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This is the first of two papers on addition sets . In this paper, the basic proper-
ties of addition sets are given. It also contains examples of addition sets arising
from natural central groupoids, (0, 1)-matrices satisfying the equation M 2 =
d7 + V and Nth power residues . Their relationship with difference sets is also
explained .

1 . INTRODUCTION

A (v, k, A)-difference set D = {dl , . . ., dk} is a collection of k residues
modulo v, such that for any residue y * 0 (mod v) the congruence

d, - d, _- y

	

(mod v)

	

(1 .1)

has exactly A solution pairs (di , d;) with d1 and d; in D.
Difference sets have been studied by many authors . I will just give the

following comprehensive reference [1] .
We will be mainly concerned with a generalization of the difference sets .
A (v, k, A, g)-addition set A = {al , . . ., ak }, or simply an addition set,

is a collection of k distinct residues modulo v, such that for any residue
y # 0 (mod v) the congruence

a i + ga; y

	

(mod v)

	

(1.2)

has exactly A solution pairs (ai , a,) with ai and a; in A .
It is clear that when g = v - 1, the (v, k, A, v - 1)-addition sets are

difference sets . We sometimes write g = - 1 instead of g = v - 1 . It is
also clear that we can restrict g to the range

0 < g z v - 1 .

	

(1 .3)
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Given any positive integer v and g satisfying (1 .3) there are certain
obvious addition sets :

(g + 1) i -_- 0 (mod v) .

These addition sets are said to be trivial. A nontrivial addition set will
satisfy

1 < k < v - 1 .

	

(1 .4)

A simple nontrivial example is the set {1, 4} which is a (5, 2, 1, 2)-
addition set as well as a (5, 2, 1, 3)-addition set . Other examples will be
given in Section 3 .

It should be mentioned that the author has proved in [5] that there is
no nontrivial addition set with g = 1 .

2 . ELEMENTARY RESULTS

In this section, we will establish some elementary results about addition
sets .

First of all, we will define a parameter d by letting d + A be the number
of ways that 0 can be represented as (ai + ga,) modulo v with as and of
in the addition set A . The parameters v, k, A, and d of an addition set
satisfy some simple relations .

THEOREM 2.1 . The parameters of a nontrivial addition set satisfy

(i) k 2 = d + Av,
(ii) 0 d + A < k,

(iii) 0 < A < k, and
(iv) -k < d < k .

Proof. Relation (i) is established by counting . There is a total of
k2 pairs of the form (ai , a;) . Thus (i) follows from the definitions of
addition sets and the parameter d.

Relation (ii) is established by counting the number of solution pairs
(ai , a;) in the congruence

a; + ga; -- 0

	

(mod v) .

(i)
(ii)

(iii)

the null set A = 0 ;
A = {i}, where (g + 1) i = 0 (mod v) ;
A = {0, 1, . . ., v - 1} ;

(iv)
(v)

A = {l, 2, . . ., v - l}, where g = 0 ; and
A = {0, 1, . . ., i - 1, i + 1, . . ., v - 1}, where (g, v) = 1 and
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By counting the number of solution pairs (ai , a;) in the congruence

ai + ga; _- y

	

(mod v),

where y T 0 (mod v), we obtain

0 < A < k .

	

(2.1)

Together with relation (ii), we have

-k < d < k .

	

(2.2)

In order to prove (iii) and (iv) we have to show that equality does not
hold in (2 .1) and (2.2) .

If d = -k, then from (ii) we have A = k . Substituting the values into
(i) we have

k 2 = -k + kv .

	

(2.3)

Equation (2.3) implies that k = 0 or k = v - 1, contradicting the
assumption that the addition set is nontrivial .

If d = k, then from (ii) we have A = 0 . Substituting the values into (i)
we have

k2 = -k.

	

(2.4)

Equation (2.4) implies that k = 0 or 1, again contradicting the assumption
that the addition set is nontrivial. Hence we have established (iv) .

If A = 0, then (i) implies that

k 2 =d,

which is impossible because of (iv) .
If A = k, then (i) implies that

d = k(k - v) .

	

(2.5)

Since k - v :7~- 0, we have k I d, which is again impossible . Hence the
theorem is proved .

Instead of the addition set itself, it is often convenient to deal with a
polynomial derived from it .

