Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Cubic structures applied to ideals of BCI-algebras

Young Bae Jun^a, Kyoung Ja Lee^{b,*}, Min Su Kang^c

^a Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Republic of Korea

^b Department of Mathematics Education, Hannam University, Daejeon 306-791, Republic of Korea

^c Department of Mathematics, Hanyang University, Seoul 133-791, Republic of Korea

ARTICLE INFO

Article history: Received 25 February 2011 Accepted 17 August 2011

Keywords: (Cubic) subalgebra (Cubic) ideal (Cubic) *q*-ideal (Cubic) *a*-ideal (Cubic) *p*-ideal

1. Introduction

The study of BCK/BCI-algebras was initiated by Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. Since then, a large volume of literature has been produced on the theory of BCK/BCI-algebras, in particular, emphasis has been given to the ideal theory of BCK/BCI-algebras. Fuzzy sets, which were introduced by Zadeh [1], deal with possibilistic uncertainty, connected with imprecision of states, perceptions and preferences. Based on the (intervalvalued) fuzzy sets, Jun et al. [2] introduced the notion of (internal, external) cubic sets, and investigated several properties. Jun et al. applied the notion of cubic sets to BCK/BCI-algebras. They introduced the notions of cubic subalgebras/ideals, cubic o-subalgebras and closed cubic ideals in BCK/BCI-algebras, and then they investigated several properties (see [3–5]).

In this paper, we introduce the notion of cubic *p*-ideals and cubic *a*-ideals in BCI-algebras. We discuss the relationship between a cubic ideal, a cubic *q*-ideal, a cubic *p*-ideal and a cubic *a*-ideal. We consider characterizations of a cubic *a*-ideal. We provide conditions for a cubic ideal to be a cubic *p*-ideal. We establish a cubic extension property of a cubic *a*-ideal.

2. Preliminaries

In this section, we include some elementary aspects that are necessary for this paper. An algebra (X; *, 0) of type (2, 0) is called a BCI-*algebra* if it satisfies the following axioms:

(1) ((x * y) * (x * z)) * (z * y) = 0,(11) (x * (x * y)) * y = 0,(111) x * x = 0,(112) $x * y = 0, y * x = 0 \Rightarrow x = y$

where x, y and z are elements of X. If a BCI-algebra, X satisfies the following identity:

(V) 0 * x = 0 for all $x \in X$,

ABSTRACT

The notions of cubic *a*-ideals and cubic *p*-ideals are introduced, and several related properties are investigated. Characterizations of a cubic *a*-ideal are established. Relations between cubic *p*-ideals, cubic *a*-ideals and cubic *q*-ideals are discussed. The cubic extension property of a cubic *a*-ideal is discussed.

© 2011 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +82 42 629 8554; fax: +82 42 629 8549. *E-mail addresses*: skywine@gmail.com (Y.B. Jun), lsj1109@hotmail.com, kjlee@hnu.kr (K.J. Lee), sinchangmyun@hanmail.net (M.S. Kang).

^{0898-1221/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2011.08.042

then X is called a BCK-algebra. Any BCI-algebra X satisfies the following conditions:

 $\begin{array}{l} (a1) \ x * 0 = x, \\ (a2) \ x * y = 0 \ \Rightarrow \ (x * z) * (y * z) = 0, \ (z * y) * (z * x) = 0, \\ (a3) \ (x * y) * z = (x * z) * y, \\ (a4) \ ((x * z) * (y * z)) * (x * y) = 0, \\ (a5) \ x * (x * (x * y)) = x * y, \\ (a6) \ 0 * (x * y) = (0 * x) * (0 * y), \end{array}$

where x, y and z are elements of X. We can define a partial ordering \leq by $x \leq y$ if and only if x * y = 0. A BCK-algebra X is said to be with *condition* (S) if for all x, $y \in X$, the set $\{z \in X \mid z * x \leq y\}$ has the greatest element, written $x \circ y$. A BCI-algebra X is said to be *p*-semisimple if its BCK-part is equal to $\{0\}$. In a *p*-semisimple BCI-algebra, the following conditions are valid:

(a7) 0 * (x * y) = y * x, (a8) x * (x * y) = y,

where x and y are elements of X. A BCI-algebra X is called a *weakly* BCK-*algebra* if $0 * x \le x$ for all $x \in X$. A nonempty subset S of a BCK/BCI-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$. A subset I of a BCK/BCI-algebra X is called an *ideal* of X if it satisfies the following conditions:

(b1) $0 \in I$, (b2) $(\forall x, y \in X) (x * y \in I, y \in I \Rightarrow x \in I)$.

A subset I of a BCI-algebra X is called a q-ideal of X (see [6]) if it satisfies (b1) and

(b3)
$$(\forall x, y, z \in X) (x * (y * z) \in I, y \in I \implies x * z \in I).$$

A subset I of a BCI-algebra X is called an *a-ideal* of X (see [6]) if it satisfies (b1) and

(b4) $(\forall x, y, z \in X) ((x * z) * (0 * y) \in I, z \in I \implies y * x \in I).$

We refer the reader to the books [7,8] and the paper [9] for further information regarding BCK/BCI-algebras.

