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Abstract

Using the white noise space framework, we construct and study a class of Gaussian processes with
stationary increments, which include as particular cases the Brownian and fractional Brownian motions.
The derivative processes are computed using Hida’s theory of stochastic distributions.
c© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of linear systems is a well developed field; see e.g. [36,22,30,5]. It is of importance
to extend it to the stochastic context, in particular when randomness is allowed in the parameters
of the system. In [7,8] the first and third authors initiated a new approach to the study of linear
stochastic systems; see also the reprint [10]. These papers use Hida’s white noise space theory
(see [31–34]), and in particular the framework built by Elliot and van der Hoek for fractional
Brownian motion (see [14,27]). The Wick product and the Kondratiev space of stochastic distri-
butions are key tools in the arguments. Most of the results in [7,8,10] pertain to the discrete-time
case. In order to develop the theory of stochastic continuous-time systems, and in particular to
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study linear system problems such as Kalman filtering, system identification and adaptive con-
trol, it is essential to build within the white noise space setting a wide family of stochastic pro-
cesses, which drive or perturb the underlying system. The present paper addresses this question.
As noted above, we plan to use the results developed here to study, within the white noise space
setting, some classical system and control problems. In this context, it is worth mentioning [1]
as a related study of linear systems driven by the fractional Brownian motion.

Here, using the white noise framework, we study zero-mean Gaussian processes with station-
ary increments, that is, with covariance functions of the form

K (t, s) =
∫
R

eitu
− 1

u

e−isu
− 1

u
dσ(u), (1.1)

where dσ is a positive measure on R defined by an increasing right continuous function σ , such
that ∫

R

dσ(u)

u2 + 1
<∞. (1.2)

The measure dν(u) = dσ(u)/u2 is called the spectral measure (see [44, p. 25]) or the control
measure. Setting

r(t) = −
∫
R

{
eitu
− 1−

itu

u2 + 1

}dσ(u)

u2 , (1.3)

(1.1) can be rewritten as

Kr (t, s) = r(t)+ r(s)∗ − r(t − s), t, s ∈ R. (1.4)

Continuous functions r of a real variable, such that

r(−t) = r(t)∗, t ∈ R,

and such that the kernel Kr (t, s) is positive (in the sense of reproducing kernels) on the real line,
have been characterized by von Neumann and Schoenberg for when r is real; see [47, Theorem
1, p. 229]. For the case of complex-valued functions, see [38,37], and [2, pp. 267–269] and the
references therein. These are functions of the form

r(t) = r0 + iγ t −
∫
R

{
eitu
− 1−

itu

u2 + 1

}dσ(u)

u2 , (1.5)

where r0 = r(0) and γ are real numbers. That the form (1.5) is sufficient to insure the positivity
of the kernel Kr (t, s) follows from the easily obtained formula

Kr (t, s) =
∫
R

eitu
− 1

u

e−isu
− 1

u
dσ(u); (1.6)

see for instance [39, Theorem 4, p. 115]. The idea of the proof of the converse is given in the
next section. As we will recall in the sequel, such functions r have been investigated for a long
time. Still, their applications in stochastic calculus appear to have been only partially developed.
We mention in particular the recent work [41, p. 103]. In that work the notion of processes with
covariance measure is introduced, and stochastic processes with covariance function of the form
Kr are shown to belong to this class. We note however that the methods of [41] and of the present
paper are completely different.
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Note that

Kr (t, s) = Kr−r(0)(t, s),

and therefore one can always assume that r(0) = 0.
In the real-valued case, with r(0) = 0, the function r takes the form

r(t) =
∫
R

1− cos(tu)

u2 dσ(u).

We will assume that dσ is absolutely continuous with respect the Lebesgue measure, and that its
derivative, the spectral density, satisfies bounds of the form

m(u) ≤

{
K |u|−b if |u| ≤ 1,
K |u|2N if |u| > 1,

(1.7)

where b < 2, N ∈ N0, and 0 < K <∞.
The fractional Brownian motion then corresponds to the choice

m(u) =
1

2π
|u|1−2H , H ∈ (0, 1),

giving

r(t) =
VH

2
|t |2H , with VH =

Γ (2− 2H) cos(πH)

π(1− 2H)H
, (1.8)

and

Kr (t, s)
def.
= kH (t, s) =

VH

2
(|t |2H

+ |s|2H
− |t − s|2H ),

with Γ denoting the Gamma function, as can be seen using the formulas∫
R

1− cos(tu)

u2H+1 = −2|t |2H cos(πH)Γ (−2H)∫
R

1− cos(tu)

u2 = π |t |.

When furthermore H = 1/2, then VH = 1, r(t) = |t | /2 and for t, s ≥ 0, Kr (t, s) = min(t, s).
By a theorem of Kolmogorov there exists a Gaussian stochastic process {BH (t)} indexed by

R, which is called the fractional Brownian motion (with Hurst parameter H ∈ (0, 1)), such that

kH (t, s) = E(BH (t)BH (s)), t, s ∈ R.

Stochastic calculus for BH has been developed for quite some time; see for instance [19,23,26,
12]. In a subsequent paper we show how most of the results of these works are extended to the
case of general covariance functions of the form Kr (t, s).

We mention also that functions r of the form (1.5) appear first in the work of Paul Lévy [43],
in the result characterizing characteristic functions of infinitely divisible laws. More precisely,
the characteristic function of a random variable is infinitely divisible if and only if it is of the form
exp r(t), where r(t) is of the form (1.5); see [45, Representation Theorem]. Similarly, (Zu)u≥0
is an infinitely divisible random process if and only if

E
(

eit Zu
)
= e−ur(t),
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where r is of the form (1.5), with r(0) = 0, γ = 0, and is called the characteristic exponent of
the Lévy process. See [13, p. 12], [43, formula (9), p. 353]. This is the Lévy–Khintchine formula;
see [43, formula (9), p. 353]. We also mention that positive kernels of the form Kr appear in the
theory of Dirichlet spaces; see [20, p. 5–12]. These aspects of the theory of kernels of the form
Kr will not be pursued in the present paper.

The paper consists of seven sections including the introduction, and its outline is as follows. In
Section 2 we study and characterize the reproducing kernel Hilbert space associated with a kernel
Kr (t, s). In Section 3 we associate with certain kernels Kr (t, s) an operator which will play a
key role in the construction of the stochastic process with covariance Kr (t, s). This paper uses
Hida’s white noise space theory, and in Section 4 we review the main features from white noise
space theory which we will subsequently use. In Section 5 we recall the definition of the Wick
product and of the Kondratiev space. Stochastic processes with covariance function Kr (t, s) are
built in Section 6, and their derivatives are studied in Section 7.

Some of the results presented here have been announced in the note [9]. The results of the
present work are to be used in a subsequent paper where stochastic analysis associated with the
processes considered here is developed.

Finally a word on notation. We denote the Fourier transform by

∧

f (u) =
∫
R

e−iux f (x)dx . (1.9)

The inverse transform is then given by

∨

f (u) =
1

2π

∫
R

eiux f (x)dx . (1.10)

The same notation is used for the Fourier transform and inverse Fourier transform of distribu-
tions.

We set

N = {1, 2, 3, . . .} and N0 = N ∪ {0} ,

and denote by ` the set of sequences

(α1, α2, . . .), (1.11)

indexed by N with values in N0, for which only a finite number of elements α j 6= 0.

2. Some remarks on the kernels Kr(t, s)

As already mentioned, real-valued functions r for which the kernel Kr (t, s) is positive on
the real line (in the sense of reproducing kernels) were characterized by Schoenberg and von
Neumann. For complex-valued functions, and by different methods, the following theorem has
been given by Krein in 1944; see [39, Theorem 2, p. 256]. See also [2, Section 9, p. 268]. In
Krein’s result, the case a = ∞ is allowed, and then, t, s ∈ R.

Theorem 2.1 ([39, Theorem 2, p. 256]). The kernel Kr (t, s) = r(t)+ r(s)∗ − r(t − s)− r(0)
is positive for t, s ∈ [−a, a] if and only if r is of the form (1.5):

r(t) = r(0)+ iγ t −
∫
R

{
eitu
− 1−

itu

u2 + 1

}dσ(u)

u2 , t ∈ [−a, a].
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For completeness, let us recall that Akhiezer’s proof [2, pp. 268–270] goes along the following
lines; one first shows that r satisfies an inequality of the form

|r(t)| ≤ M(1+ |t |3) (2.1)

for some positive number M (we recall the proof of this inequality in the sequel; see Lemma 2.4).
One then shows that the function H(z) = z2

∫
∞

0 r(t)∗eit zdt , which, in view of (2.1), is analytic
in the open upper half-plane, satisfies (see [2, (2), p. 268] and [40, p. 227])

H(z)− H(w)∗

z − w∗
= zw∗

∫∫
R2
+

Kr (t, s)eit ze−isw∗dtds,

and in particular has a positive imaginary part in the open upper half-plane. To conclude the
proof, one uses Herglotz’s representation formula for analytic functions with a positive imaginary
part in the open upper half-plane (see for instance [17, Theorem 4.7, p. 25], [3, Theorem 2,
p. 220]).

