho # 1. Further choose m such that for any n 2 m there exists 
an embedding p : H --, G satisfying the conditions of Theorem 5. Then ync+ 1(G) = 1 
and (by Lemma 4) 

D,,- m+ ~)(c+ I,(G) 2 AD,+ I(W). 

For sufficiently large n the difference 

(n - m + l)(c + 1) - (nc + 1) = n - (m - l)(c + 1) - 1 

is non-negative, so D,,,+,(G) 2 D~n_m+l~~E+I~(G) and p(h,) is an element from 
D nc+ ,(G) that is not contained in Z,(G). It will be clear from the proof of Theorem 
5 that if yC+ 1 (H) = 1 then one can choose G so that yC + i (G’) = 1. In the example due 
to Rips [S] y,(H) = 1 and D,(H) # 1, so G can be chosen with y4(G’) = 1. 

Since [Dk(G), G] c Dk+ ,(G), we also note that Theorem 1 is a generalization of 
Theorem 2. 
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3. Proofs of Theorems 3 and 5 

Let F be the free nilpotent group of class c with free generators x, (a E I). Consider 
n isomorphic copies F”’ of F (i = 1, . . , n). We shall denote by xc) the free generators 
of F (i). Further, let F, be the nilpotent (of class c) product of the groups F”‘. Thus F, is 
free nilpotent on xti) (c( E 1. i = 1 . a > , . . , n). Evidently the map 

x~)----, x(n) x(i)_._+ x(i)x(i+ 1) a, z a d (i < n) 

can be extended to an automorphism of F,. Let (x) be infinite cyclic. Define 
a semidirect product @, = F, \(x) assuming that conjugation by x induces on F, the 
above automorphism. Hence 

Cx?‘, x] = 1, [xJi’,_u] = x2+1 (i < n). (1) 

Let m I n. Sending elements x2) E @, to elements x~-““~) E Qn we get an embed- 
ding 

It is also clear that putting in a)” additional relations 

xp = 1 (i = m + 1, . . ..n) 

we get an epimorphism 

0 ‘!P”-+ Grn. IlWl. 

Note that Qn is nilpotent of class nc. To see this, let @n.1 = @,, and let @J”,~ (k > 1) be 
the subgroup of @, generated by commutators 

cx&) 
Lx, ,.--, X3’] 

with il + ... + i, 2 k (the arrangement of brackets is arbitrary). Then Qn,k 
(1 I k I nc + 1) is a central series of length nc. It is easily seen that there exist 
non-trivial commutators of weight nc, so Dn has class exactly nc. 

Now consider a nilpotent group H of class c given as a factor group H = F/R 
(R cl F). Denote by R w the isomorphic copy of R in Fck) (k I n), and let RLk’ be its 

normal closure in @,,. Then by definition 

GAk’ = @JR;? 

The maps ,u,,,, and o,,, induce homomorphisms 

Pm. m 
UC). G(k),G(n-m+k) 

” ,o;z : I$~’ - G,f’ (k I m I n). 

Define also a homomorphism 

Pn . 
(k) . fj _ G’k’ 

n 

to be the composition of the isomorphism F/R -+ Fck’/Rck) and the natural map 
F (k)/R(k) -+ cP,JR;~‘. 
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Lemma 6. The maps ~2: and pAk’ are monomorphisms. 

Proof. We start with &A. The injection P,,,~ : Qrn -+ Q,, maps RCk’ isomorphically onto 
R(‘) where r = n - m + k. Let Rr’ be the normal closure of R@) in @,, and let Rg) be its 
normal closure in p,,,.(Qm). Then pg! is injective if and only if Rf’np,,,(F,) = RE’. 
Consider also the subgroup Rz’,the normal closure of R$’ in F,,. Since there exists 
a retraction rt : F, + p,,,(F,), we have R,$‘npLm,(F,) = Rz’, so it suffices to prove that 
Rp’ = R$ or, equivalently, that a,$) 4 @,, This, however, is a special case of the 
following elementary lemma. 

Lemma 7. Let G = A \ B be a semidirect product of groups A and B, and let Y be 
a B-invariant subset of A. Then the normal closure p qf Y in A is also normal in G. 

Indeed, the elements a _ ’ ya (a E A, y E Y ) generate P as a subgroup. But the set of 
such elements is B-invariant because if b E B then 

b-‘(aC’ya)b =(b-lab)P1(b-lyb)(bK1ab) = c-lzc, 

where c E A, z E Y. 