Let *I* be a closed unit interval, i.e., I = [0, 1]. By an *interval number*, we mean a closed subinterval $\overline{a} = [a^-, a^+]$ of *I*, where $0 \le a^- \le a^+ \le 1$. Denote by D[0, 1] the set of all interval numbers. Let us define what is known as *refined minimum* (briefly, rmin) of two elements in D[0, 1]. We also define the symbols " \succeq ", " \leq ", " \equiv " in case of two elements in D[0, 1]. Consider two interval numbers $\overline{a}_1 := [a_1^-, a_1^+]$ and $\overline{a}_2 := [a_2^-, a_2^+]$. Then

rmin $\{\bar{a}_1, \bar{a}_2\} = [\min\{a_1^-, a_2^-\}, \min\{a_1^+, a_2^+\}], \quad \bar{a}_1 \succeq \bar{a}_2 \text{ if and only if } a_1^- \ge a_2^- \text{ and } a_1^+ \ge a_2^+,$

and similarly, we may have $\overline{a}_1 \leq \overline{a}_2$ and $\overline{a}_1 = \overline{a}_2$. To say $\overline{a}_1 \succ \overline{a}_2$ (resp. $\overline{a}_1 \prec \overline{a}_2$) we mean $\overline{a}_1 \succeq \overline{a}_2$ and $\overline{a}_1 \neq \overline{a}_2$ (resp. $\overline{a}_1 \leq \overline{a}_2$) and $\overline{a}_1 \neq \overline{a}_2$. Let $\overline{a}_i \in D[0, 1]$, where $i \in \Lambda$. We define

$$\min_{i\in\Lambda} \overline{a}_i = \begin{bmatrix} \inf_{i\in\Lambda} a_i^-, \inf_{i\in\Lambda} a_i^+ \end{bmatrix} \text{ and } \operatorname{rsup}_{i\in\Lambda} \overline{a}_i = \begin{bmatrix} \sup_{i\in\Lambda} a_i^-, \sup_{i\in\Lambda} a_i^+ \end{bmatrix}.$$

An *interval-valued fuzzy set* (briefly, *IVF set*) $\tilde{\mu}_A$ defined on a nonempty set X is given by

$$\tilde{\mu}_A := \{ (x, [\mu_A^-(x), \mu_A^+(x)]) \mid x \in X \},\$$

which is briefly denoted by $\tilde{\mu}_A = [\mu_A^-, \mu_A^+]$ where μ_A^- and μ_A^+ are two fuzzy sets in *X* such that $\mu_A^-(x) \le \mu_A^+(x)$ for all $x \in X$. For any IVF set $\tilde{\mu}_A$ on *X* and $x \in X$, $\tilde{\mu}_A(x) = [\mu_A^-(x), \mu_A^+(x)]$ is called the degree of membership of an element *x* to $\tilde{\mu}_A$, in which $\mu_A^-(x)$ and $\mu_A^+(x)$ are referred to as the lower and upper degrees, respectively, of membership of *x* to $\tilde{\mu}_A$.

3. Cubic p-ideals

Definition 3.1 ([3]). Let X be a nonempty set. A cubic set *A* in X is a structure

$$\mathscr{A} = \{ \langle x, \tilde{\mu}_A(x), \lambda(x) \rangle : x \in X \}$$

which is briefly denoted by $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ where $\tilde{\mu}_A = [\mu_A^-, \mu_A^+]$ is an IVF set in X and λ is a fuzzy set in X.

Definition 3.2 ([3]). A cubic set $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ in X is called a *cubic subalgebra* of a BCK/BCI-algebra X if it satisfies: for all $x, y \in X$,

(a) $\tilde{\mu}_A(x * y) \succeq \min{\{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\}}.$ (b) $\lambda(x * y) \le \max{\{\lambda(x), \lambda(y)\}}.$

Definition 3.3 ([3]). A cubic set $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ in a BCK/BCI-algebra X is called a *cubic ideal* of X if it satisfies: for all $x, y \in X$,

(a) $\tilde{\mu}_A(0) \succeq \tilde{\mu}_A(x)$. (b) $\lambda(0) \le \lambda(x)$.

Table 1 *-operation.					
*	0	а	b	с	
0	0	а	b	с	
а	а	0	С	b	
b	b	С	0	а	
С	С	b	а	0	

(c) $\tilde{\mu}_A(x) \succeq \min \{\tilde{\mu}_A(x * y), \tilde{\mu}_A(y)\}.$ (d) $\lambda(x) \le \max\{\lambda(x * y), \lambda(y)\}.$

In what follows, let X denote a BCI-algebra unless otherwise specified.