Formula (1.6) allows us to characterize the reproducing kernel Hilbert space associated with
Kr in terms of de Branges spaces. See Theorem 2.3. We first make the following remarks: let χt
denote the function of a real variable u

χt (u) =
eitu
− 1

iu
, t ∈ R,

and let MT denote the closed linear span in L2(dσ) of the χt for |t | ≤ T . Assume that
MT 6= L2(dσ). Then, MT is a reproducing kernel Hilbert space with reproducing kernel of
the form

A(T, λ)A(T, ω)∗ − B(T, λ)B(T, ω)∗

−i(λ− ω∗)

where A(T, λ), B(T, λ) are entire functions of finite exponential type. See [16,25] and [6,
Theorem 3.1, p. 600].

Remark 2.2. The spaces MT were introduced by de Branges and play a key role in prediction
theory. See [16,25,24]. When dσ(u) = du we have

MT = H2 	 eT H2,

where H2 denotes the Hardy space of the open half-plane, and where eT (z) = eizT , B(T, ·) = 1
and A(T, ·) = χT , with the reproducing kernel given by

1− eT (λ)eT (ω
∗)∗

−i(λ− ω∗)
.

Let S (R) denote the Schwartz space of rapidly decreasing functions, and let S ′(R) denote
the topological dual of S (R), that is, the space of tempered distributions. In view of the next
two results, we recall the following: condition (1.2) insures that the measure dσ has a Fourier
transform d̂σ which is a tempered distribution. Furthermore, this Fourier transform induces a
distribution d̂σ(t − s) on the Schwartz space S (R2) of functions of two real variables via the
formula

〈d̂σ(t − s), φ(t, s)〉 =
∫
R

(∫∫
R2

e−i(t−s)uφ(t, s)dtds

)
dσ(u). (2.2)
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When
∫
R dσ(u) <∞, we have that

〈d̂σ(t − s), φ(t, s)〉 =
∫∫
R2

{∫
R

e−i(t−s)udσ(u)
}
φ(t, s)dtds

=

∫∫
R2

d̂σ(t − s)φ(t, s)dtds.

Theorem 2.3. Let T < ∞. The reproducing kernel Hilbert space HT (Kr ) associated with
Kr (t, s) for t, s ∈ [−T, T ] consists of functions of the form

F(t) =
∫
R

eitu
− 1

iu
f (u)dσ(u), t ∈ [−T, T ], f ∈MT (2.3)

with norm

‖F‖HT (Kr ) = ‖ f ‖L2(dσ). (2.4)

Moreover, by extending F(t) to the real line via formula (2.3), F defines a tempered distribution
and

F ′(t) = 2π
∨

f dσ (t)

in the sense of distributions, and where
∨

f dσ denotes the inverse Fourier transform of the
tempered distribution defined by f dσ .

Proof. The first claim follows from the representation of the kernel Kr as an inner product, and
we focus on the second claim. We note that the function F(t) extends to a continuous function
on R. Indeed, for every t, h ∈ R we have∣∣∣∣∣ei(t+h)u

− eitu

iu

∣∣∣∣∣ =
∣∣∣∣eihu

− 1
iu

∣∣∣∣ ≤
|h| if |u| ≤ 1,

2
|u|

if |u| > 1.
(2.5)

Using these inequalities, we utilize the dominated convergence theorem to conclude that

lim
h→0

F(t + h) = F(t), t ∈ R.

Furthermore, (2.5) leads to the bound

|F(t)| ≤ |t |
∫ 1

−1
| f (u)|dσ(u)+ 2

∫
|u|≥1

∣∣∣∣ f (u)

u

∣∣∣∣ dσ(u).

We recall that σ is assumed right continuous. When it has a jump at 0, we define

F(t) = t f (0)(σ (0)− σ(0−))+
∫
R

f (u)χs(u)dσ1(u),

where dσ1 has no jump at 0. The function F is in particular slowly growing, and therefore defines
a tempered distribution (see [49, Théorème VI, p. 239], [11, Section 4, p. 110]).

Let ϕ ∈ S (R). The integral∫
R

f (u)ϕ(u)dσ(u) =
∫
R

f (u)

u + i
((u + i)ϕ(u)) dσ(u)
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exists, since (u + i)ϕ(u) is bounded and since 1/(u + i) ∈ L2(dσ). Thus,∫
R

(∫
R

∣∣∣∣eitu
− 1

iu
f (u)ϕ′(t)

∣∣∣∣ dσ(u)
)

dt ≤
∫
|u|≤1
| f (u)| dσ(u)

∫
R

∣∣tϕ′(t)∣∣ dt

+ 2
∫
|u|>1

∣∣∣∣ f (u)

u

∣∣∣∣ dσ(u)
∫
R

∣∣ϕ′(t)∣∣ dt <∞.

Using Fubini’s theorem, we have∫
R

{∫
R

eitu
− 1

iu
f (u)dσ(u)

}
ϕ′(t)dt =

∫
R

{∫
R

eitu
− 1

iu
ϕ′(t)dt

}
f (u)dσ(u),

and by integration by parts, we obtain∫
R

{∫
R

eitu
− 1

iu
ϕ′(t)dt

}
f (u)dσ(u) = −

∫
R

{∫
R

eituϕ(t)dt

}
f (u)dσ(u)

= −2π
∫
R

∨
ϕ (u) f (u)dσ(u).

Thus,∫
R

F(t)ϕ′(t)dt = −2π
∫
R

∨
ϕ (u) f (u)dσ(u),

and therefore we obtain on one hand,〈
F, ϕ′

〉
= −2π

〈
f dσ,

∨
ϕ

〉
= −2π

〈
∨

f dσ , ϕ
〉
,

while on the other hand,〈
F, ϕ′

〉
= −

〈
F ′, ϕ

〉
.

Thus, F ′ = 2π
∨

f dσ . �

In preparation for the proof of Theorem 2.5 we now prove inequality (2.1).

Lemma 2.4. Assume the kernel Kr (t, s) to be positive in R. Then (2.1) is in force, that is

|r(t)| ≤ M(1+ |t |3)

for some positive number M.

Proof. We follow the arguments in [2, pp. 264–265], with slight modifications. We first note that
we may assume that r(0) = 0. The positivity of the kernel Kr (t, s) implies that the matrix(

Kr (t, t) Kr (t,−t)
Kr (−t, t) Kr (−t,−t)

)
has a non-negative determinant. Therefore,

|2r(t)− r(2t)| ≤ |2Re r(t)|,

and thus

|r(2t)| ≤ 4|r(t)|. (2.6)
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Let

R(t) =
|r(t)|

1+ |t |3
.

Then, (2.6) implies that

R(2t) ≤
4(1+ |t |3)

1+ 8 |t |3
R(t). (2.7)

Let T0 ∈ R+ be such that

|t | ≥ T0 H⇒
4(1+ |t |3)

1+ 8 |t |3
≤ 1.

It follows from (2.7) that R(t) is bounded in R by an expression of the form M(1+|t |3) for some
M > 0. In fact, since r is continuous, one may take

M = max
t∈[0,T0]

|r(t)|. �

Theorem 2.5. It holds that

∂2

∂t∂s
Kr (t, s) = r ′′(t − s) = d̂σ(s − t)

in the sense of distributions. Furthermore, for ϕ ∈ S (R),
∨

dσ ∗ϕ is a function and it holds that
for ϕ ∈ S (R)〈

dσ ϕ̂, (ϕ̂)∗
〉
S ′(R),S (R) =

∫
R
ϕ(−u)∗(

∨

dσ ∗ϕ)(u)du. (2.8)

Before the proof, we make the following observation. We note that the right hand side of (2.8)
can formally be rewritten as∫

R
ϕ(−u)∗

(∫
R

∨

dσ (u − v)ϕ(v)dv
)

du

where in general∫
R

∨

dσ (u − v)ϕ(v)dv

is not a real integral, but an abuse of notation.
In the proof of the theorem, use is made of properties of the space O M of multiplication

operators in S (R) (also called C∞ functions slowly decreasing at infinity; see [50, p. 275]),
and of the space O′C of distributions rapidly decreasing at infinity (see [50, p. 315]). Recall [50,
Theorem 30.3, p. 318] that the Fourier transform is one-to-one from O M onto O′C and from O′C
onto O M .