Passing to pa) we consider the diagram 

The map pil) is surely injective because G$” N H x (x), and we proved already that 
pi2 is injective. It follows from the diagram that so is pLt((). This finishes the proof of 
Lemma 6. 0 

In particular we have the embedding pr’: H + G,!“‘. It is evident from the defini- 
tions that p?)(H) 5 y. (Gr’). Since Gr’ . is nilpotent of class at most nc it proves 
Theorem 3. 

To prove Theorem 5 we use the embedding 

/$-“+ 1): H-G;-“+ 1). 

Again GF-“‘+” ha s class at most nc. Besides, the image of H is contained 
in ynern+ i (GF-“‘+‘) ). We are going to show that for a given s 2 1 and 
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ho E H (h, # 1) there exists m such that ~~-m’l’(ho)~Z,(G~-m+l)) (n 2 m). Con- 

sider the diagram 

By Lemma 6 all the three maps are injective, so it is sufficient to prove that if rn is 

sufficiently large then ,u~‘(~,)$Z,(G~~‘). 

Suppose first that H is a finite p-group for some prime p. Identify H with its image in 

G!:’ and use the usual notation for Engel commutator 

PO, =I = C&k f> ., ,x,1. 
s 

To verify that ho q! Z,(G,!,“) we shall find a homomorphism of GA’) in a wreath product 

such that the image of this commutator is non-trivial. 

We recall that the wreath product A wrB of groups A and B is the semidirect 

product K \ B where K (the base group ) is a discrete direct product of groups A(b) 

(b E B) isomorphic to A (under the isomorphism a + a(b)) and B acts on K by 

multiplication: 

b;’ a(bl)bz = a(b, b2) (b,, b2 E B). 

Now fix t such that p’ > s and let (y) be cyclic of order p’. Then the wreath product 

W = H wr (y) is a finite p-group. It follows that W is nilpotent of class, say c’. We 

claim that if m 2 c' then the map 

x-y, h-h(l) (h E H) 

can be extended to a homomorphism CL” --f W. Indeed, let h, be the images of x, E F 

in H = F/R. Define elements h$’ E W (i = 1, . . . ,m) by induction: 

h:” = h,(l), /it+ 1) = [/it’, y] (1 I i < m), 

The subgroup generated by elements hz) is nilpotent of class at most c, hence the map 

x2) + h$ can be extended to a homomorphism of F,,, to the base group of the wreath 

product W. The semidirect product Qrn = F, \ (x) is defined by relations (1) (substi- 

tute m for n). But the same relations are valid for elements y, ht’ in W. For i < m it 

follows directly from the definitions and [hA”“,y] = 1 just because 

ChP,.Yl Eym+IW) G yd+I(w) = 1. 

It follows that the map x + y, x2’ + h:‘(l) can be extended to a homomorphism 

@,,, + W. Since R (I), the isomorphic copy of R in F (I), is contained in the kernel, we 

can define the induced map Cc’ + W. To finish the proof of Theorem 5 in case H is 

a finite p-group it suffices to show [h,(l), sy] # 1. Put KO = 1 and for 1 I i I p’ let 

Ki be the subgroup of W generated by elements h(yk) with k < i (i = 1, . . ,p’). If 
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u E Ki\Ki_ i (0 < i < p’) then y -‘ayEI<i+i\Kiand hence[~,y]EK~+i\K,.Since 
ho(l) E KI\Ko and s < p’ it follows by induction that [h,(l),sy] EK,+~\K,. In 
particular this element is not trivial. 

Now let H be an arbitrary finitely generated nilpotent group, ho E H, ho # 1. There 
exists a prime number p and an epimorphism 9: H + I? on a finite p-group fi such 
that @h,) # 1. If H = F/R then R = F/R where R is the preimage of Ker rp in F. 

Using presentations H = F/R and I? = F/l? we can construct the groups Cc’, G’,” 
and embeddings &’ : H + Gz’, p, . -(l’* A + cc’. The induced epimorphism 
&i’: G;l’ --, c’,” makes the following diagram commutative: 

I py ’ 

As we already know, if m is sufficiently large then $,“( cp(h,))$Z,(Gc’), or equiva- 
lently 40~‘(lljnl’(ho))$Z,(e~‘)). Since 92’ . IS an epimorphism, ;&l’(hO)$Z,(G~l’). This 
completes the proof of Theorem 5. 
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