Definition 3.4 ([5]). A cubic ideal $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ of *X* is said to be *closed* if $\tilde{\mu}_A(0 * x) \succeq \tilde{\mu}_A(x)$ and $\lambda(0 * x) \le \lambda(x)$ for all $x \in X$. **Definition 3.5.** A cubic set $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ in *X* is called a *cubic p-ideal* of *X* if it satisfies conditions (a) and (b) in Definition 3.3 and for all $x, y, z \in X$,

(a) $\tilde{\mu}_{A}(x) \succeq \min \{ \tilde{\mu}_{A}((x * z) * (y * z)), \tilde{\mu}_{A}(y) \}.$ (b) $\lambda(x) \le \max \{ \lambda((x * z) * (y * z)), \lambda(y) \}.$

Example 3.6. Consider a BCI-algebra $X = \{0, a, b, c\}$ in which the *-operation is given by Table 1. We define $\tilde{\mu}_A = [\mu_A^-, \mu_A^+]$ and λ by

$$\tilde{\mu}_A = \begin{pmatrix} 0 & a & b & c \\ [0.5, 0.9] & [0.4, 0.8] & [0.3, 0.5] & [0.3, 0.5] \end{pmatrix}$$

and

$$\lambda = \begin{pmatrix} 0 & a & b & c \\ 0.3 & 0.4 & 0.7 & 0.7 \end{pmatrix}.$$

Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *p*-ideal of *X*.

If we put z = x and y = 0 in Definition 3.5, then we have the following proposition.

Proposition 3.7. Every cubic *p*-ideal $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ of X satisfies the following inequalities:

$$(\forall x \in X) \ (\tilde{\mu}_A(x) \succeq \tilde{\mu}_A(0 * (0 * x)), \ \lambda(x) \le \lambda(0 * (0 * x))).$$
(3.1)

If we put z = 0 in Definition 3.5 and use (a1), then we have the following theorem.

Theorem 3.8. Every cubic p-ideal is a cubic ideal.

The converse of Theorem 3.8 may not be true as seen in the following example.

Example 3.9. Let $X = \{0, a, 1, 2, 3\}$ be a set with the Cayley table given by Table 2. We define $\tilde{\mu}_A = [\mu_A^-, \mu_A^+]$ and λ by

$$\tilde{\mu}_A = \begin{pmatrix} 0 & a & 1 & 2 & 3 \\ [0.4, 0.8] & [0.3, 0.6] & [0.1, 0.4] & [0.1, 0.4] & [0.1, 0.4] \end{pmatrix}$$

and

$$\lambda = \begin{pmatrix} 0 & a & 1 & 2 & 3 \\ 0.2 & 0.5 & 0.6 & 0.6 & 0.6 \end{pmatrix}.$$

Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic ideal of *X*. But it is not a cubic *p*-ideal of *X*, since

 $\tilde{\mu}_A(a) = [0.3, 0.6] \not\geq [0.4, 0.8] = \min \{ \tilde{\mu}_A((a * 1) * (0 * 1)), \tilde{\mu}_A(0) \}$ and/or $\lambda(a) = 0.5 \not\leq 0.2 = \max \{ \lambda((a * 1) * (0 * 1)), \lambda(0) \}.$

Proposition 3.10. If $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *p*-ideal of *X*, then

$$\tilde{\mu}_A(x*y) \leq \tilde{\mu}_A((x*z)*(y*z))$$
 and $\lambda(x*y) \geq \lambda((x*z)*(y*z))$

for all $x, y, z \in X$.

Proof. Let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be a cubic *p*-ideal of *X*. Note that $(x * z) * (y * z) \le x * y$, i.e., ((x * z) * (y * z)) * (x * y) = 0, for all $x, y, z \in X$. Since $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic ideal of *X*, by Theorem 3.8, it follows that

$$\tilde{\mu}_A((x*z)*(y*z)) \succeq \min\{\tilde{\mu}_A(((x*z)*(y*z))*(x*y)), \tilde{\mu}_A(x*y)\}$$
$$= \min\{\tilde{\mu}_A(0), \tilde{\mu}_A(x*y)\} = \tilde{\mu}_A(x*y)$$

*-operation.					
*	0	а	1	2	3
0	0	0	3	2	1
а	а	0	3	2	1
1	1	1	0	3	2
2	2	2	1	0	3
3	3	3	2	1	0

and

$$\lambda((x*z)*(y*z)) \le \max\{\lambda(((x*z)*(y*z))*(x*y)), \lambda(x*y)\}$$

= max{ $\lambda(0), \lambda(x*y)$ } = $\lambda(x*y)$

for all $x, y, z \in X$. This completes the proof. \Box

We provide conditions for a cubic ideal to be a cubic *p*-ideal.

Theorem 3.11. Let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be a cubic ideal of X that satisfies:

 $\tilde{\mu}_A(x*y) \succeq \tilde{\mu}_A((x*z)*(y*z))$ and $\lambda(x*y) \le \lambda((x*z)*(y*z))$

for all $x, y, z \in X$. Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *p*-ideal of *X*.

Proof. For any $x, y, z \in X$, we have

$$\tilde{\mu}_A(x) \succeq \operatorname{rmin} \{ \tilde{\mu}_A(x \ast y), \, \tilde{\mu}_A(y) \} \succeq \operatorname{rmin} \{ \tilde{\mu}_A((x \ast z) \ast (y \ast z)), \, \tilde{\mu}_A(y) \}$$

and $\lambda(x) \le \max\{\lambda(x * y), \lambda(y)\} \le \max\{\lambda((x * z) * (y * z)), \lambda(y)\}$. This completes the proof. \Box

Lemma 3.12. Every cubic ideal $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ satisfies the following inequalities:

 $\tilde{\mu}_A(0*(0*x)) \succeq \tilde{\mu}_A(x) \text{ and } \lambda(0*(0*x)) \le \lambda(x)$

for all $x \in X$.