A Hallpolynomial of a set A of residues modulo v is the polynomial

8(x) = xal + . . . + xak ,

	

(2.6)

where ai e A .
In terms of polynomials, the addition set property gives the following

result .
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THEOREM 2.2 . A set A of k distinct residues modulo v is a (v, k, A, g)-
addition set if and only if its Hall polynomial satisfies

0(x) 9(x9) = d d- X1(1 -f- x ± . . . + xv-1 ) (mod xv - 1) . (2 .7)

With the above observation, we can prove the following result .

THEOREM 2.3 . If g.c .d . (g, v) = w =A 1 and d :7~-- 0, then the addition
set is trivial.

Proof. Let 0(x) be the Hall-polynomial of the addition set. Then it
satisfies Eq. (2 .7) . Since w I v, Eq . (2.7) implies

0(x) O(xg) - d + all + x + . . . .+ xv-1)

	

(mod xw - 1) .

If w is any primitive wth root of unity, then this congruence gives

9(fw) 0(6w9) = d.

	

(2.8)

Since w I g, 6,,0 = 1 . Hence (2.8) gives

0(e,,,) . k = d.

	

(2.9)

Since we have assumed that d -/= 0, it follows from (2.9) that k divides d
as integers. Because of inequality (iv) of Theorem 2 .1, the last statement
implies that the addition set is trivial .

COROLLARY 2.4 . Let A be a nontrivial addition set with v even . Then d
is a square .

Proof. Theorem 2.2 implies that the Hall-polynomial for A satisfies

O(x) 0(xg) _- d + A(l + x + --- + x"-')

	

(mod x° - 1). (2.10)

Substituting x = -1 into the above congruence, we have

0(-1) 0((-1)9 ) = d.

	

(2.11)

As A is nontrivial, Theorem 2.3 implies that g .c.d. (g, v) = 1 . In particular,
g is odd. Hence (2.11) implies that d is a square .

Given a set A = {a1 , . . ., ak} mod v, then for any integer s the set
{a1 + sl , . . ., a k + s} _- A + s taken modulo v is a shaft ofA by s . It should
be noted that a shift of an addition set need not be an addition set .
However given an addition set A = {al , . . ., a k} and any integer t, relatively
prime to v, the set {tal , . . ., tak} = to taken modulo v is also an addition
set with the same parameters . If t is relatively prime to v and if to is some
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shift A + s of the original addition set A, then t is called a multiplier of A .
If t # 1 (mod v) then t is a nontrivial multiplier. If to = A when taken
modulo v, then t is a multiplier fixing the addition set A. Some well-known
multiplier theorems for difference sets can be generalized to the case of
addition sets. A proof of one will be given in [6] .

The question as to whether every difference set must have a nontrivial
multiplier is still open . For addition sets, there is a partial answer.

THEOREM 2.5 . Let A be a nontrivial (v, k, A, g)-addition set with d =A 0 .
Given any integer h prime to v, A is also a (v, k, A, h)-addition set if and
only ifgh is a multiplier fixing A .

Proof. Let us first assume that A is both a (v, k, A, g)-addition set
and a (v, k, A, h)-addition set . By Theorem 2 .2, it follows that the Hall-
polynomial for A satisfies

Observe that x11 - I divides xvh - 1 . Furthermore, since h is prime to v,
we have

1 + xh + . . . + x(v-1)h = 1 + x + . . . + x11-1

	

(mod x11 - 1) .

Hence (2.14) implies

O(xh) 9(x9h) = d + A(l + x + . . . + xv -1)

	

(mod xv - 1). (2.15)

By multiplying O(x) to both sides of (2.15), we obtain

8(x) 0(xh) 0(x9h) _- 0(x)[d + A(1 + x + . .. + x 11-1)]

	

(mod xv
(2.16)

Now we use (2.13) and obtain

0(xg h)[d + A(1 + x + . . . + x11-1)] = 0(x)[d + A(l + x + . . . + x11-1)]

(mod xv - 1) . (2 .17)

Next we expand both sides of (2.17) and cancel . Observe that

6(x9h)(1 + x + . .. + x11-1) = k(1 + x + . .. + x'-1)

	

(mod x11 - 1) .