Proof of Theorem 2.5. Since dσ defines a distribution in S ′(R), we have that
∨

dσ∈ S ′(R); see

for instance [50, Theorem 25.6, p. 276]. Let ϕ ∈ S (R). The convolution
∨

dσ ∗ϕ is a function,
and belongs to O M ; see [49, p. 248]. So, by [50, Theorem 30.3, p. 318]
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̂
(
∨

dσ ∗ϕ) ∈ O′C . (2.9)

We now compute (2.9) using [50, Theorem 30.4, p. 319] with (in the notation of that book)

S =
∨

dσ ∈ S ′(R) and T = ϕ ∈ S (R) ⊂ O′C (see [50, Example 30.1, p. 315] for the latter
inclusion), to obtain

̂
(
∨

dσ ∗ϕ) = dσ ϕ̂,

which is a measure. Using the fact that O′C ⊂ S ′(R) (see [50, p. 318], [49]), we have〈
dσ ϕ̂, ϕ̂ ∗

〉
S ′(R),S (R) =

∫
R
|ϕ̂|2 dσ. (2.10)

But for ψ ∈ S ′(R) and ϕ ∈ S (R) we have〈
ψ̂, ϕ

〉
S ′(R),S (R) = 〈ψ, ϕ̂ 〉S ′(R),S (R) .

Let φ ∈ S (R). Then the function

ψ : u 7→ ϕ(−u)∗

is also in S (R) and we have∫
R
φ(−u)∗(

∨

dσ ∗ϕ)(u)du =

〈
∨

dσ ∗ϕ,ψ
〉
S ′(R),S (R)

=
〈
dσ ϕ̂, ψ̂

〉
S ′(R),S (R)

=
〈
dσ ϕ̂, ϕ̂ ∗

〉
S ′(R),S (R) ,

since ψ̂ = (ϕ̂ )∗. Thus, (2.10) can be rewritten as〈
dσ ϕ̂, ϕ̂ ∗

〉
S ′(R),S (R) =

∫
R
ϕ(−u)∗(

∨

dσ ∗ϕ)(u)du.

Now let φ ∈ S (R2): we have〈
∂2

∂t∂s
Kr , φ

〉
=

〈
Kr ,

∂2

∂t∂s
φ

〉
=

∫∫
R2

Kr (t, s)
∂2

∂t∂s
φ(t, s)dtds

=

∫∫
R2

r(t)
∂2

∂t∂s
φ(t, s)dtds +

∫∫
R2

r(s)∗
∂2

∂t∂s
φ(t, s)dtds

−

∫∫
R2

r(t − s)
∂2

∂t∂s
φ(t, s)dtds.

Since r satisfies inequality (2.1), the above integrals make sense; the first and the second integrals
on the right hand side are identically zero since φ is a Schwartz function. Thus, since〈

r ′′(t − s), φ(t, s)
〉
= −

〈
r(t − s),

∂2

∂t∂s
φ

〉
= −

∫∫
R2

r(t − s)
∂2

∂t∂s
φ(t, s)dtds,
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it follows that〈
∂2

∂t∂s
Kr , φ

〉
=
〈
r ′′(t − s), φ

〉
.

Using (1.5), that is

r(t − s) = iγ (t − s)−
∫
R

{
ei(t−s)u

− 1−
i(t − s)u

u2 + 1

}dσ(u)

u2 ,

we get∫∫
R2

r(t − s)
∂2

∂t∂s
φ(t, s)dtds =

∫∫
R2

iγ (t − s)
∂2

∂t∂s
φ(t, s)dtds

−

∫∫
R2

{∫
R

{
ei(t−s)u

− 1−
i(t − s)u

u2 + 1

}dσ(u)

u2

}
∂2

∂t∂s
φ(t, s)dtds.

The first integral on the right hand side vanishes since φ is a Schwartz function. The function

K (t, s, u) =


{

ei(t−s)
− 1−

i(t − s)u

u2 + 1

} 1

u2 , if u 6= 0,

−
(t − s)2

2
, if u = 0,

is continuous since

lim
u→0

{
ei(t−s)

− 1−
i(t − s)u

u2 + 1

} 1

u2 = −
(t − s)2

2
.

Moreover, we have the bounds

|K (t, s, u)| ≤


(t − s)2 + |t − s|

u2 + 1
if |u| < 1,

4+ |t − s|

u2 + 1
if |u| ≥ 1.

Therefore,∫∫
R2

∫
R

∣∣∣∣K (t, s, u)
∂2

∂t∂s
φ(t, s)

∣∣∣∣ dσ(u)dtds

≤

∫∫
R2

∣∣∣∣ ∂2

∂t∂s
φ(t, s)

∣∣∣∣ {∫
R
|K (t, s, u)| dσ(u)

}
dtds

≤

∫∫
R2

∣∣∣∣ ∂2

∂t∂s
φ(t, s)

∣∣∣∣ {∫
|u|<1

(t − s)2 + |t − s|

u2 + 1
dσ(u)

}
dtds

+

∫∫
R2

∣∣∣∣ ∂2

∂t∂s
φ(t, s)

∣∣∣∣ {∫
|u|≥1

4+ |t − s|

u2 + 1
dσ(u)

}
dtds

< K
∫∫
R2

∣∣∣∣ ∂2

∂t∂s
φ(t, s)(|t − s| + 2)2

∣∣∣∣ dtds <∞

where

K =
∫
R

dσ(u)

u2 + 1
<∞.
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By Fubini’s theorem and integration by parts we obtain∫
R2

{∫
R

{
ei(t−s)u

− 1−
i(t − s)u

u2 + 1

}dσ(u)

u2

}
∂2

∂t∂s
φ(t, s)dtds

=

∫
R

{∫
R2

{
ei(t−s)u

− 1−
i(t − s)u

u2 + 1

}
1

u2

∂2

∂t∂s
φ(t, s)dtds

}
dσ(u)

=

∫
R

{∫
R2

ei(t−s)uφ(t, s)dtds

}
dσ(u)

=

∫
R2

{∫
R

e−i(s−t)udσ(u)
}
φ(t, s)dtds,

and by (2.2) we conclude that〈
r ′′(t − s), φ(t, s)

〉
=
〈
d̂σ(s − t), φ(t, s)

〉
.

Thus,

∂2

∂t∂s
Kr (t, s) = r ′′(t − s) = d̂σ(s − t). �

3. The operator Tm

We now focus on the case dσ(u) = m(u)du in (1.5), where m is a positive and measurable
function such that∫

R

m(u)du

u2 + 1
<∞. (3.1)

We define an (unbounded in general) operator Tm by

T̂m f (u)
def.
=

√
m(u) f̂ (u), (3.2)

where f̂ denotes the Fourier transform of f ; see (1.9). The domain of Tm ,

dom (Tm)
def.
=

{
f ∈ L2(R) :

∫
R

m(u)
∣∣ f̂ (u)

∣∣2 du <∞

}
, (3.3)

contains in particular the Schwartz space S (R) since m satisfies (3.1) and since the Fourier
transform maps S (R) into itself.

When m is summable, the integral in (3.3) can be rewritten as a double integral as explained
in the previous section:∫

R
m(u)| f̂ (u)|2du =

∫∫
R2

f (t) f (s)∗m̂(t − s)dtds. (3.4)

When

m(u) =
1

2π
|u|1−2H , (3.5)

the operator Tm reduces, up to a multiplicative constant, to the operator MH defined in [27,
(2.10), p. 304] and in [14, Definition 3.1, p. 354], and the function r(t) in (1.5) is given by (1.8).
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We note that the set (3.3) has been introduced in [48, Theorem 3.1, p. 258] for m of the form
(3.5). Multiplying (3.5) by

2πH(1− 2H)

Γ (2− 2H) cos(πH)
,

that is, considering

m(u) =
H(1− 2H)

Γ (2− 2H) cos(πH)
|u|1−2H

and using [28, Formula 12, p. 170], that is, in the sense of distributions,∫
R
|x |λeiux dx = −2Γ (1+ λ) sin

(
πλ

2

)
|u|−λ−1, λ 6∈ Z,

leads to (with λ = 1− 2H )

m̂(u) = −
H(1− 2H)Γ (2− 2H) sin

(
π(1−2H)

2

)
Γ (2− 2H) cos(πH)

|u|2H−2

= 2H(2H − 1) |u|2H−2 .