Proof. For any $x \in X$, we have

$$\begin{split} \tilde{\mu}_{A}(x) &= \operatorname{rmin} \{ \tilde{\mu}_{A}(0), \, \tilde{\mu}_{A}(x) \} \\ &= \operatorname{rmin} \{ \tilde{\mu}_{A}(0 * (0 * x)), \, \tilde{\mu}_{A}(x) \} \\ &\leq \tilde{\mu}_{A}(0 * (0 * x)) \end{split}$$

and $\lambda(x) = \max{\lambda(0), \lambda(x)} = \max{\lambda(0 * (0 * x)), \lambda(x)} \ge \lambda(0 * (0 * x)).$

Lemma 3.13 ([10]). Let X be a BCI-algebra. Then (1) 0 * (0 * ((x * z) * (y * z))) = (0 * y) * (0 * x),(2) 0 * (0 * (x * y)) = (0 * y) * (0 * x)

for all $x, y, z \in X$.

Theorem 3.14. Let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be a cubic ideal of X that satisfies:

$$\tilde{\mu}_A(0*(0*x)) \leq \tilde{\mu}_A(x) \text{ and } \lambda(0*(0*x)) \geq \lambda(x)$$

for all $x \in X$. Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic p-ideal of X.

Proof. Let $x, y, z \in X$. Using Lemmas 3.12 and 3.13, we have

$$\begin{split} \tilde{\mu}_{A}((x * z) * (y * z)) &\leq \tilde{\mu}_{A}(0 * (0 * ((x * z) * (y * z)))) \\ &= \tilde{\mu}_{A}((0 * y) * (0 * x)) \\ &= \tilde{\mu}_{A}(0 * (0 * (x * y))) \\ &\leq \tilde{\mu}_{A}(x * y) \end{split}$$

and

$$\begin{aligned} \lambda((x * z) * (y * z)) &\geq \lambda(0 * (0 * ((x * z) * (y * z)))) \\ &= \lambda((0 * y) * (0 * x)) \\ &= \lambda(0 * (0 * (x * y))) \\ &\geq \lambda(x * y). \end{aligned}$$

It follows from Theorem 3.11 that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *p*-ideal of *X*. \Box

Table 3*-operation.					
*	0	а	b	с	
0	0	а	b	с	
а	а	0	с	b	
b	b	с	0	а	
С	с	b	а	0	

4. Cubic *a*-ideals

Definition 4.1 ([4]). A cubic set $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ in X is called a *cubic q-ideal* of X if it satisfies conditions (a) and (b) in Definition 3.3 and for all x, y, $z \in X$,

(a) $\tilde{\mu}_A(x * z) \succeq \min \{ \tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y) \}.$ (b) $\lambda(x * z) \le \max \{ \lambda(x * (y * z)), \lambda(y) \}.$

Definition 4.2. A cubic set $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ in *X* is called a *cubic a-ideal* of *X* if it satisfies conditions (a) and (b) in Definition 3.3 and for all $x, y, z \in X$,

(a) $\tilde{\mu}_{A}(y * x) \succeq \min \{\tilde{\mu}_{A}((x * z) * (0 * y)), \tilde{\mu}_{A}(z)\}.$ (b) $\lambda(y * x) \le \max\{\lambda((x * z) * (0 * y)), \lambda(z)\}.$

Example 4.3. Consider a BCI-algebra $X = \{0, a, b, c\}$ in which the *-operation is given by Table 3. We define $\tilde{\mu}_A = [\mu_A^-, \mu_A^+]$ and λ by

$$\tilde{\mu}_A = \begin{pmatrix} 0 & a & b & c \\ [0.4, 0.8] & [0.4, 0.8] & [0.2, 0.5] & [0.2, 0.5] \end{pmatrix}$$

and

$$\lambda = \begin{pmatrix} 0 & a & b & c \\ 0.3 & 0.3 & 0.6 & 0.6 \end{pmatrix}.$$

Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *a*-ideal of *X*.

Theorem 4.4. Every cubic a-ideal is a closed cubic ideal.

Proof. Let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be a cubic *a*-ideal of *X*. Putting z = y = 0 in Definition 4.2 and using (a1), Definition 3.3(a) and (b), we have

$$\widetilde{\mu}_{A}(0*x) \succeq \min \{ \widetilde{\mu}_{A}((x*0)*(0*0)), \widetilde{\mu}_{A}(0) \} = \widetilde{\mu}_{A}(x)
\lambda(0*x) \le \max\{ \lambda((x*0)*(0*0)), \lambda(0) \} = \lambda(x)$$
(4.1)

for all $x \in X$. If we take x = z = 0 in Definition 4.2 and use (a1), Definition 3.3(a) and (b), then

$$\widetilde{\mu}_{A}(y) \succeq \min\{\widetilde{\mu}_{A}(0 * (0 * y)), \widetilde{\mu}_{A}(0)\} = \widetilde{\mu}_{A}(0 * (0 * y))
\lambda(y) \le \max\{\lambda(0 * (0 * y)), \lambda(0)\} = \lambda(0 * (0 * y))$$
(4.2)

for all $y \in X$. It follows from (4.1) that

 $\tilde{\mu}_A(x) \succeq \tilde{\mu}_A(0 * x) \text{ and } \lambda(x) \le \lambda(0 * x)$