O(x) 6(xg) - d + A(l + x + . . . + x11-1 ) (mod x' - 1), (2.12)

and

O(x) O(xh) d + A(l + x + + xv-1) (mod xv - 1) . (2.13)

Substituting xh for x in (2.12), we have

(mod x 11h - 1) . (2.14)O(x'") B(xgh) = d + A(l + x'a + .- . + xcv-') h)
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A similar congruence is true for 0(x) . Together with the assumption that
d =,b 0, we have

O(xvh) -- O(x)

	

(mod x" - 1),

which is the same as saying that gh is a multiplier fixing the addition set A .
Conversely, we assume that gh fixes A, which is

0(x9h) _- 0(x)

	

(mod x'' - 1) .

	

(2.18)

Since A is a (v, k, A, g)-addition set, (2 .12) still holds . Together with (2.18),
we have

0(xgh) 6(xg) = d + X(1 + x + . . . + x"-1)

	

(mod x" - 1) . (2.19)

Since A is nontrivial and d 0 0, g is prime to v by Theorem 2 .3. Hence
there exists an integer f such that

gf =- 1 (mod v) .

We substitute xg f-' for x in (2.19) and obtain

0(xh) 0(x) = d + A(l + x9 ' - ' + + x (v-1)v f- 1) (mod x"9'-1 - 1) .
(2.20)

However x" - 1 divides x" 9'- ' - 1 and

1 + xgf-1 + . . . + x("-1)9f-1 - 1 + x + . . . + x"-1 (mod x" - 1) .

Thus (2.20) implies

0(x') 0(x) - d +X1(1 + x + +- x" -1)

	

(mod x"

which means that A is also a (v, k, A, h)-addition set .
The following corollary follows easily.

COROLLARY 2.6 . Let A be a nontrivial (v, k, A, g)-addition set with
d 0 0. Then g2 is a multiplier fixing A .

Corollary 2.6 established the existence of multipliers for many addition
sets. However, for difference sets, we have g = - 1 and g2 == 1 (mod v),
which gives us only the trivial multiplier.

In the example of Section 1, the set A = {1, 4} has -1 as its only non-
trivial multiplier . This is interesting to note because -1 is never a multiplier
for a difference set [3] .
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Addition sets with d :A 0 and g 2 - 1 (mod v) are interesting in another
respect. They are closely related with a matrix equation first studied by
Ryser [10] .

Ryser investigated (0, 1)-matrices M of order v which satisfy the matrix
equation M2 = D + AJ, where D is a diagonal matrix and J is the matrix
of all l's . He showed that apart from certain exceptional matrices, M must
satisfy

M2 = dI + AJ,

	

(2.21)

where in (2.21) the matrix M has constant line sum k .
In [5], the author investigated solutions to (2.21) where M is a

g-circulant . Here a g-circulant is a v x v matrix of rational numbers, in
which each row (except the first) is obtained from the preceding row by
shifting the elements cyclically g columns to the right . One can also define
a Hall-polynomial for a g-circulant M by letting

v-1

O(x) _ Y mixi,
i=O

where (m0 , m1 , . . ., mt_1) is the first row of M.
In particular, the following result was proved [5, p . 8] .

THEOREM 2.7 . Let d and A be rational numbers. A v x v g-circulant M
satisfies (2 .21) if and only if the following statements hold.

If M is a (0, 1)-matrix, then d and A are integers. Furthermore 0(x) is
a polynomial with (0, 1) coefficients . In this case, condition (ii) of
Theorem 2.7 is exactly the same as Eq . (2.7) of Theorem 2.2 . Hence in
the (0, 1) case, the following is true.

THEOREM 2.8 . Assume d :A 0. Then the existence of a (0, 1) g-circulant
M satisfying the matrix equation

M2 =dI+ .1J

is equivalent to the existence of a (v, k, A, g)-addition set with g2 - 1
(mod v) .

When d = 0, condition (i) of Theorem 2.7 is always true. In this case
we do not even have the restriction that g 2 - I (mod v) .

(i) d 0 0 implies g2 = 1 (mod v), and
(ii) O(x) 0(x") _- d + A(1 + x + . . . + x"-1) (mod xv - 1) .
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THEOREM 2.9 . The existence of a (0, 1) g-circulant M of size v satisfying
the matrix equation

M'= AJ

	

(2.22)

is equivalent to the existence of (v, k, A, g)-addition set with the same
parameters.