See [23, (2.1), p. 584]. The norm | f |2φ defined in [23, (2.2), p. 584] is then equal to (3.4).
More generally, the operator Tm can be defined for m which do not satisfy (3.1). One could

for instance assume only that∫
R

m(u)du

(u2 + 1)N+1 <∞ (3.6)

for some N ∈ N0. Then, the Schwartz space is still in the domain of Tm , but, in general, one
cannot define an associated function r via (1.5). We will go back to this condition in the sequel;
see (1.7). A key property of Tm proved in the sequel uses specifically (3.1); see Lemma 3.1.
We note that (3.6) means that the measure m(u)du is slowly increasing, and can be seen as the
spectral measure of a generalized stochastic process with N -th stationary increments; see [29,
Théorème 1, p. 257]. We mention that generalized stochastic process with N -th stationary
increments are studied in particular in [46]. The point of view there is that of infinite dimensional
analysis and is different from that of white noise space analysis. In particular, one considers
Wick polynomials, built from the Hermite polynomials (see [46, pp. 8–10]) rather than functions
defined in terms of the Hermite functions. We also refer the reader to [18] for more on this
approach.

The approach developed in the present paper can be used to develop a stochastic calculus for
processes with N -th stationary increments. This question will not be pursued here.

The operator Tm plays a central role in this work. We now study its main properties:

Lemma 3.1. Assume that the spectral density m satisfies (3.1). Then, for every t ∈ R, the
function

It
def.
=

{
1[0,t], if t > 0,
1[t,0], if t < 0,

belongs to the domain of Tm .
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Proof. We consider the case t > 0. The case where t < 0 is treated in a similar way. We have∫
R

m(u)|1̂[0,t](u)|2du =
∫
−1

−∞

m(u)

∣∣∣∣e−itu
− 1

−iu

∣∣∣∣2 du +
∫ 1

−1
m(u)

∣∣∣∣e−itu
− 1

−iu

∣∣∣∣2 du

+

∫
∞

1
m(u)

∣∣∣∣e−itu
− 1

−iu

∣∣∣∣2 du.

The first and last integrals converge in view of (3.1), and the second is trivially convergent. �

Theorem 3.2. Assume that the spectral density m satisfies (3.1). The operator Tm is self-adjoint
and closed. It is bounded if and only if m is bounded.

Proof. For f and g in the domain of Tm we have

〈 f, Tm g〉L2(R) = 〈Tm f, g〉L2(R) .

Thus, Tm ⊂ T ∗m and the operator Tm is hermitian. We show that it is self-adjoint: let g ∈
dom (T ∗m). The map f → 〈Tm f, g〉L2(R) is continuous and so is the map

f →
〈
T̂m f , ĝ

〉
L2(R) =

〈√
m f̂ , ĝ

〉
L2(R) ,

and the map

f̂ →
〈
f̂ ,
√

mĝ
〉
L2(R)

is also continuous. By Riesz representation theorem,
√

mĝ ∈ L2(R); hence g ∈ dom (Tm) and
we get T ∗m ⊂ Tm .

We now show that Tm is closed: let fn → f and Tm fn → g. We have f̂n → f̂ . Thus
Tm fn → g leads to T̂m fn → ĝ, and thus

√
m f̂n → ĝ. By [21, Théorème 2.3, p. 95] there exists

a subsequence nk such that f̂nk → f̂ pointwise, a.e., and so T̂m fnk → ĝ pointwise, a.e., and we
have T̂m f = ĝ, a.e.

Finally we show that the operator Tm is bounded if and only if m is bounded. First, if m is
bounded then there exists a K > 0 such that |m(u)| < K for any u ∈ R and we get, for any
f ∈ L2(R),∫

R
m(u)| f̂ (u)|2du < K

∫
R
| f̂ (u)|2du,

so Tm is bounded since the Fourier transform is an isometry. Now if Tm is bounded, then there
exists a K ∈ R such that for any f ∈ L2(R)∫

R
m(u)

∣∣ f̂ (u)
∣∣2 du ≤ K

∫
R

∣∣ f̂ (u)
∣∣2 du.

Assume that m is unbounded. Then for any N ∈ N there exists a measurable set EN such that
λ(EN ) > 0 (λ denotes the Lebesgue measure) and m(u) ≥ N on EN , where, without loss of
generality, one may take EN such that λ(EN ) ≤ 1. Define fn such that f̂n = 1EN on EN . We
then have

N
∫

EN

∣∣ f̂n(u)
∣∣2 du ≤

∫
EN

m(u)
∣∣ f̂n(u)

∣∣2 du ≤ K
∫

EN

∣∣ f̂n(u)
∣∣2 du,

and hence N ≤ K , but this is impossible, so m is bounded. �
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For m(u) = 1
2π |u|

1−2H , we have that

supp Tm It ⊂ supp It , t ∈ R. (3.7)

In general this property will not hold, as we now illustrate with a counterexample. This example
is of particular importance for marking the difference between our approach and the approach
presented in [4].

Example 3.3. Let m(u) = u4e−2u2
. We have

(Tm1[0,t])(s) =
1

2π

∫
R

eisuu2e−u2
·

e−itu
− 1

−iu
du

= −
1

2π i

∫
R

eisuue−u2
(e−itu

− 1)du

= −
1

2π i

∫
R

uei(s−t)ue−u2
du +

1
2π i

∫
R

ueisue−u2
du

= Φ(s)− Φ(s − t),

where

Φ(s) =
1

2π i

∫
R

ueisue−u2
du.

We have

Φ(s) =
1

2π i

∫
R

ueisue−u2
du =

1
2π i

e−
s2
4

∫
R

ue−(u−
is
2 )

2
du =

s

4
√
π

e
−s2

4 .

Thus,

(Tm1[0,t])(s) =
1

4
√
π

{
(t − s)e−

(t−s)2
4 + se−

s2
4

}
.

The support of the function Tm(It ) is not bounded, and in particular (3.7) is not in force.

For m bounded, we note that Tm is a translation invariant operator.
We now recall the definitions of the Hermite polynomials and of the Hermite functions. Then,

in Proposition 3.6 we study the action of the operator Tm on Hermite functions.

Definition 3.4. The Hermite polynomials {hk(u)k ∈ N0} are defined by

hk(u)
def.
= (−1)ke

u2
2

dk

duk

(
e−

u2
2

)
, k = 0, 1, 2 . . . .

Definition 3.5. The Hermite functions are defined by

h̃k(u)
def.
=

hk−1(
√

2u)e−
u2
2

π
1
4
√
(k − 1)!

, k = 1, 2, . . . .

The following proposition outlines the main properties of the Hermite functions which we will
need; see [14, p. 349] and the references therein.

Proposition 3.6 ([14, p. 349]). The Hermite functions {̃hk, k ∈ N} form an orthonormal basis of
L2(R). Furthermore,
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|̃hk(u)| ≤

{
C if |u| ≤ 2

√
k,

Ce−γ u2
if |u| > 2

√
k,

(3.8)

where C and γ > 0 are constants independent of k. Finally, the Fourier transform of the Hermite
function is given bŷ̃hk(u) =

√
2π(−1)k−1h̃k(u). (3.9)

Using the previous proposition, we now study the functions Tm h̃k .

Proposition 3.7. Assume that the function m satisfies a bound of the type (1.7)

m(u) ≤

{
K |u|−b if |u| ≤ 1,
K |u|2N if |u| > 1,

where b < 2, N ∈ N0, and 0 < K <∞. Then,∣∣(Tm h̃k)(u)
∣∣ ≤ C1k

N+1
2 + C2, (3.10)

where C1 and C2 are constants independent of k.

Before giving the proof of this proposition, we comment on (1.7): a positive (and say continuous)
function m which satisfies (1.7) need not satisfy (3.1). What we need in the sequel are functions
which satisfy both (1.7) and (3.1). The purpose of (1.7) is to give some bound on the behaviour
of m at infinity and near the origin.

Proof of Proposition 3.7. Using (3.9) we have∣∣(Tm h̃k)(u)
∣∣ = 1

2π

∣∣∣∣∫
R

eiuŷ̃hk(y)
√

m(y)dy

∣∣∣∣
≤

1
√

2π

∫
R

∣∣̃hk(y)
∣∣√m(y)dy.