for all $x \in X$; so from Definition 4.2, that

$$\begin{split} \tilde{\mu}_A(x) &\succeq \tilde{\mu}_A(0 * x) \succeq \min\left\{\tilde{\mu}_A((x * z) * (0 * 0)), \tilde{\mu}_A(z)\right\} \\ &= \min\left\{\tilde{\mu}_A(x * z), \tilde{\mu}_A(z)\right\} \\ \lambda(x) &\le \lambda(0 * x) \le \max\{\lambda((x * z) * (0 * 0)), \lambda(z)\} \\ &= \max\{\lambda(x * z), \lambda(z)\} \end{split}$$

for all $x, z \in X$. Therefore $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a closed cubic ideal of X. \Box

The following example shows that the converse of Theorem 4.4 may not be true.

Example 4.5. Consider a BCI-algebra $X = \{0, a, b\}$ in which the *-operation is given by Table 4. We define $\tilde{\mu}_A = [\mu_A^-, \mu_A^+]$ and λ by

$$\tilde{\mu}_A = \begin{pmatrix} 0 & a & b \\ [0.4, 0.8] & [0.2, 0.5] & [0.2, 0.5] \end{pmatrix}$$

Table 4 *-operation.				
*	0	а	b	
0	0	b	а	
а	а	0	b	
b	b	а	0	

and

$$\lambda = \begin{pmatrix} 0 & a & b \\ 0.3 & 0.6 & 0.6 \end{pmatrix}.$$

Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a closed cubic ideal of *X*. But it is not a cubic *a*-ideal of *X*, since

$$\tilde{\mu}_A(b * a) = \tilde{\mu}_A(a) \prec \min{\{\tilde{\mu}_A((a * 0) * (0 * b)), \tilde{\mu}_A(0)\}}$$

and/or $\lambda(a * b) > \max{\lambda((b * 0) * (0 * a)), \lambda(0)}$.

We provide characterizations of a cubic *a*-ideal.

Lemma 4.6 ([3]). Let
$$\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$$
 be a cubic ideal of *X*. If the inequality $x * y \leq z$ holds in *X*, then $\tilde{\mu}_A(x) \succeq \min \{ \tilde{\mu}_A(y), \tilde{\mu}_A(z) \}$ and $\lambda(x) \leq \max\{\lambda(y), \lambda(z)\}.$

Theorem 4.7. If $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic ideal of *X*, then the following are equivalent:

(1) $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *a*-ideal of *X*.

(2) $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ satisfies the following inequalities:

$$\widetilde{\mu}_{A}(y * (x * z)) \succeq \widetilde{\mu}_{A}((x * z) * (0 * y))
\lambda(y * (x * z)) \le \lambda((x * z) * (0 * y))$$
(4.3)

for all $x, y, z \in X$.

(3) $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ satisfies the following inequalities:

$$\tilde{\mu}_A(y*x) \succeq \tilde{\mu}_A(x*(0*y)), \qquad \lambda(y*x) \le \lambda(x*(0*y))$$
(4.4)

for all $x, y \in X$.

Proof. Assume that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *a*-ideal of *X*. Then

$$\tilde{\mu}_{A}(y * (x * z)) \succeq \min \{\tilde{\mu}_{A}(((x * z) * 0) * (0 * y)), \tilde{\mu}_{A}(0)\} \\= \tilde{\mu}_{A}(((x * z) * 0) * (0 * y)) \\= \tilde{\mu}_{A}((x * z) * (0 * y))$$

and

$$\lambda(y * (x * z)) \le \max\{\lambda(((x * z) * 0) * (0 * y)), \lambda(0)\} \\= \lambda(((x * z) * 0) * (0 * y)) \\= \lambda((x * z) * (0 * y))$$

for all $x, y, z \in X$, and so (4.3) is valid. (4.4) is induced by taking z = 0 in (4.3) and using (a1). Suppose that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ satisfies (4.4). Note that

 $(x * (0 * y)) * ((x * z) * (0 * y)) \le x * (x * z) \le x$

for all $x, y, z \in X$. It follows from (4.4) and Lemma 4.6 that

 $\tilde{\mu}_A(y * x) \succeq \tilde{\mu}_A(x * (0 * y)) \succeq \min{\{\tilde{\mu}_A((x * z) * (0 * y)), \tilde{\mu}_A(x)\}}$

and $\lambda(y * x) \leq \lambda(x * (0 * y)) \leq \max\{\lambda((x * z) * (0 * y)), \lambda(x)\}$ for all $x, y, z \in X$. Therefore, $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *a*-ideal of *X*. \Box

Let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be a cubic set in *X*. For any $r \in [0, 1]$ and $[s, t] \in D[0, 1]$, we define $U(\mathscr{A}; [s, t], r)$ as follows:

$$U(\mathscr{A}; [s, t], r) = \{x \in X \mid \tilde{\mu}_A(x) \succeq [s, t], \ \lambda(x) \le r\},\$$

and we can say that it is a *cubic level set* of $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$.

Lemma 4.8 ([5]). For a cubic set $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ in *X*, the following are equivalent:

(1) $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic ideal of *X*.