The (0, 1)-matrices satisfying the matrix equation

M2 =J

correspond to central groupoids. In particular, (0, 1) g-circulants satisfying
the equation correspond to natural central groupoids . For a discussion
on central groupoids, please see [4] .
Theorems 2.8 and 2.9 give us a few classes of addition sets, as will be

seen in Section 3 . Difference sets are, of course, a special class of addition
sets. The following theorem shows that the value of the parameter d is
important in determining whether an addition set is a difference set .

THEOREM 2.10 . Let A be a nontrivial addition set . If d = k - A, then A
is also a difference set.

Proof. If d = k - A, then 0 can be represented in k ways as (ai + ga,)
(mod v) with ai and a, in A. However, this implies that for all a i c A,
there exists a1 in A such that

ai = (-g) a,

	

(mod v) .

Thus (-g) is a multiplier fixing A . By (iii) of Theorem 2.1, k > A . Hence
d =A 0. As -1 is prime to v, Theorem 2.5 implies that A is also
a (v, k, A, -1) addition set . In other words, A is a difference set.

If A is a difference set, then it is clear that d = k - A . Thus the value
of d characterizes whether or not an addition set is a difference set . From
(ii) of Theorem 2 .1, d satisfies

-A<d<k-A.

	

(2.23)

Hence, for difference sets, d attains its maximum allowed value . The
case with d = -A also occurs as we will see in the next section .

3 . EXAMPLES

In this section, we will investigate various classes of addition sets .
Since difference sets are well known, we restrict our attention to addition
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sets which are not difference sets . That is, we are interested in addition
set with d in the range.

-A<d<k-A.

The first class is derived from Theorem 2 .9 . Since they represent a slightly
generalized version of natural central groupoids, we call them the Natural
Central Groupoid type, or NCG type .

Natural Central Groupoid (NCG) Type

This type has parameters satisfying k2 = Av, d = 0, and g = k.

THEOREM 3 .1 . The set A = {0, 1, 2, . . ., k - 1} is a (v, k, A, k)-addition
set when k2 = Av .

Proof We will use Theorem 2 .2. The Hall-polynomial for A is
0(x) = l

	

x + -- • + xk-1 . Observe that

(1

	

C' + . . . +
Xk-1)(1 + xk + . . . + Xk(k-1)) = 1 + X + . .

. + Xk 2-1 .ll

	

(3.1)
Since k 2 = Av, Eq. (3 .1) taken modulo x" - 1 gives

8(x) 9(xk) _- A(1 + x + . . . + xv-1)

	

(mod x" - 1) .

Hence the theorem is proved .

Ryser (R) Type

This type corresponds to a class of (0, 1)-matrices M satisfying

M2 =I+AJ.

They were first given in [10] . The parameters satisfy d = 1 and
k2 = 1 + Av.

THEOREM 3 .2. The set A = {0, 1, . . ., k - 1} is a (v, k, A, k)-addition
set when k 2 = 1 + Av .

Proof The proof is similar to the one for NCG type .

Shifted Ryser (SR) type

The parameters for this class satisfy d = -1, k2 = - 1 + Av, and v odd .
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THEOREM 3 .3 . Let A = {0, 1, . . ., k - 1;- where k 2 = -1 - Av and v
is odd. There exists an integer t such that t -I- A modulo v is a (v, k, A, k)-
addition set .

Proof. We will show that t is in fact the multiplicative inverse of
k + 1 modulo v. First of all, we will show that k + 1 is relatively prime
to v .

Let g.c.d . (k + 1, v) = w. Then we have w I (k + 1)2 . As k2 + 1 = A v,
w I k2 + 1 . Hence w I

[(k+ 1) 2 - (k2 + 1)], which reduces to w 12k .
But v is odd. Hence w is odd. Thus we have w I k . But we also have
w I k + 1 . So w = 1 . Hence, we can talk about the multiplicative inverse
of (k + 1) modulo v .

Let t be the multiplicative inverse of (k + 1) modulo v. The Hall-
polynomial for t + A is

0(x) -- xt(1 + x + - .- + xk-1 )

	

(mod xv - 1) .