We now compute an upper bound for the integral∫
R

∣∣̃hk(y)
∣∣√m(y)dy = I1 + I2 + I3,

where

I1 =

∫
−2
√

k

−∞

∣∣̃hk(y)
∣∣√m(y)dy,

I2 =

∫ 2
√

k

−2
√

k

∣∣̃hk(y)
∣∣√m(y)dy,

I3 =

∫
∞

2
√

k

∣∣̃hk(y)
∣∣√m(y)dy.

By (3.8) we have

I1 ≤ C
∫
−2
√

k

−∞

e−γ y2√
m(y)dy,
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I2 ≤ C
∫ 2
√

k

−2
√

k

√
m(y)dy,

I3 ≤ C
∫
∞

2
√

k
e−γ y2√

m(y)dy.

We have∫ 2
√

k

−2
√

k

√
m(y)dy =

∫
−1

−2
√

k

√
m(y)dy +

∫ 1

−1

√
m(y)dy +

∫ 2
√

k

1

√
m(y)dy

≤
√

K
∫
−1

−2
√

k
|y|N dy +

√
K
∫ 1

−1
|y|−

b
2 dy +

√
K
∫ 2
√

k

1
|y|N dy

= 2
√

K

(
2N+1k

N+1
2 −1

N + 1

)
+ 4
√

K
1

2− b
,

so we get

I2 ≤ K̃1k
N+1

2 + K̃2

for appropriate constants K̃1 and K̃2 (which depend on N ). Furthermore,∫
∞

2
√

k
e−γ y2√

m(y)dy ≤
√

K
∫
∞

2
√

k
|y|N e−γ y2

dy

≤
√

K
∫
∞

0
yN e−γ y2

dy

=
√

K
Γ ( N+1

2 )

2γ
N+1

2

.

Finally we get∣∣(Tm h̃k)(y)
∣∣ ≤ C1k

N+1
2 + C2

for appropriate strictly positive constants C1 and C2 (which depend on N ). �

Lemma 3.8. Assume that the spectral density m satisfies (1.7). The function Tm h̃k is uniformly
continuous for every k ∈ N. More precisely, it holds that∣∣(Tm h̃k)(t)− (Tm h̃k)(s)

∣∣ ≤ |t − s|
{

C1k
N+2

2 + C2

}
, (3.11)

where C1 and C2 are constants independent of k.

Proof. Let t, s ∈ R. We have

(Tm h̃k)(t)− (Tm h̃k)(s) =
1
√

2π
(−1)k−1

∫
R

(
e−iut

− e−ius
)√

m(u)̃hk(u)du.

Taking into account that∣∣∣e−iut
− e−ius

∣∣∣ ≤ |u(t − s)| ,

we get∣∣(Tm h̃k)(t)− (Tm h̃k)(s)
∣∣ ≤ |t − s|
√

2π

∫
R
|u|
√

m(u)
∣∣̃hk(u)

∣∣ du.
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To conclude the proof, it suffices to show that
∫
R |u|
√

m(u)
∣∣̃hk(u)

∣∣ du <∞. By (1.7) and (3.8)
we have∫

R
|u|
√

m(u)
∣∣̃hk(u)

∣∣ du ≤ A
∫
|u|≤1
|u|1−

b
2 du + B

∫
1<|u|≤2

√
k
|u|N+1 du

+C
∫
|u|>2

√
k
|u|N+1 e−γ u2

du

≤ Dk
N+2

2 + E,

where all the constants are independent of k. �

We conclude this section with a remark.

Remark 3.9. When∫
R

ln m(u)

u2 + 1
du > −∞,

the function m admits a factorization m(u) = |h(u)|2, where h is an outer function. One can then

define an operator T̃m through T̃m f
def.
= ĥ ∗ f rather than the operator Tm . We will not pursue this

direction here.

4. The white noise space and the Brownian motion

In this section we review the construction of the white noise space and recall some results
related to the Brownian motion. We refer the reader to [31,33,42,34] for additional information
and references. To build the white noise space one considers the subspace SR(R) of the Schwartz
space which consists of real-valued functions. Denote by SR(R)′ its dual. Let F be the σ -algebra
of Borel sets in the space SR(R)′. The function

K (s1 − s2) = exp(−‖s1 − s2‖
2
L2(R) /2)

is positive in SR(R) in the sense of reproducing kernels since

exp(−‖s1 − s2‖
2
L2(R) /2) = exp(−‖s1‖

2
L2(R) /2)× exp〈s1, s2〉L2(R)

× exp(−‖s2‖
2
L2(R) /2).

The space SR(R) is nuclear, and therefore the Bochner–Minlos theorem (see for instance [33,
Appendix A, p. 193]) implies that there exists a probability measure P on (SR(R)′,F) such that,
for all s ∈ SR(R),

E(eiQs (s′))
def.
=

∫
SR(R)′

eiQs (s′)dP(s′) = e−
‖s‖2L2(R)

2 , (4.1)

where Qs denotes the linear functional Qs(s′) =
〈
s′, s

〉
SR(R)′,SR(R); see [14, (2.1), p. 348], [27,

(2.3), p. 303]. Note that Qs is the canonical isomorphism of the Schwartz space SR(R) onto its
bidual; see [35, p. 7]. Definition (4.1) implies in particular that

E(Qs) = 0 and E(Q2
s ) = ‖s‖

2
L2(R) . (4.2)

In view of (4.2), the map

s → Qs (4.3)
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is an isometry from the real Hilbert space SR(R) ⊂ L2(R) into the real Hilbert space
L2(SR(R)′,F , dP). It extends to an isometry from L2(R) into L2(SR(R)′,F , dP), and we de-
fine for f ∈ L2(R)

Q f (s
′)

def.
= lim

n→∞
Q fn (s

′), (4.4)

where the limit is in L2(SR(R)′,F , dP) and where fn → f in L2(R). The limit is easily shown
not to depend on ( fn).

In the sequel we consider complex-valued functions. The map (4.3) extends to an isometry
between the complexified spaces of L2(R) and L2(S ′(R),F , dP). See for instance [15, pp.
V4–V5] for the complexification of Hilbert spaces.

The triplet L2(SR(R)′,F , P) is called the white noise space. In accordance with the notation
standard in probability theory, we set

Ω = SR(R)′,

and denote by

W = L2(Ω ,F , P)

the complexified space of L2(SR(R)′,F , P).
The Brownian motion is a family {B(t, ω)} of random variables in the white noise space with

the following properties:

(1) B(0, ω) = 0 almost surely with respect to P .
(2) {B(t, ω)} is a Gaussian stochastic process with mean zero and B(t, ω) and B(s, ω) have the

covariance min(t, s).
(3) s → B(s, ω) is continuous for almost all ω with respect to P .

Define the stochastic process

B(t, ω) = Q It (ω), t ∈ R.

Then, for t, s ≥ 0,

E(B(t, ω)B(s, ω)∗) = 〈It , Is〉L2(R) =
∫
R

It (u)(Is(u))
∗du = min(t, s).

By Kolmogorov’s continuity theorem the process {B(t, ω)} has a continuous version, which is
a Brownian motion. For F ∈ W we now recall Wiener–Ito chaos expansion. In the stochastic
process literature this expansion is for real-valued functions. We write it for the complexification
of the underlying Hilbert spaces. This creates no technical problem.

The white noise probability space W admits a special orthonormal basis {Hα}, indexed by the
set ` (defined by (1.11)). The definition of this basis is recalled in the following proposition. We
refer the reader to [33, Definition 2.2.1, p. 19] for more information.

Proposition 4.1 (Wiener–Ito Chaos Expansion [33, Theorem 2.2.4, p. 23]). Every F ∈ W can
be written as

F =
∑
α∈`

cαHα,

with α ∈ `, cα ∈ C, and
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‖F‖2W =
∑
α∈`

α! |cα|
2 <∞,

where α! = α1!α2!α3! · · · and

Hα(ω)
def.
=

∞∏
k=1

hαk

(
Q h̃k

(ω)
)
, ω ∈ Ω . (4.5)

5. The Kondratiev space and the Wick product

The Wick product is defined through

Definition 5.1. Let α, β ∈ `; then

Hα � Hβ = Hα+β .

Definition 5.2. Let F,G be two elements in W :

F =
∑
α∈`

aα∈`Hα, and G =
∑
α∈`

bαHα,

where α ∈ `, aα, bα ∈ C and aα, bα 6= 0 for only a finite number of indexes α. The Wick product
of F and G is defined by

(F � G)(ω) =
∑
α,β∈`

aαbβHα+β(ω) =
∑
γ

( ∑
γ=α+β

aαbβ

)
Hγ (ω).