(2) Every nonempty cubic level set of $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is an ideal of X.

Lemma 4.9 ([6]). A subset I of X is an a-ideal of X if and only if it is an ideal of X which satisfies the following implication:

 $(\forall x,y\in X)\;(x*(0*y)\in I\;\Rightarrow\;y*x\in I).$

Theorem 4.10. For a cubic set $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ in *X*, the following are equivalent:

\$\alpha\$ = \$\langle \tilde{\mu}_A, \lambda \rangle\$ is a cubic a-ideal of X.
 Every nonempty cubic level set of \$\alpha\$ = \$\langle \tilde{\mu}_A, \lambda \rangle\$ is an a-ideal of X.

Proof. Assume that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *a*-ideal of *X*. Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic ideal of *X* by Theorem 4.4. Hence every nonempty cubic level set of $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is an ideal of *X* by Lemma 4.8. Let $[s, t] \in D[0, 1]$ and $r \in [0, 1]$ be such that $U(\mathscr{A}; [s, t], r) \neq \emptyset$. Let $x, y \in X$ be such that $x * (0 * y) \in U(\mathscr{A}; [s, t], r)$. Then $\tilde{\mu}_A(x * (0 * y)) \succeq [s, t]$ and $\lambda(x * (0 * y)) \leq r$. It follows from (4.4) that

$$\tilde{\mu}_A(y * x) \succeq \tilde{\mu}_A(x * (0 * y)) \succeq [s, t]$$

and $\lambda(y * x) \leq \lambda(x * (0 * y)) \leq r$ so that $y * x \in U(\mathscr{A}; [s, t], r)$. Using Lemma 4.9, we conclude that $U(\mathscr{A}; [s, t], r)$ is an *a*-ideal of *X*.

Conversely, suppose that (2) is valid, that is, $U(\mathscr{A}; [s, t], r)$ is nonempty and is an *a*-ideal of *X* for all $r \in [0, 1]$ and $[s, t] \in D[0, 1]$. Since any *a*-ideal is an ideal (see [6]), it follows from Lemma 4.8 that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic ideal of *X*. Assume that two inequalities in (4.4) are false. Then there exist $a, b \in X$ such that $\tilde{\mu}_A(b * a) \prec \tilde{\mu}_A(a * (0 * b))$ and $\lambda(b * a) > \lambda(a * (0 * b))$. Thus $\tilde{\mu}_A(b * a) \prec [s_0, t_0] \preceq \tilde{\mu}_A(a * (0 * b))$ and $\lambda(b * a) > r_0 \ge \lambda(a * (0 * b))$ for some $[s_0, t_0] \in D[0, 1]$ and $r_0 \in [0, 1]$. It follows that $a * (0 * b) \in U(\mathscr{A}; [s_0, t_0], r_0)$ but $b * a \notin U(\mathscr{A}; [s_0, t_0], r_0)$. This is a contradiction. Suppose that

$$\tilde{\mu}_A(y * x) \succeq \tilde{\mu}_A(x * (0 * y))$$

for all $x, y \in X$, and there exist $a, b \in X$ such that $\lambda(b * a) > \lambda(a * (0 * b))$. Then $\lambda(b * a) > r_0 \ge \lambda(a * (0 * b))$ for some $r_0 \in [0, 1]$, and so $a * (0 * b) \in U(\mathscr{A}; \tilde{\mu}_A(a * (0 * b)), r_0)$ but $b * a \notin U(\mathscr{A}; \tilde{\mu}_A(a * (0 * b)), r_0)$. This is also a contradiction. For the case that $\lambda(y * x) \le \lambda(x * (0 * y))$ for all $x, y \in X$ and $\tilde{\mu}_A(b * a) \prec \tilde{\mu}_A(a * (0 * b))$ for some $a, b \in X$, we can induce a contradiction. Therefore, (4.4) is valid, which implies from Theorem 4.7 that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *a*-ideal of *X*. \Box

Theorem 4.10 combines with (a) and (b) of Definition 3.3 to induce the following corollary.

Corollary 4.11. If $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic a-ideal of X, then the set

$$I := \{x \in X \mid \tilde{\mu}_A(x) = \tilde{\mu}_A(0), \ \lambda(x) = \lambda(0)\}$$

is an a-ideal of X.

Theorem 4.12. Every cubic a-ideal is a cubic p-ideal.

Proof. Let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be a cubic *a*-ideal of *X*. Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic ideal of *X* (see Theorem 4.4). If we take x = z = 0 in (4.3), then $\tilde{\mu}_A(0 * (0 * y)) \leq \tilde{\mu}_A(y)$ and $\lambda(0 * (0 * y)) \geq \lambda(y)$ for all $y \in X$. Hence, by Theorem 3.14, we conclude that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *p*-ideal of *X*. \Box

Note that the cubic set $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ in Example 4.5 is a cubic *p*-ideal which is not a cubic *a*-ideal. Hence the converse of Theorem 4.12 is not true in general.

Lemma 4.13 ([4]). For a cubic ideal $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ of X, the following are equivalent:

(1) $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic q-ideal of X. (2) $\tilde{\mu}_A(x * y) \succeq \tilde{\mu}_A(x * (0 * y))$ and $\lambda(x * y) \le \lambda(x * (0 * y))$ for all $x, y \in X$.

