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1. Introduction

The study of BCK/BCI-algebras was initiated by Iséki in 1966 as a generalization of the concept of set-theoretic difference
and propositional calculus. Since then, a large volume of literature has been produced on the theory of BCK/BCI-algebras, in
particular, emphasis has been given to the ideal theory of BCK/BCI-algebras. Fuzzy sets, whichwere introduced by Zadeh [1],
dealwith possibilistic uncertainty, connectedwith imprecision of states, perceptions andpreferences. Basedon the (interval-
valued) fuzzy sets, Jun et al. [2] introduced the notion of (internal, external) cubic sets, and investigated several properties.
Jun et al. applied the notion of cubic sets to BCK/BCI-algebras. They introduced the notions of cubic subalgebras/ideals, cubic
◦-subalgebras and closed cubic ideals in BCK/BCI-algebras, and then they investigated several properties (see [3–5]).

In this paper, we introduce the notion of cubic p-ideals and cubic a-ideals in BCI-algebras. We discuss the relationship
between a cubic ideal, a cubic q-ideal, a cubic p-ideal and a cubic a-ideal. We consider characterizations of a cubic a-ideal.
We provide conditions for a cubic ideal to be a cubic p-ideal. We establish a cubic extension property of a cubic a-ideal.

2. Preliminaries

In this section, we include some elementary aspects that are necessary for this paper.
An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following axioms:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(II) (x ∗ (x ∗ y)) ∗ y = 0,
(III) x ∗ x = 0,
(IV) x ∗ y = 0, y ∗ x = 0 ⇒ x = y

where x, y and z are elements of X . If a BCI-algebra, X satisfies the following identity:
(V) 0 ∗ x = 0 for all x ∈ X ,
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then X is called a BCK-algebra. Any BCI-algebra X satisfies the following conditions:

(a1) x ∗ 0 = x,
(a2) x ∗ y = 0 ⇒ (x ∗ z) ∗ (y ∗ z) = 0, (z ∗ y) ∗ (z ∗ x) = 0,
(a3) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(a4) ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0,
(a5) x ∗ (x ∗ (x ∗ y)) = x ∗ y,
(a6) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),

where x, y and z are elements of X . We can define a partial ordering ≤ by x ≤ y if and only if x ∗ y = 0. A BCK-algebra X is
said to be with condition (S) if for all x, y ∈ X , the set {z ∈ X | z ∗x ≤ y} has the greatest element, written x◦y. A BCI-algebra
X is said to be p-semisimple if its BCK-part is equal to {0}. In a p-semisimple BCI-algebra, the following conditions are valid:

(a7) 0 ∗ (x ∗ y) = y ∗ x,
(a8) x ∗ (x ∗ y) = y,

where x and y are elements of X . A BCI-algebra X is called aweakly BCK-algebra if 0 ∗ x ≤ x for all x ∈ X . A nonempty subset
S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S. A subset I of a BCK/BCI-algebra X is called an
ideal of X if it satisfies the following conditions:

(b1) 0 ∈ I ,
(b2) (∀x, y ∈ X) (x ∗ y ∈ I, y ∈ I ⇒ x ∈ I).

A subset I of a BCI-algebra X is called a q-ideal of X (see [6]) if it satisfies (b1) and

(b3) (∀x, y, z ∈ X) (x ∗ (y ∗ z) ∈ I, y ∈ I ⇒ x ∗ z ∈ I).

A subset I of a BCI-algebra X is called an a-ideal of X (see [6]) if it satisfies (b1) and

(b4) (∀x, y, z ∈ X) ((x ∗ z) ∗ (0 ∗ y) ∈ I, z ∈ I ⇒ y ∗ x ∈ I).

We refer the reader to the books [7,8] and the paper [9] for further information regarding BCK/BCI-algebras.
Let I be a closed unit interval, i.e., I = [0, 1]. By an interval number, wemean a closed subinterval a = [a−, a+

] of I , where
0 ≤ a−

≤ a+
≤ 1. Denote byD[0, 1] the set of all interval numbers. Let us definewhat is known as refinedminimum (briefly,

rmin) of two elements in D[0, 1]. We also define the symbols ‘‘≽’’, ‘‘≼’’, ‘‘=’’ in case of two elements in D[0, 1]. Consider two
interval numbers a1 := [a−

1 , a+

1 ] and a2 := [a−

2 , a+

2 ]. Then

rmin {a1, a2} = [min{a−

1 , a−

2 },min{a+

1 , a+

2 }], a1 ≽ a2 if and only if a−

1 ≥ a−

2 and a+

1 ≥ a+

2 ,

and similarly, we may have a1 ≼ a2 and a1 = a2. To say a1 ≻ a2 (resp. a1 ≺ a2) wemean a1 ≽ a2 and a1 ≠ a2 (resp. a1 ≼ a2
and a1 ≠ a2). Let ai ∈ D[0, 1], where i ∈ Λ. We define

rinf
i∈Λ

ai =

[
inf
i∈Λ

a−

i , inf
i∈Λ

a+

i

]
and rsup

i∈Λ

ai =

[
sup
i∈Λ

a−

i , sup
i∈Λ

a+

i

]
.