The basis {Hα}α∈` is computed from the Hermite functions. The choice of another orthonormal
basis for L2(R)will lead to another basis for the white noise space, but to the same Wick product.
See [33, Appendix D, p. 213]. The Wick product is not defined for all pairs of elements in the
white noise space. See [33].

The Kondratiev space S−1 seems to be the most convenient space within which the Wick
product is well defined. It is a space of distributions. We first recall on which space of test
functions its elements operate.

Definition 5.3. The Kondratiev space S1 of stochastic test functions consists of the elements in
the form f =

∑
α∈` aαHα ∈ W such that∑

α∈`

|aα|
2 (α!)2(2N)kα <∞, k = 1, 2, . . . ,

where

(2N)α def.
= 2α1(2 · 2)α2(2 · 3)α3 · · · , α ∈ `.

Definition 5.4. The Kondratiev space S−1 of stochastic distributions consists of the elements in
the form F =

∑
α∈` bαHα with the property that∑

α∈`

|bα|
2 (2N)−qα <∞,

for some q ∈ N.



D. Alpay et al. / Stochastic Processes and their Applications 120 (2010) 1074–1104 1093

S−1 can be identified with the dual of S1 and the action of F ∈ S−1 on f =
∑
α∈` aαHα ∈ S1 is

given by

〈F, f 〉S−1,S1

def.
=

∑
α∈`

α!aαbα. (5.1)

We also note the following: let α ∈ `. By (4.5), using a Wick product calculation, we have

Hα(ω) =
∞∏

k=1

(
Q h̃k

(ω)
)�αk

for α = ε(k) = (0, 0, . . . , 0, 1, 0, . . .), αi = 0 for i 6= k and αk = 1; we get

Hε(k) = Q h̃k
=

∫
R

h̃k(t)dB(t).

We now review the main results associated with the Wick product and the Hermite transform.
A key property of the basis {Hα, α ∈ `} is the following: define a map I such that

I(Hα) = zα,

where α ∈ `, z = (z1, z2, . . .) ∈ CN (the set of all sequences of complex numbers) and

zα = zα1
1 zα2

2 · · · .

Then

I(Hα � Hβ) = I(Hα)I(Hβ).

The map I is called the Hermite transform.
We note that the spaces S−1 and S1 are closed under the Wick product; see [33, Lemma 2.4.4,

p 42].

Definition 5.5. Let F =
∑
α∈` aαHα ∈ S−1. Then the Hermite transform of F , denoted by I(F)

or F̃ , is defined by

I(F)(z) = F̃(z) =
∑
α∈`

aαzα.

Proposition 5.6 ([33, Proposition 2.6.6, p. 59]). Let F,G ∈ S−1. Then

I(F � G)(z) = (I(F)(z)) · (I(G)(z)).

6. The stochastic process associated with Tm

Let m be a spectral density subject to (3.1). Using Lemma 3.1, we have Tm It ∈ L2(R) and by
the expansion in L2(R) in terms of the Hermite functions h̃k we obtain

Tm It =

∞∑
k=1

〈
Tm It , h̃k

〉
h̃k,

where〈
Tm It , h̃k

〉
=
〈
It , Tm h̃k

〉
=

∫
R

It (y)(Tm h̃k)(y)dy.
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We define the stochastic process {Xm(t, ω), t ∈ R} defined through

Xm(t, ω)
def.
= QTm It (ω),

where t ∈ R and ω ∈ Ω . As already noted in Section 3, when the function m is given by (3.5)
(or, equivalently, the function r is given by (1.8)), the operator Tm is equal to the operator MH
defined in [27,14]. Then, Xm reduces to the fractional Brownian motion with Hurst parameter
H ∈ (0, 1).

Lemma 6.1. Let m be a spectral density subject to (3.1). The stochastic process Xm has the
following properties:

(1) E(Xm(t, ω)Xm(s, ω)∗) = Kr (s, t).
(2) E

(
|Xm(t, ω)− Xm(s, ω)|2

)
= 2 Re r(t − s).

(3) Assume moreover that m satisfies (1.7), with N = 0. Then

Re r(t) ≤ C1t2
+ C2t.

for some positive constants C1 and C2.

Proof. To prove item (1) we note that

E(Xm(t, ω)Xm(s, ω)
∗) = 〈Tm It , Tm Is〉L2(R)

=

∫
R
(Tm It )(u)((Tm It )(u))

∗du

=

∫
R
(̂Tm It )(u)((̂Tm Is)(u))

∗du

=

∫
R

m(u)(̂1[0,t])(u)
(
(̂1[0,s])(u)

)∗
du

=

∫
R

m(u)
{∫ t

0
e−iux dx

}{∫ s

0
eiuydy

}
du

=

∫
R

e−itu
− 1

u

eisu
− 1

u
m(u)du

= Kr (s, t).

The proof of the second statement is carried out by direct computations:

E
(
|Xm(t, ω)− Xm(s, ω)|

2
)
= E((Xm(t, ω)− Xm(s, ω))(Xm(t, ω)− Xm(s, ω))

∗)

= E
{

Xm(t, ω)Xm(t, ω)
∗
− Xm(t, ω)Xm(s, ω)

∗

− Xm(s, ω)Xm(t, ω)
∗
+ Xm(s, ω)Xm(s, ω)

∗
}
.

Using the first statement we get

= E(Xm(t, ω)Xm(t, ω)
∗)− E(Xm(t, ω)Xm(s, ω)

∗)

− E(Xm(s, ω)Xm(t, ω)
∗)+ E(Xm(s, ω)Xm(s, ω)

∗)

= {Kr (t, t)− Kr (s, t)− Kr (t, s)+ Kr (s, s)}

=
(
r(t)+ r(t)∗ − (r(s)+ r(t)∗ − r(s − t))

− (r(t)+ r(s)∗ − r(t − s))+ r(s)+ r(s)∗
)
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= (r(t − s)+ r(t − s)∗)

= 2 Re r(t − s).

Finally, recall that we have

Re r(t) =
∫
R

{
1− cos(tu)

}m(u)

u2 du.

Then, when m(u) satisfies (1.7) with N = 0, we get

Re r(t) ≤ 2

{
K
∫ 1

0

|1− cos(tu)|

u2+b
du + K ′

∫
∞

1

|1− cos(tu)|

u2 du

}

= 2

{
K
∫ 1

0

2 sin2( tu
2 )

u2+b
du + K ′

∫
∞

1

|1− cos(tu)|

u2 du

}
.

But ∫ 1

0

2 sin2( tu
2 )

u2+b
du ≤ t2

∫ 1

0

u2

2u2+b
du =

t2

2

∫ 1

0

1
ub du =

t2

2(1− b)

since for t ∈ [0, 1] we get tu ∈ [0, 1] and sin2( tu
2 ) ≤

(tu)2

4 . Furthermore,∫
∞

1

|1− cos(tu)|

u2 du ≤
∫
∞

0

|1− cos(tu)|

u2 du

= t
∫
∞

0

|1− cos v|

v2 dv

= t
∫ 1

0

|1− cos v|

v2 dv + t
∫
∞

1

|1− cos v|

v2 dv

≤ t
∫ 1

0

2 sin2 ( v
2

)
v2 dv + 2t

∫
∞

1

1

v2 dv

≤
t

2

∫ 1

0

v2

v2 dv + 2t
∫
∞

1

1

v2 dv

=
t

2
+ 2t =

5t

2
. (6.1)

Thus,

Re r(t) ≤ |Re r(t)| ≤ 2
{

K
t2

2(1− b)
+ K ′

5t

2

}
= C1t2

+ C2t. �

We note that the bounds in (6.1) make use of the assumption N = 0, and do not seem to extend
to the case N ∈ N. Still under the assumption N = 0 we now show that {Xm(t, ω), t ∈ R}
meets the criterion of Kolmogorov’s theorem concerning the existence of a continuous version
of a given stochastic process. Using the fact (see for instance [35, p. 5] with p = 2n) that

E
(
|Xm(t, ω)|

2n
)
= κ(2n)2n

(
E
(
|Xm(t, ω)|

2
)) 2n

2
(6.2)
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where

κ(2n) =
√

2

(
Γ ( 2n+1

2 )
√
π

) 1
2n

=
√

2
(

2n!

4nn!

) 1
2n

we have

E
(
|Xm(t, ω)Xm(s, ω)|

4
)
= κ(4)4 E

(
|Xm(t, ω)− Xm(s, ω)|

2
)2
.