Theorem 4.14. Every cubic a-ideal is a cubic q-ideal.

Proof. Let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be a cubic *a*-ideal of *X*. Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic ideal of *X* by Theorem 4.4. Note that

$$(0 * (0 * (y * (0 * x)))) * (x * (0 * y)) = ((0 * (0 * y)) * (0 * (0 * (0 * x)))) * (x * (0 * y))$$

= ((0 * (0 * y)) * (0 * x)) * (x * (0 * y))
< (x * (0 * y)) * (x * (0 * y)) = 0

Table 5 *-operation.					
*	0	а	b		
0	0	0	b		
а	а	0	b		
b	b	b	0		

for all $x, y \in X$. Since $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *p*-ideal of *X* (see Theorem 4.12), it follows from (4.4), Proposition 3.10 and Lemma 4.6 that

$$\widetilde{\mu}_{A}(x * y) \succeq \widetilde{\mu}_{A}(y * (0 * x)) \succeq \widetilde{\mu}_{A}(0 * (0 * (0 * (0 * x))))) \\
\succeq \min \{\widetilde{\mu}_{A}(x * (0 * y)), \widetilde{\mu}_{A}(0)\} \\
= \widetilde{\mu}_{A}(x * (0 * y))$$

and

$$\lambda(x * y) \ge \lambda(y * (0 * x)) \ge \lambda(0 * (0 * (y * (0 * x))))$$

$$\ge \max\{\lambda(x * (0 * y)), \lambda(0)\}$$

$$= \lambda(x * (0 * y))$$

for all $x, y \in X$. Using Lemma 4.13, we conclude that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be a cubic q-ideal of X. \Box

The following example shows that the converse of Theorem 4.14 may not be true.

Example 4.15. Consider a BCI-algebra $X = \{0, a, b\}$ with the *-operation which is given in Table 5. We define $\tilde{\mu}_A = [\mu_A^-, \mu_A^+]$ and λ by

$$\tilde{\mu}_A = \begin{pmatrix} 0 & a & b \\ [0.5, 0.8] & [0.3, 0.6] & [0.3, 0.6] \end{pmatrix}$$

and

$$\lambda = \begin{pmatrix} 0 & a & b \\ 0.3 & 0.6 & 0.6 \end{pmatrix}.$$

Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *q*-ideal of *X*. But it is not a cubic *a*-ideal of *X* since $\tilde{\mu}_A(a*0) \not\geq \text{rmin} \{ \tilde{\mu}_A((0*0)*(0*a)), \tilde{\mu}_A(0) \}$.

Lemma 4.16 ([3]). Let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be a cubic ideal of X. If the inequality $x \leq y$ holds in X, then $\tilde{\mu}_A(x) \succeq \tilde{\mu}_A(y)$ and $\lambda(x) \leq \lambda(y)$.

Theorem 4.17. For a cubic set $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ in X, the following are equivalent.

(1) $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *a*-ideal of *X*.

(2) $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is both a cubic *p*-ideal and a cubic *q*-ideal of *X*.

Proof. By means of Theorems 4.12 and 4.14, every cubic *a*-ideal is both a cubic *p*-ideal and a cubic *q*-ideal.

Conversely, let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ be both a cubic *p*-ideal and a cubic *q*-ideal. Note that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic ideal of *X* (see [4]). Taking z = y at (a) and (b) in Definition 4.1, we have $\tilde{\mu}_A(x * y) \succeq \min{\{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\}}$ and $\lambda(x * y) \le \max{\{\lambda(x), \lambda(y)\}}$. Hence $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic subalgebra of *X*, and so $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a closed cubic ideal of *X*. Using Lemma 4.13, we get

$$\widetilde{\mu}_{A}(x * y) \succeq \widetilde{\mu}_{A}(x * (0 * y))
\lambda(x * y) \le \lambda(x * (0 * y))$$
(4.5)

for all $x, y \in X$. Since $0 * (y * x) \le x * y$ for all $x, y \in X$, it follows from Lemma 4.16, (4.5) that

$$\widetilde{\mu}_A(0*(y*x)) \succeq \widetilde{\mu}_A(x*y) \succeq \widetilde{\mu}_A(x*(0*y))
\lambda(0*(y*x)) \le \lambda(x*y) \le \lambda(x*(0*y))$$
(4.6)

for all $x, y \in X$. Using Proposition 3.7, Definition 3.4 and (4.6), we have

$$\tilde{\mu}_A(y*x) \succeq \tilde{\mu}_A(0*(0*(y*x))) \succeq \tilde{\mu}_A(0*(y*x)) \succeq \tilde{\mu}_A(x*(0*y))$$

and $\lambda(y * x) \leq \lambda(0 * (0 * (y * x))) \leq \lambda(0 * (y * x)) \leq \lambda(x * (0 * y))$ for all $x, y \in X$. It follows from Theorem 4.7 that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *a*-ideal of *X*. \Box

Theorem 4.18 (*Cubic extension property for a cubic a-ideal*). Let $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ and $\mathscr{B} = \langle \tilde{\mu}_B, \kappa \rangle$ be cubic ideals of X such that $\mathscr{A} \lesssim \mathscr{B}$ and $\tilde{\mu}_A(0) = \tilde{\mu}_B(0)$ and $\lambda(0) = \kappa(0)$. If $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic a-ideal of X, then so is $\mathscr{B} = \langle \tilde{\mu}_B, \kappa \rangle$.