An interval-valued fuzzy set (briefly, IVF set) µ̃A defined on a nonempty set X is given by

µ̃A := {(x, [µ−

A (x), µ+

A (x)]) | x ∈ X},

which is briefly denoted by µ̃A = [µ−

A , µ+

A ]whereµ−

A andµ+

A are two fuzzy sets in X such thatµ−

A (x) ≤ µ+

A (x) for all x ∈ X .
For any IVF set µ̃A on X and x ∈ X, µ̃A(x) = [µ−

A (x), µ+

A (x)] is called the degree of membership of an element x to µ̃A, in
which µ−

A (x) and µ+

A (x) are referred to as the lower and upper degrees, respectively, of membership of x to µ̃A.

3. Cubic p-ideals

Definition 3.1 ([3]). Let X be a nonempty set. A cubic set A in X is a structure

A = {⟨x, µ̃A(x), λ(x)⟩ : x ∈ X}

which is briefly denoted by A = ⟨µ̃A, λ⟩ where µ̃A = [µ−

A , µ+

A ] is an IVF set in X and λ is a fuzzy set in X .

Definition 3.2 ([3]). A cubic set A = ⟨µ̃A, λ⟩ in X is called a cubic subalgebra of a BCK/BCI-algebra X if it satisfies: for all
x, y ∈ X ,

(a) µ̃A(x ∗ y) ≽ rmin {µ̃A(x), µ̃A(y)}.
(b) λ(x ∗ y) ≤ max{λ(x), λ(y)}.

Definition 3.3 ([3]). A cubic set A = ⟨µ̃A, λ⟩ in a BCK/BCI-algebra X is called a cubic ideal of X if it satisfies: for all x, y ∈ X ,

(a) µ̃A(0) ≽ µ̃A(x).
(b) λ(0) ≤ λ(x).
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Table 1
∗-operation.

∗ 0 a b c

0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

(c) µ̃A(x) ≽ rmin {µ̃A(x ∗ y), µ̃A(y)}.
(d) λ(x) ≤ max{λ(x ∗ y), λ(y)}.

In what follows, let X denote a BCI-algebra unless otherwise specified.

Definition 3.4 ([5]). A cubic ideal A = ⟨µ̃A, λ⟩ of X is said to be closed if µ̃A(0∗ x) ≽ µ̃A(x) and λ(0∗ x) ≤ λ(x) for all x ∈ X .

Definition 3.5. A cubic set A = ⟨µ̃A, λ⟩ in X is called a cubic p-ideal of X if it satisfies conditions (a) and (b) in Definition 3.3
and for all x, y, z ∈ X ,
(a) µ̃A(x) ≽ rmin {µ̃A((x ∗ z) ∗ (y ∗ z)), µ̃A(y)}.
(b) λ(x) ≤ max{λ((x ∗ z) ∗ (y ∗ z)), λ(y)}.

Example 3.6. Consider a BCI-algebra X = {0, a, b, c} inwhich the ∗-operation is given by Table 1.We define µ̃A = [µ−

A , µ+

A ]

and λ by

µ̃A =


0 a b c

[0.5, 0.9] [0.4, 0.8] [0.3, 0.5] [0.3, 0.5]


and

λ =


0 a b c
0.3 0.4 0.7 0.7


.

Then A = ⟨µ̃A, λ⟩ is a cubic p-ideal of X .

If we put z = x and y = 0 in Definition 3.5, then we have the following proposition.

Proposition 3.7. Every cubic p-ideal A = ⟨µ̃A, λ⟩ of X satisfies the following inequalities:

(∀x ∈ X) (µ̃A(x) ≽ µ̃A(0 ∗ (0 ∗ x)), λ(x) ≤ λ(0 ∗ (0 ∗ x))). (3.1)

If we put z = 0 in Definition 3.5 and use (a1), then we have the following theorem.

Theorem 3.8. Every cubic p-ideal is a cubic ideal.

The converse of Theorem 3.8 may not be true as seen in the following example.