By (2), (3) we get

κ(4)4 E
(
|Xm(t, ω)− Xm(s, ω)|

2
)2
= κ(4)4 (Re r(t − s))2

≤ κ(4)4
(

C1(t − s)2 + C2(t − s)
)2
= (t − s)2(A + B(t − s))2,

for t − s ∈ [0, 1]. By Kolmogorov’s continuity theorem the process {Xm(t, ω)} has a continuous
version where t ∈ [0, 1]. One can show in a similar way that a continuous version exists on every
finite interval.

In the following, computations of moments of Xm are presented. These are essential in the
construction of stochastic integrals within the white noise space framework; see e.g. [9].

Proposition 6.2. Let m be a spectral density, subject to (3.1). Then, Xm(t) is a Gaussian random
variable with

E(Xn
m(t, ω)) =

{
0, if n = 2k − 1
(2k)!

2kk!
‖Tm It‖

2k , if n = 2k

for k = 1, 2, . . . .

Proof. By (4.1) with Xm(t, ω) = QTm It (ω), we have with ε ∈ R,

E(exp(iεXm(t, ω))) = e−ε
2 ‖Tm It ‖2

2 ,

and therefore Xm(t, ω) is a centered Gaussian random variable. Thus E(X2n−1
m (t, ω)) = 0 for

n = 1, 2, . . . , and we get
∞∑

n=0

(iε)n

n!
E(Xn

m(t, ω)) =
∞∑

n=0

(−1)nε2n

2n!
E(X2n

m (t, ω)).

We have to verify that

E
( ∞∑

n=0

(−1)nε2n

2n!
X2n

m (t, ω)
)
=

∞∑
n=0

(−1)nε2n

2n!
E(X2n

m (t, ω)).

Using (6.2) we have

∞∑
n=0

|ε|2n E(|Xm(t, ω)|2n)

2n!
=

∞∑
n=0

|ε|2n κ(2n)2n
(
E |Xm(t, ω)|2

)n
2n!

=

∞∑
n=0

|ε|2n (E |Xm(t, ω)|2
)n

2nn!
<∞.
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We can thus use the dominated convergence theorem to obtain that

E
( ∞∑

n=0

εn in

n!
Xn

m(t, ω)
)
=

∞∑
n=0

εn in

n!
E(Xn

m(t, ω))

=

∞∑
`=0

(−1)`ε2` ‖Tm It‖
2`

2``!
.

The proof is completed by comparing the powers of ε on both sides. �

Remark 6.3. In view of (1.6) we have (when N = 0 in (1.7))

‖Tm It‖
2
= Kr (t, t).

Remark 6.4. Since for any t ∈ R, Xm(t) is written as a weighted sum of the {Hα, α ∈ `} (for
an explicit expression, see (7.3)), in turn being jointly Gaussian random variables, it follows that
{Xm(t), t ∈ R} is a Gaussian process.

The following proposition will be used in a subsequent paper, where, as already noted, we
develop the stochastic analysis associated with the processes Xm .

Proposition 6.5. Let m be a spectral density subset of (3.1). Let f ∈ dom (Tm) and n ∈ N. It
holds that

Q�nTm f (ω) = n!
n∑

k=d n
2 e

(
−

1
2

)n−k Q2k−n
Tm f (ω)

(2k − n)!

(‖Tm f ‖2)n−k

(n − k)!
.

In particular, for f = It , it holds that

X�nm (t) = n!
n∑

k=d n
2 e

(
−

1
2

)n−k X2k−n
m (t)

(2k − n)!

(‖Tm It‖
2)n−k

(n − k)!
.

Proof. Let ε ∈ R; then

exp�(QεTm f (ω)) =

∞∑
n=0

(QεTm f (ω))
�n

n!
=

∞∑
n=0

εn(QTm f (ω))
�n

n!
.

By [35, Theorem 3.33, p. 32], we have

exp�(QεTm f (ω)) = exp
(

QεTm f (ω)−
1
2
‖εTm f ‖2

)
=

∞∑
k=0

(εQTm f (ω)−
1
2ε

2 ‖Tm f ‖2)k

k!

=

∞∑
k=0

k∑
j=0

ε2k− j (QTm f (ω))
j

j !

(− 1
2 ‖Tm f ‖2)k− j

(k − j)!
.

Hence,

∞∑
n=0

εn(QTm f (ω))
�n

n!
=

∞∑
k=0

k∑
j=0

ε2k− j (QTm f (ω))
j

j !

(− 1
2 ‖Tm f ‖2)k− j

(k − j)!
,
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and comparing the powers of ε leads to

(QTm f (ω))
�n

n!
=

n∑
k=d n

2 e

(
−

1
2

)n−k (QTm f (ω))
2k−n

(2k − n)!

(‖Tm f ‖2)n−k

(n − k)!
. �

7. The derivative of Xm

One important aspect of the white noise space theory is that the Brownian motion admits a
derivative, which belongs to the Hida space (S)∗ (the definition of which we do not recall here),
and in particular the Kondratiev space S−1. See [33, p. 53]. In this section we prove that this
result still holds for the stochastic process Xm . For the next definition, see also [33, Definition
2.5.5, p. 49], where the integral is defined to be an element in the Hida space (S)∗.

Definition 7.1. Suppose that Z : R→ S−1 is a given function with the property that

〈Z(t), f 〉 ∈ L1(R, dt)

for all f ∈ S1. Then
∫
R Z(t)dt is defined to be the unique element of S−1 such that〈∫

R
Z(t)dt, f

〉
=

∫
R
〈Z(t), f 〉 dt

for all f ∈ S1.

In view of Lemma 3.8 the coefficients of the expansion (7.1) are continuous functions, and
not merely elements of L2(R).

Theorem 7.2. Assume that the spectral density satisfies (3.1) and (1.7). Then, for every real t
we have that

Wm(t) =
∞∑

k=1

(
Tm h̃k

)
(t)Hε(k) ∈ S−1, (7.1)

and it holds that

Xm(t) =
∫ t

0
Wm(s)ds, t ∈ R. (7.2)

Proof. Let q ≥ N + 3 where N ∈ N. Then, using (3.10), we have
∞∑

k=1

∣∣(Tm h̃k
)
(t)
∣∣2 (2k)−q

≤

∞∑
k=1

(
C1k

N+1
2 + C2

)2
(2k)−q <∞,

and so Wm(t) ∈ S−1. We now prove (7.2). By construction, Xm(t) ∈ W for every t ∈ R, and we
can write

Xm(t) =
∞∑

k=1

bk(t)Hε(k) , (7.3)

where

bk(t) =
∫ t

0

(
Tm h̃k

)
(s)ds,

with the convergence in the topology of W . We want to show that, for every f ∈ S1, we have
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〈Xm(t), f 〉S−1,S1 =

∫ t

0
〈Wm(u), f 〉S−1,S1du,

where 〈·.·〉S−1,S1 denotes the duality between S1 and S−1 (see (5.1)). With that purpose, let
q ≥ N + 3 where N ∈ N. By using the estimate (3.10), then, with f =

∑
α∈` fαHα , we

have for u ∈ [0, t] (and in fact for every u ≥ 0),
∞∑

k=1

|(Tm h̃k)(u) fk | =

∞∑
k=1

|(Tm h̃k)(u)|(2k)−
q
2 (2k)

q
2 | fk |

≤

(
∞∑

k=1

(
C1k

N+1
2 + C2

)2
(2k)−q

) 1
2

·

(
∞∑

k=1

(2k)q | fk |
2

) 1
2

< ∞,

since f ∈ S1. Therefore the series
∞∑

k=1

|(Tm h̃k)(u) fk |

converges absolutely. Using the dominated convergence theorem we can write∫ t

0
〈Wm(u), f 〉S−1,S1du =

∫ t

0

(
∞∑

k=1

(Tm h̃k)(u) fk

)
du

=

∞∑
k=1

(∫ t

0
(Tm h̃k)(u)du

)
fk

= 〈Xm(t), f 〉S−1,S1 . �

We now show that, conversely,

Xm(t)
′
= Wm(t),

in the sense of S−1-processes; see [33, p. 77] and further below in the current section. In the
following statements, the set Kq(δ) is defined by

Kq(δ) =

{
z ∈ CN :

∑
α∈`

∣∣zα∣∣2 (2N)qα < δ2

}
.

See [33, Definition 2.6.4, p. 59].

Proposition 7.3. Assume that the spectral density m satisfies (3.1) and (1.7) . Then, the function
I(Wm(t))(z) is bounded for (t, z) ∈ R× KN+3(δ) where N ∈ N.

Proof. Write

Wm(t) =
∞∑

k=1

(Tm h̃k)(t)Q h̃k
.