Proof. Suppose that $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *a*-ideal of *X*. Then $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is both a cubic *p*-ideal and a cubic *q*-ideal of *X* by Theorems 4.12 and 4.14. Using Lemma 4.13, (a3) and (III), we have

$$\begin{split} \tilde{\mu}_B((x * y) * (x * (0 * y))) &= \tilde{\mu}_B((x * (x * (0 * y))) * y) \\ &\geq \tilde{\mu}_A((x * (x * (0 * y))) * y) \geq \tilde{\mu}_A((x * (x * (0 * y))) * (0 * y)) \\ &= \tilde{\mu}_A((x * (0 * y)) * (x * (0 * y))) = \tilde{\mu}_A(0) = \tilde{\mu}_B(0) \\ &\geq \tilde{\mu}_B(x * (0 * y)) \end{split}$$

and

$$\begin{aligned} \kappa((x*y)*(x*(0*y))) &= \kappa((x*(x*(0*y)))*y) \\ &\leq \lambda((x*(x*(0*y)))*y) \leq \lambda((x*(x*(0*y)))*(0*y)) \\ &= \lambda((x*(0*y))*(x*(0*y))) = \lambda(0) = \kappa(0) \\ &\leq \kappa(x*(0*y)). \end{aligned}$$

Since $\mathscr{B} = \langle \tilde{\mu}_B, \kappa \rangle$ is a cubic ideal of *X*, we get

$$\tilde{\mu}_B(x * y) \succeq \min \{ \tilde{\mu}_B((x * y) * (x * (0 * y))), \tilde{\mu}_B(x * (0 * y)) \} \\ = \tilde{\mu}_B(x * (0 * y))$$

and

$$\kappa(x * y) \le \max\{\kappa((x * y) * (x * (0 * y))), \kappa(x * (0 * y))\} = \kappa(x * (0 * y)).$$

Therefore $\mathscr{B} = \langle \tilde{\mu}_B, \kappa \rangle$ is a cubic *q*-ideal of *X* by Lemma 4.13. Since $\mathscr{A} = \langle \tilde{\mu}_A, \lambda \rangle$ is a cubic *p*-ideal of *X*, it follows from Proposition 3.7 that

$$\tilde{\mu}_B(x * (0 * (0 * x))) \succeq \tilde{\mu}_A(x * (0 * (0 * x))) \succeq \tilde{\mu}_A(0 * (0 * (x * (0 * (0 * x)))))$$

= $\tilde{\mu}_A(0) = \tilde{\mu}_B(0) \succeq \tilde{\mu}_B(0 * (0 * x))$

and

$$\begin{aligned} \kappa(x*(0*(0*x))) &\leq \lambda(x*(0*(0*x))) \\ &\leq \lambda(0*(0*(x*(0*(0*x))))) \\ &= \lambda(0) = \kappa(0) \leq \kappa(0*(0*x)). \end{aligned}$$

Hence

 $\tilde{\mu}_B(x) \succeq \min\{\tilde{\mu}_B(x * (0 * (0 * x))), \tilde{\mu}_B(0 * (0 * x))\} = \tilde{\mu}_B(0 * (0 * x))$

and $\kappa(x) \leq \max\{\kappa(x * (0 * (0 * x))), \kappa(0 * (0 * x))\} = \kappa(0 * (0 * x))$. Using Theorem 3.14, we conclude that $\mathscr{B} = \langle \tilde{\mu}_B, \kappa \rangle$ is a cubic *p*-ideal of *X*. Therefore $\mathscr{B} = \langle \tilde{\mu}_B, \kappa \rangle$ is a cubic *a*-ideal of *X* by Theorem 4.17. \Box

References

- [1] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338-353.
- [2] Y.B. Jun, C.S. Kim, K.O. Yang, Cubic sets, Comput. Math. Appl. (submitted for publication).
- [3] Y.B. Jun, C.S. Kim, M.S. Kang, Cubic subalgebras and ideals of BCK/BCI-algebras, Far East J. Math. Sci. (FJMS) 44 (2010) 239–250.
- [4] Y.B. Jun, C.S. Kim, J.G. Kang, Cubic q-ideals of BCI-algebras, Ann. Fuzzy Math. Inf. 1 (2011) 25–34.
- [5] Y.B. Jun, K.J. Lee, Closed cubic ideals and cubic o-subalgebras in BCK/BCI-algebras, Appl. Math. Sci. 4 (2010) 3395–3402.
- [6] Y.L. Liu, J. Meng, X.H. Zhang, Z.C. Yue, q-ideals and a-ideals in BCI-algebras, Southeast Asian Bull. Math. 24 (2000) 243–253.
- [7] Y. Huang, BCI-Algebra, Science Press, Beijing, 2006.
- [8] J. Meng, Y.B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul, 1994.
- [9] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1) (1978) 1–26.
- [10] X. Zhang, J. Hao, On *p*-ideals of BCI-algebras, Punjab Univer. J. Math. 27 (1994) 121–128.