Example 3.9. Let X = {0, a, 1, 2, 3} be a set with the Cayley table given by Table 2. We define µ̃A = [µ−

A , µ+

A ] and λ by

µ̃A =


0 a 1 2 3

[0.4, 0.8] [0.3, 0.6] [0.1, 0.4] [0.1, 0.4] [0.1, 0.4]


and

λ =


0 a 1 2 3
0.2 0.5 0.6 0.6 0.6


.

Then A = ⟨µ̃A, λ⟩ is a cubic ideal of X . But it is not a cubic p-ideal of X , since

µ̃A(a) = [0.3, 0.6] ⋡ [0.4, 0.8] = rmin {µ̃A((a ∗ 1) ∗ (0 ∗ 1)), µ̃A(0)}

and/or λ(a) = 0.5 ≰ 0.2 = max{λ((a ∗ 1) ∗ (0 ∗ 1)), λ(0)}.

Proposition 3.10. If A = ⟨µ̃A, λ⟩ is a cubic p-ideal of X, then

µ̃A(x ∗ y) ≼ µ̃A((x ∗ z) ∗ (y ∗ z)) and λ(x ∗ y) ≥ λ((x ∗ z) ∗ (y ∗ z))

for all x, y, z ∈ X.
Proof. Let A = ⟨µ̃A, λ⟩ be a cubic p-ideal of X . Note that (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y, i.e., ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0, for all
x, y, z ∈ X . Since A = ⟨µ̃A, λ⟩ is a cubic ideal of X , by Theorem 3.8, it follows that

µ̃A((x ∗ z) ∗ (y ∗ z)) ≽ rmin {µ̃A(((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y)), µ̃A(x ∗ y)}
= rmin {µ̃A(0), µ̃A(x ∗ y)} = µ̃A(x ∗ y)
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Table 2
∗-operation.

∗ 0 a 1 2 3

0 0 0 3 2 1
a a 0 3 2 1
1 1 1 0 3 2
2 2 2 1 0 3
3 3 3 2 1 0

and

λ((x ∗ z) ∗ (y ∗ z)) ≤ max{λ(((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y)), λ(x ∗ y)}
= max{λ(0), λ(x ∗ y)} = λ(x ∗ y)

for all x, y, z ∈ X . This completes the proof. �

We provide conditions for a cubic ideal to be a cubic p-ideal.

Theorem 3.11. Let A = ⟨µ̃A, λ⟩ be a cubic ideal of X that satisfies:

µ̃A(x ∗ y) ≽ µ̃A((x ∗ z) ∗ (y ∗ z)) and λ(x ∗ y) ≤ λ((x ∗ z) ∗ (y ∗ z))

for all x, y, z ∈ X. Then A = ⟨µ̃A, λ⟩ is a cubic p-ideal of X.
Proof. For any x, y, z ∈ X , we have

µ̃A(x) ≽ rmin {µ̃A(x ∗ y), µ̃A(y)} ≽ rmin {µ̃A((x ∗ z) ∗ (y ∗ z)), µ̃A(y)}

and λ(x) ≤ max{λ(x ∗ y), λ(y)} ≤ max{λ((x ∗ z) ∗ (y ∗ z)), λ(y)}. This completes the proof. �

Lemma 3.12. Every cubic ideal A = ⟨µ̃A, λ⟩ satisfies the following inequalities:

µ̃A(0 ∗ (0 ∗ x)) ≽ µ̃A(x) and λ(0 ∗ (0 ∗ x)) ≤ λ(x)

for all x ∈ X.
Proof. For any x ∈ X , we have

µ̃A(x) = rmin {µ̃A(0), µ̃A(x)}
= rmin {µ̃A(0 ∗ (0 ∗ x)), µ̃A(x)}
≼ µ̃A(0 ∗ (0 ∗ x))

and λ(x) = max{λ(0), λ(x)} = max{λ(0 ∗ (0 ∗ x)), λ(x)} ≥ λ(0 ∗ (0 ∗ x)). �

Lemma 3.13 ([10]). Let X be a BCI-algebra. Then
(1) 0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z))) = (0 ∗ y) ∗ (0 ∗ x),
(2) 0 ∗ (0 ∗ (x ∗ y)) = (0 ∗ y) ∗ (0 ∗ x)
for all x, y, z ∈ X.