Taking the Hermite transform we have

I(Wm(t))(z) =
∞∑

k=1

(Tm h̃k)(t)zk .
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Thus, for every q ≥ N + 3 where N ∈ N and using (3.10) we have

|I(Wm(t))| =

∣∣∣∣∣ ∞∑
k=1

(Tm h̃k)(t)zk

∣∣∣∣∣
=

∣∣∣∣∣ ∞∑
k=1

(Tm h̃k)(t)(2k)
q
2 (2k)−

q
2 zk

∣∣∣∣∣
=

(
∞∑

k=1

∣∣(Tm h̃k)(t)
∣∣2 (2k)−q

) 1
2
(
∞∑

k=1

(2k)q
∣∣zεk

∣∣2) 1
2

≤

(
∞∑

k=1

{
C1k

N+1
2 + C2

}2
(2k)−q

) 1
2
(∑
α∈`

(2N)qα
∣∣zα∣∣2) 1

2

.

The first sum converges when q ≥ N + 3 and the second converges since z ∈ KN+3(δ). We
conclude that the function I(Wm(t))(z) is bounded for any pair (t, z) ∈ R× KN+3(δ). �

Theorem 7.4. Assume that the spectral density satisfies (3.1) and (1.7) . Then, the function
I(Wm(t))(z) is uniformly continuous in t for z ∈ KN+4(δ).

Proof. Using the Cauchy–Schwartz inequality, we have

|I(Wm(t))(z)− I(Wm(s))(z)| =

∣∣∣∣∣ ∞∑
k=1

{
(Tm h̃k)(t)− (Tm h̃k)(s)

}
zk

∣∣∣∣∣
=

∣∣∣∣∣ ∞∑
k=1

{
(Tm h̃k)(t)− (Tm h̃k)(s)

}
(2k)−

q
2 (2k)

q
2 zk

∣∣∣∣∣
≤

(
∞∑

k=1

∣∣{(Tm h̃k)(t)− (Tm h̃k)(s)
}∣∣2 (2k)−q

) 1
2

×

(
∞∑

k=1

∣∣zεk
∣∣2 (2k)q

) 1
2

,

and thus

|I(Wm(t))(z)− I(Wm(s))(z)| ≤

(
∞∑

k=1

∣∣{(Tm h̃k)(t)− (Tm h̃k)(s)
}∣∣2 (2k)−q

) 1
2

×

(∑
α∈`

∣∣zα∣∣2 (2N)αq

) 1
2

≤ |t − s|

(
∞∑

k=1

{
C1k

N+2
2 + C2

}2
(2k)−q

) 1
2

×

(∑
α∈`

|z|α (2N)αq

) 1
2

,

where we have used (3.11) to go from the first inequality to the second.
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The first sum converges for q ≥ N + 4 and the second converges since z ∈ KN+4(δ), so we
conclude that I(Wm(t))(z) is continuous in t for every z ∈ KN+4(δ). �

We now recall the following result of [33], called the differentiation of S−1 processes.

Proposition 7.5 ([33, Lemma 2.8.4, p. 77]). Suppose {X (t, ω)} and {F(t, ω)} are S−1-valued
processes such that

d(I(X)(t))(z)
dt

= (I(F)(t))(z)

for each t ∈ (a, b), z ∈ Kq(δ) and that (I(F)(t))(z) is bounded for (t, z) ∈ (a, b)× Kq(δ), and
is a continuous function of t for every z ∈ Kq(δ). Then X (t, ω) is a differentiable process and

dX (t, ω)

dt
= F(t, ω)

for all t ∈ (a, b).

In view of this proposition, the first step toward showing that Wm is the derivative of Xm is to
show that this fact holds for the Hermite transforms. This is done in the following lemma.

Lemma 7.6. Assume that the spectral density m satisfies (3.1) and (1.7), let t ∈ R and
z ∈ KN+4(δ). Then

dI(Xm(t))(z)

dt
= I(Wm(t))(z).

Proof. Let h ∈ R. Then∣∣∣∣ I(Xm(t + h))(z)− I(Xm(t))(z)

h
− I(Wm(t))(z)

∣∣∣∣
=

1
|h|

∣∣∣∣∣ ∞∑
k=1

∫ t+h

t

(
(Tm h̃k)(s)− (Tm h̃k)(t)

)
dszk

∣∣∣∣∣
=

1
|h|

∣∣∣∣∣ ∞∑
k=1

∫ t+h

t

(
(Tm h̃k)(s)− (Tm h̃k)(t)

)
ds(2k)−

q
2 (2k)

q
2 zk

∣∣∣∣∣
≤

1
|h|

(
∞∑

k=1

∣∣∣∣∫ t+h

t

(
(Tm h̃k)(s)− (Tm h̃k)(t)

)
ds

∣∣∣∣2 (2k)−q

) 1
2

·

(
∞∑

k=1

(2k)q
∣∣zεk

∣∣2) 1
2

≤
1
|h|

(
∞∑

k=1

∫ t+h

t

∣∣(Tm h̃k)(s)− (Tm h̃k)(t)
∣∣2 ds(2k)−q

) 1
2

·

(∑
α∈`

(2N)qα
∣∣zα∣∣2) 1

2

,

and therefore∣∣∣∣ I(Xm(t + h))(z)− I(Xm(t))(z)

h
− I(Wm(t))(z)

∣∣∣∣
≤

1
|h|

(
∞∑

k=1

∫ t+h

t
|t − s|2 ds

{
C1k

N+2
2 + C2

}2
(2k)−q

) 1
2

×

(∑
α∈`

(2N)qα
∣∣zα∣∣2) 1

2
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≤
|h|

3
2

√
3 |h|

(
∞∑

k=1

{
C1k

N+2
2 + C2

}2
(2k)−q

) 1
2

×

(∑
α∈`

(2N)qα
∣∣zα∣∣2) 1

2

−→ 0, as |h| → 0. �

We are now ready for the main result of this section:

Theorem 7.7. Assume that the spectral density m satisfies (3.1) and (1.7). Then, it holds that

dXm(t)

dt
= Wm(t)

in the sense that

d(I(Xm(t))(z))

dt
= I(Wm(t))(z)

for all t ∈ R, pointwise boundedly.

Proof. Taking in Proposition 7.5, X (t, ω) = Xm(t), F(t, ω) = Wm(t) we have, due to
Lemma 7.6,

d(I(Xm(t))(z))

dt
= I(Wm(t)(z))

for all (t, z) ∈ R× KN+4(δ), and by Proposition 7.3, I(Wm(t))(z) is a bounded function for all
(t, z) ∈ R × KN+3(δ), then for all (t, z) ∈ R × KN+4(δ) the pair (I(Xm(t))(z), I(Wm(t)))(z)
satisfies the condition of Proposition 7.5. We therefore may conclude that Xm(t) is a
differentiable S−1 process, which completes the proof. �
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Applications, Birkhäuser Boston Inc., Boston, MA, 1996.
[34] Zhi-yuan Huang, Jia-an Yan, Introduction to Infinite Dimensional Stochastic Analysis, Chinese edition,

in: Mathematics and its Applications, vol. 502, Kluwer Academic Publishers, Dordrecht, 2000.
[35] S. Janson, Gaussian Hilbert Spaces, in: Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press,

Cambridge, 1997.
[36] R.E. Kalman, Advanced theory of linear systems, in: Topics in Mathematical System Theory, McGraw-Hill, New

York, 1969, 237–339.
[37] M.G. Krein, On the logarithm of an infinitely decomposable Hermite-positive function, C. R. (Doklady) Acad. Sci.

URSS (N.S.) 45 (1944) 91–94.
[38] M.G. Krein, On the problem of continuation of helical arcs in Hilbert space, C. R. (Doklady) Acad. Sci. URSS

(N.S.) 45 (1944) 139–142.

http://arxiv.org/abs/0911.2574v1
http://www.numdam.org


1104 D. Alpay et al. / Stochastic Processes and their Applications 120 (2010) 1074–1104

[39] M.G. Krein, Izbrannye trudy. I, Akad. Nauk Ukrainy Inst. Mat., Kiev (1993) Kompleksnyi analiz, ekstrapolyatsiya,
interpolyatsiya, ermitovo-polozhitelnye funktsii i primykayushchie voprosy. [Complex analysis, extrapolation,
interpolation, Hermitian-positive functions and related topics], With a biographical sketch of Kreı̆n by D.Z. Arov,
Yu.M. Berezanskiı̆, N.N. Bogolyubov, V.I. Gorbachuk, M.L. Gorbachuk, Yu.A. Mitropol’skiı̆and L.D. Faddeev.
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