Theorem 3.14. Let A = ⟨µ̃A, λ⟩ be a cubic ideal of X that satisfies:

µ̃A(0 ∗ (0 ∗ x)) ≼ µ̃A(x) and λ(0 ∗ (0 ∗ x)) ≥ λ(x)

for all x ∈ X. Then A = ⟨µ̃A, λ⟩ is a cubic p-ideal of X.
Proof. Let x, y, z ∈ X . Using Lemmas 3.12 and 3.13, we have

µ̃A((x ∗ z) ∗ (y ∗ z)) ≼ µ̃A(0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z))))
= µ̃A((0 ∗ y) ∗ (0 ∗ x))
= µ̃A(0 ∗ (0 ∗ (x ∗ y)))
≼ µ̃A(x ∗ y)

and

λ((x ∗ z) ∗ (y ∗ z)) ≥ λ(0 ∗ (0 ∗ ((x ∗ z) ∗ (y ∗ z))))
= λ((0 ∗ y) ∗ (0 ∗ x))
= λ(0 ∗ (0 ∗ (x ∗ y)))
≥ λ(x ∗ y).

It follows from Theorem 3.11 that A = ⟨µ̃A, λ⟩ is a cubic p-ideal of X . �
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Table 3
∗-operation.

∗ 0 a b c

0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

4. Cubic a-ideals

Definition 4.1 ([4]). A cubic set A = ⟨µ̃A, λ⟩ in X is called a cubic q-ideal of X if it satisfies conditions (a) and (b) in
Definition 3.3 and for all x, y, z ∈ X ,

(a) µ̃A(x ∗ z) ≽ rmin {µ̃A(x ∗ (y ∗ z)), µ̃A(y)}.
(b) λ(x ∗ z) ≤ max{λ(x ∗ (y ∗ z)), λ(y)}.

Definition 4.2. A cubic set A = ⟨µ̃A, λ⟩ in X is called a cubic a-ideal of X if it satisfies conditions (a) and (b) in Definition 3.3
and for all x, y, z ∈ X ,

(a) µ̃A(y ∗ x) ≽ rmin {µ̃A((x ∗ z) ∗ (0 ∗ y)), µ̃A(z)}.
(b) λ(y ∗ x) ≤ max{λ((x ∗ z) ∗ (0 ∗ y)), λ(z)}.

Example 4.3. Consider a BCI-algebra X = {0, a, b, c} inwhich the ∗-operation is given by Table 3.We define µ̃A = [µ−

A , µ+

A ]

and λ by

µ̃A =


0 a b c

[0.4, 0.8] [0.4, 0.8] [0.2, 0.5] [0.2, 0.5]


and

λ =


0 a b c
0.3 0.3 0.6 0.6


.

Then A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X .

Theorem 4.4. Every cubic a-ideal is a closed cubic ideal.

Proof. Let A = ⟨µ̃A, λ⟩ be a cubic a-ideal of X . Putting z = y = 0 in Definition 4.2 and using (a1), Definition 3.3(a) and (b),
we have

µ̃A(0 ∗ x) ≽ rmin {µ̃A((x ∗ 0) ∗ (0 ∗ 0)), µ̃A(0)} = µ̃A(x)
λ(0 ∗ x) ≤ max{λ((x ∗ 0) ∗ (0 ∗ 0)), λ(0)} = λ(x) (4.1)

for all x ∈ X . If we take x = z = 0 in Definition 4.2 and use (a1), Definition 3.3(a) and (b), then

µ̃A(y) ≽ rmin {µ̃A(0 ∗ (0 ∗ y)), µ̃A(0)} = µ̃A(0 ∗ (0 ∗ y))
λ(y) ≤ max{λ(0 ∗ (0 ∗ y)), λ(0)} = λ(0 ∗ (0 ∗ y)) (4.2)

for all y ∈ X . It follows from (4.1) that

µ̃A(x) ≽ µ̃A(0 ∗ x) and λ(x) ≤ λ(0 ∗ x)

for all x ∈ X; so from Definition 4.2, that

µ̃A(x) ≽ µ̃A(0 ∗ x) ≽ rmin {µ̃A((x ∗ z) ∗ (0 ∗ 0)), µ̃A(z)}
= rmin {µ̃A(x ∗ z), µ̃A(z)}

λ(x) ≤ λ(0 ∗ x) ≤ max{λ((x ∗ z) ∗ (0 ∗ 0)), λ(z)}
= max{λ(x ∗ z), λ(z)}

for all x, z ∈ X . Therefore A = ⟨µ̃A, λ⟩ is a closed cubic ideal of X . �

The following example shows that the converse of Theorem 4.4 may not be true.

Example 4.5. Consider a BCI-algebra X = {0, a, b} in which the ∗-operation is given by Table 4. We define µ̃A = [µ−

A , µ+

A ]

and λ by

µ̃A =


0 a b

[0.4, 0.8] [0.2, 0.5] [0.2, 0.5]
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Table 4
∗-operation.

∗ 0 a b

0 0 b a
a a 0 b
b b a 0

and

λ =


0 a b
0.3 0.6 0.6


.

Then A = ⟨µ̃A, λ⟩ is a closed cubic ideal of X . But it is not a cubic a-ideal of X , since

µ̃A(b ∗ a) = µ̃A(a) ≺ rmin {µ̃A((a ∗ 0) ∗ (0 ∗ b)), µ̃A(0)}

and/or λ(a ∗ b) > max{λ((b ∗ 0) ∗ (0 ∗ a)), λ(0)}.

We provide characterizations of a cubic a-ideal.

Lemma 4.6 ([3]). Let A = ⟨µ̃A, λ⟩ be a cubic ideal of X. If the inequality x ∗ y ≤ z holds in X, then

µ̃A(x) ≽ rmin {µ̃A(y), µ̃A(z)} and λ(x) ≤ max{λ(y), λ(z)}.

Theorem 4.7. If A = ⟨µ̃A, λ⟩ is a cubic ideal of X, then the following are equivalent:

(1) A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X.
(2) A = ⟨µ̃A, λ⟩ satisfies the following inequalities:

µ̃A(y ∗ (x ∗ z)) ≽ µ̃A((x ∗ z) ∗ (0 ∗ y))
λ(y ∗ (x ∗ z)) ≤ λ((x ∗ z) ∗ (0 ∗ y)) (4.3)

for all x, y, z ∈ X.
(3) A = ⟨µ̃A, λ⟩ satisfies the following inequalities:

µ̃A(y ∗ x) ≽ µ̃A(x ∗ (0 ∗ y)), λ(y ∗ x) ≤ λ(x ∗ (0 ∗ y)) (4.4)

for all x, y ∈ X.

Proof. Assume that A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X . Then

µ̃A(y ∗ (x ∗ z)) ≽ rmin {µ̃A(((x ∗ z) ∗ 0) ∗ (0 ∗ y)), µ̃A(0)}
= µ̃A(((x ∗ z) ∗ 0) ∗ (0 ∗ y))
= µ̃A((x ∗ z) ∗ (0 ∗ y))

and

λ(y ∗ (x ∗ z)) ≤ max{λ(((x ∗ z) ∗ 0) ∗ (0 ∗ y)), λ(0)}
= λ(((x ∗ z) ∗ 0) ∗ (0 ∗ y))
= λ((x ∗ z) ∗ (0 ∗ y))

for all x, y, z ∈ X , and so (4.3) is valid. (4.4) is induced by taking z = 0 in (4.3) and using (a1). Suppose that A = ⟨µ̃A, λ⟩

satisfies (4.4). Note that

(x ∗ (0 ∗ y)) ∗ ((x ∗ z) ∗ (0 ∗ y)) ≤ x ∗ (x ∗ z) ≤ x

for all x, y, z ∈ X . It follows from (4.4) and Lemma 4.6 that

µ̃A(y ∗ x) ≽ µ̃A(x ∗ (0 ∗ y)) ≽ rmin {µ̃A((x ∗ z) ∗ (0 ∗ y)), µ̃A(x)}

and λ(y ∗ x) ≤ λ(x ∗ (0 ∗ y)) ≤ max{λ((x ∗ z) ∗ (0 ∗ y)), λ(x)} for all x, y, z ∈ X . Therefore, A = ⟨µ̃A, λ⟩ is a cubic a-ideal
of X . �

Let A = ⟨µ̃A, λ⟩ be a cubic set in X . For any r ∈ [0, 1] and [s, t] ∈ D[0, 1], we define U(A ; [s, t], r) as follows:

U(A ; [s, t], r) = {x ∈ X | µ̃A(x) ≽ [s, t], λ(x) ≤ r},

and we can say that it is a cubic level set of A = ⟨µ̃A, λ⟩.
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Lemma 4.8 ([5]). For a cubic set A = ⟨µ̃A, λ⟩ in X, the following are equivalent:

(1) A = ⟨µ̃A, λ⟩ is a cubic ideal of X.
(2) Every nonempty cubic level set of A = ⟨µ̃A, λ⟩ is an ideal of X.

Lemma 4.9 ([6]). A subset I of X is an a-ideal of X if and only ifit is an ideal of X which satisfies the following implication:

(∀x, y ∈ X) (x ∗ (0 ∗ y) ∈ I ⇒ y ∗ x ∈ I).

Theorem 4.10. For a cubic set A = ⟨µ̃A, λ⟩ in X, the following are equivalent:

(1) A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X.
(2) Every nonempty cubic level set of A = ⟨µ̃A, λ⟩ is an a-ideal of X.

Proof. Assume that A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X . Then A = ⟨µ̃A, λ⟩ is a cubic ideal of X by Theorem 4.4. Hence every
nonempty cubic level set of A = ⟨µ̃A, λ⟩ is an ideal of X by Lemma 4.8. Let [s, t] ∈ D[0, 1] and r ∈ [0, 1] be such that
U(A ; [s, t], r) ≠ ∅. Let x, y ∈ X be such that x ∗ (0 ∗ y) ∈ U(A ; [s, t], r). Then µ̃A(x ∗ (0 ∗ y)) ≽ [s, t] and λ(x ∗ (0 ∗ y)) ≤ r .
It follows from (4.4) that

µ̃A(y ∗ x) ≽ µ̃A(x ∗ (0 ∗ y)) ≽ [s, t]

and λ(y ∗ x) ≤ λ(x ∗ (0 ∗ y)) ≤ r so that y ∗ x ∈ U(A ; [s, t], r). Using Lemma 4.9, we conclude that U(A ; [s, t], r) is an
a-ideal of X .

Conversely, suppose that (2) is valid, that is, U(A ; [s, t], r) is nonempty and is an a-ideal of X for all r ∈ [0, 1] and
[s, t] ∈ D[0, 1]. Since any a-ideal is an ideal (see [6]), it follows from Lemma 4.8 that A = ⟨µ̃A, λ⟩ is a cubic ideal of
X . Assume that two inequalities in (4.4) are false. Then there exist a, b ∈ X such that µ̃A(b ∗ a) ≺ µ̃A(a ∗ (0 ∗ b)) and
λ(b ∗ a) > λ(a ∗ (0 ∗ b)). Thus µ̃A(b ∗ a) ≺ [s0, t0] ≼ µ̃A(a ∗ (0 ∗ b)) and λ(b ∗ a) > r0 ≥ λ(a ∗ (0 ∗ b)) for some
[s0, t0] ∈ D[0, 1] and r0 ∈ [0, 1]. It follows that a ∗ (0 ∗ b) ∈ U (A ; [s0, t0], r0) but b ∗ a ∉ U (A ; [s0, t0], r0). This is a
contradiction. Suppose that

µ̃A(y ∗ x) ≽ µ̃A(x ∗ (0 ∗ y))

for all x, y ∈ X , and there exist a, b ∈ X such that λ(b ∗ a) > λ(a ∗ (0 ∗ b)). Then λ(b ∗ a) > r0 ≥ λ(a ∗ (0 ∗ b)) for some
r0 ∈ [0, 1], and so a ∗ (0 ∗ b) ∈ U(A ; µ̃A(a ∗ (0 ∗ b)), r0) but b ∗ a ∉ U(A ; µ̃A(a ∗ (0 ∗ b)), r0). This is also a contradiction.
For the case that λ(y ∗ x) ≤ λ(x ∗ (0 ∗ y)) for all x, y ∈ X and µ̃A(b ∗ a) ≺ µ̃A(a ∗ (0 ∗ b)) for some a, b ∈ X , we can induce
a contradiction. Therefore, (4.4) is valid, which implies from Theorem 4.7 that A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X . �

Theorem 4.10 combines with (a) and (b) of Definition 3.3 to induce the following corollary.

Corollary 4.11. If A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X, then the set

I := {x ∈ X | µ̃A(x) = µ̃A(0), λ(x) = λ(0)}

is an a-ideal of X.

Theorem 4.12. Every cubic a-ideal is a cubic p-ideal.

Proof. LetA = ⟨µ̃A, λ⟩ be a cubic a-ideal of X . ThenA = ⟨µ̃A, λ⟩ is a cubic ideal of X (see Theorem4.4). If we take x = z = 0
in (4.3), then µ̃A(0 ∗ (0 ∗ y)) ≼ µ̃A(y) and λ(0 ∗ (0 ∗ y)) ≥ λ(y) for all y ∈ X . Hence, by Theorem 3.14, we conclude that
A = ⟨µ̃A, λ⟩ is a cubic p-ideal of X . �

Note that the cubic set A = ⟨µ̃A, λ⟩ in Example 4.5 is a cubic p-ideal which is not a cubic a-ideal. Hence the converse of
Theorem 4.12 is not true in general.

Lemma 4.13 ([4]). For a cubic ideal A = ⟨µ̃A, λ⟩ of X, the following are equivalent:

(1) A = ⟨µ̃A, λ⟩ is a cubic q-ideal of X.
(2) µ̃A(x ∗ y) ≽ µ̃A(x ∗ (0 ∗ y)) and λ(x ∗ y) ≤ λ(x ∗ (0 ∗ y)) for all x, y ∈ X.

Theorem 4.14. Every cubic a-ideal is a cubic q-ideal.

Proof. Let A = ⟨µ̃A, λ⟩ be a cubic a-ideal of X . Then A = ⟨µ̃A, λ⟩ is a cubic ideal of X by Theorem 4.4. Note that

(0 ∗ (0 ∗ (y ∗ (0 ∗ x)))) ∗ (x ∗ (0 ∗ y)) = ((0 ∗ (0 ∗ y)) ∗ (0 ∗ (0 ∗ (0 ∗ x)))) ∗ (x ∗ (0 ∗ y))
= ((0 ∗ (0 ∗ y)) ∗ (0 ∗ x)) ∗ (x ∗ (0 ∗ y))
≤ (x ∗ (0 ∗ y)) ∗ (x ∗ (0 ∗ y)) = 0
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Table 5
∗-operation.

∗ 0 a b

0 0 0 b
a a 0 b
b b b 0

for all x, y ∈ X . Since A = ⟨µ̃A, λ⟩ is a cubic p-ideal of X (see Theorem 4.12), it follows from (4.4), Proposition 3.10 and
Lemma 4.6 that

µ̃A(x ∗ y) ≽ µ̃A(y ∗ (0 ∗ x)) ≽ µ̃A(0 ∗ (0 ∗ (y ∗ (0 ∗ x))))
≽ rmin {µ̃A(x ∗ (0 ∗ y)), µ̃A(0)}
= µ̃A(x ∗ (0 ∗ y))

and

λ(x ∗ y) ≥ λ(y ∗ (0 ∗ x)) ≥ λ(0 ∗ (0 ∗ (y ∗ (0 ∗ x))))
≥ max{λ(x ∗ (0 ∗ y)), λ(0)}
= λ(x ∗ (0 ∗ y))

for all x, y ∈ X . Using Lemma 4.13, we conclude that A = ⟨µ̃A, λ⟩ be a cubic q-ideal of X . �

The following example shows that the converse of Theorem 4.14 may not be true.

Example 4.15. Consider a BCI-algebra X = {0, a, b} with the ∗-operation which is given in Table 5. We define µ̃A =

[µ−

A , µ+

A ] and λ by

µ̃A =


0 a b

[0.5, 0.8] [0.3, 0.6] [0.3, 0.6]


and

λ =


0 a b
0.3 0.6 0.6


.

ThenA = ⟨µ̃A, λ⟩ is a cubic q-ideal of X . But it is not a cubic a-ideal of X since µ̃A(a∗0) ⋡ rmin {µ̃A((0∗0)∗(0∗a)), µ̃A(0)}.

Lemma 4.16 ([3]). Let A = ⟨µ̃A, λ⟩ be a cubic ideal of X. If the inequality x ≤ y holds in X, then µ̃A(x) ≽ µ̃A(y) andλ(x) ≤ λ(y).

Theorem 4.17. For a cubic set A = ⟨µ̃A, λ⟩ in X, the following are equivalent.

(1) A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X.
(2) A = ⟨µ̃A, λ⟩ is both a cubic p-ideal and a cubic q-ideal of X.

Proof. By means of Theorems 4.12 and 4.14, every cubic a-ideal is both a cubic p-ideal and a cubic q-ideal.
Conversely, letA = ⟨µ̃A, λ⟩beboth a cubic p-ideal and a cubic q-ideal. Note thatA = ⟨µ̃A, λ⟩ is a cubic ideal ofX (see [4]).

Taking z = y at (a) and (b) in Definition 4.1, we have µ̃A(x ∗ y) ≽ rmin {µ̃A(x), µ̃A(y)} and λ(x ∗ y) ≤ max{λ(x), λ(y)}.
Hence A = ⟨µ̃A, λ⟩ is a cubic subalgebra of X , and so A = ⟨µ̃A, λ⟩ is a closed cubic ideal of X . Using Lemma 4.13, we get

µ̃A(x ∗ y) ≽ µ̃A(x ∗ (0 ∗ y))
λ(x ∗ y) ≤ λ(x ∗ (0 ∗ y)) (4.5)

for all x, y ∈ X . Since 0 ∗ (y ∗ x) ≤ x ∗ y for all x, y ∈ X , it follows from Lemma 4.16, (4.5) that

µ̃A(0 ∗ (y ∗ x)) ≽ µ̃A(x ∗ y) ≽ µ̃A(x ∗ (0 ∗ y))
λ(0 ∗ (y ∗ x)) ≤ λ(x ∗ y) ≤ λ(x ∗ (0 ∗ y)) (4.6)

for all x, y ∈ X . Using Proposition 3.7, Definition 3.4 and (4.6), we have

µ̃A(y ∗ x) ≽ µ̃A(0 ∗ (0 ∗ (y ∗ x))) ≽ µ̃A(0 ∗ (y ∗ x)) ≽ µ̃A(x ∗ (0 ∗ y))

and λ(y ∗ x) ≤ λ(0 ∗ (0 ∗ (y ∗ x))) ≤ λ(0 ∗ (y ∗ x)) ≤ λ(x ∗ (0 ∗ y)) for all x, y ∈ X . It follows from Theorem 4.7 that
A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X . �

Theorem 4.18 (Cubic extension property for a cubic a-ideal). Let A = ⟨µ̃A, λ⟩ and B = ⟨µ̃B, κ⟩ be cubic ideals of X such that
A . B and µ̃A(0) = µ̃B(0) and λ(0) = κ(0). If A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X, then so is B = ⟨µ̃B, κ⟩.
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Proof. Suppose that A = ⟨µ̃A, λ⟩ is a cubic a-ideal of X . Then A = ⟨µ̃A, λ⟩ is both a cubic p-ideal and a cubic q-ideal of X
by Theorems 4.12 and 4.14. Using Lemma 4.13, (a3) and (III), we have

µ̃B((x ∗ y) ∗ (x ∗ (0 ∗ y))) = µ̃B((x ∗ (x ∗ (0 ∗ y))) ∗ y)
≽ µ̃A((x ∗ (x ∗ (0 ∗ y))) ∗ y) ≽ µ̃A((x ∗ (x ∗ (0 ∗ y))) ∗ (0 ∗ y))
= µ̃A((x ∗ (0 ∗ y)) ∗ (x ∗ (0 ∗ y))) = µ̃A(0) = µ̃B(0)
≽ µ̃B(x ∗ (0 ∗ y))

and

κ((x ∗ y) ∗ (x ∗ (0 ∗ y))) = κ((x ∗ (x ∗ (0 ∗ y))) ∗ y)
≤ λ((x ∗ (x ∗ (0 ∗ y))) ∗ y) ≤ λ((x ∗ (x ∗ (0 ∗ y))) ∗ (0 ∗ y))
= λ((x ∗ (0 ∗ y)) ∗ (x ∗ (0 ∗ y))) = λ(0) = κ(0)
≤ κ(x ∗ (0 ∗ y)).

Since B = ⟨µ̃B, κ⟩ is a cubic ideal of X , we get

µ̃B(x ∗ y) ≽ rmin {µ̃B((x ∗ y) ∗ (x ∗ (0 ∗ y))), µ̃B(x ∗ (0 ∗ y))}
= µ̃B(x ∗ (0 ∗ y))

and

κ(x ∗ y) ≤ max{κ((x ∗ y) ∗ (x ∗ (0 ∗ y))), κ(x ∗ (0 ∗ y))} = κ(x ∗ (0 ∗ y)).

Therefore B = ⟨µ̃B, κ⟩ is a cubic q-ideal of X by Lemma 4.13. Since A = ⟨µ̃A, λ⟩ is a cubic p-ideal of X , it follows from
Proposition 3.7 that

µ̃B(x ∗ (0 ∗ (0 ∗ x))) ≽ µ̃A(x ∗ (0 ∗ (0 ∗ x))) ≽ µ̃A(0 ∗ (0 ∗ (x ∗ (0 ∗ (0 ∗ x)))))
= µ̃A(0) = µ̃B(0) ≽ µ̃B(0 ∗ (0 ∗ x))

and

κ(x ∗ (0 ∗ (0 ∗ x))) ≤ λ(x ∗ (0 ∗ (0 ∗ x)))
≤ λ(0 ∗ (0 ∗ (x ∗ (0 ∗ (0 ∗ x)))))
= λ(0) = κ(0) ≤ κ(0 ∗ (0 ∗ x)).

Hence

µ̃B(x) ≽ rmin {µ̃B(x ∗ (0 ∗ (0 ∗ x))), µ̃B(0 ∗ (0 ∗ x))} = µ̃B(0 ∗ (0 ∗ x))

and κ(x) ≤ max{κ(x ∗ (0 ∗ (0 ∗ x))), κ(0 ∗ (0 ∗ x))} = κ(0 ∗ (0 ∗ x)). Using Theorem 3.14, we conclude that B = ⟨µ̃B, κ⟩ is
a cubic p-ideal of X . Therefore B = ⟨µ̃B, κ⟩ is a cubic a-ideal of X by Theorem 4.17. �
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