	

(3 .2)

Hence

0(x) 0(xk) = xtxtk(1 + x + . . . + xk-1 )( 1 + xk + . . . + xk(k-1))
(mod xv - 1) . (3 .3)

Congruence (3.3) reduces to

9(x) 0(xk) _- -1 + A(l + x + • • • + xv-1)

	

(mod xv - 1) .

Hence the theorem is proved .
It should be noted that the condition v is odd is not restrictive at all .

Since d = -1, Corollary 2 .4 implies that any nontrivial addition set must
have an odd v .
A = {2, 3} is a (5, 2, 1, 2)-addition set, the first of this class . The set

{1, 4} given before is merely the set {2, 3} multiplied by 2 and reduced
modulo 5 .

The remaining classes are all derived from Nth power residues modulo
some prime v. So, we will first introduce some material from the theory of
cyclotomy. (For a proof of some of the results quoted, please see [1]
or [11] .)

Let v = Nf + 1 be an odd prime and let a be a fixed primitive root
of v . An integer R is said to belong to the index class I with respect to a
if there exists an integer x such that

R =- aNx+t (mod v) .

The cyclotomic number (1, ON counts the number of times R + 1 belongs
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to the index class m when R belongs to index class 1. That is, (l, ON is the
number of solutions x, y of the congruence

aNx+l + 1

	

a Nay+nn

	

(mod v)

where the integers x, y are chosen from 0, 1, . . ., f - 1 .
Given an odd prime v and an integer N, the set of residues belonging to

the index class 0 is called the set of Nth power residues modulo v . It should
be noted that this set of Nth power residues does not depend on the choice
of the primitive root and it forms a subgroup of the group of nonzero
residues modulo v .

In 1953, Lehmer [7] gave the necessary and sufficient conditions for the
existence of some difference set associated with Nth power residues .
The following is a generalization of her results for addition sets .

THEOREM 3.4. Let e be the index class to which g belongs . A necessary
and sufficient condition that the Nth power residues of a prime v = Nf + 1
form a (v, k, A, g)-addition set, is that

(e,i)N =A

	

for i=0,1, . . .,N-1.

A necessary and sufficient condition that the Nth power residues and zero
for a prime v = Nf + I form a (v, k, A, g)-addition set is that

1 + (e, 0)N = 1 + (e, ON = (e, ON = A
for i = 1, . . ., e - 1, e + 1, . . ., N - 1 .

Proof . Let {r1 i . . ., rf } be the set of Nth power residues . Given any
residue y F~&- 0 (mod v), the number of solution pairs (r i , r;) to the
congruence

r i + gr, - y

	

(mod v)

is the same as the number of solution pairs (r, , r,) to the congruence

1 + gr,ri1 = yr~ 1 (mod v),

which is also the same as the cyclotomic number (e, ON where e is the index
class to which g belongs and i is the index class to which y belongs . Hence
the Nth power residues form a (v, k, A, g)-addition set if and only if
(e, ON = A for i = 0, 1, . . ., N - 1 .

When 0 is added to the set of Nth power residues the only effect is that
the sums

ri + g • 0 = ri

	

and

	

O +gri =gri

have to be counted too . Thus each ri and gri is represented once more than
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the numbers (e, 0) N and (e, e)N indicate . Hence we have the rest of the
theorem .

In this paper only the cases where N = 2 and N = 4 are considered .
Hopefully, other values of N will give more addition sets .
Difference sets arising from Nth power residues are well known . In

this section, we are interested in addition sets that are not difference
sets. However these new addition sets are in many ways similar to their
counterparts in difference sets . Together they give a much better picture
of the role played by Nth power residues in the theory of addition sets .
For this reason we will also quote, without proof, the corresponding results
in difference sets. Before we do so, we will introduce a little more material
from cyclotomy .
Theorem 3 .4 established the special role played by the cyclotomic

numbers. We define a cyclotomic matrix C = ( ci2) by letting ci5 be
the cyclotomic number (i, j)N for the index classes i and j, where
0 < i, j < e - 1 . In terms of the cyclotomic matrix, Theorem 3.4 focuses
our attention on the rows of the matrix .

Let v be an odd prime such that v = 2f + 1 . If f is even, then the cyclo-
tomic matrix is given in [11, p . 30] as

where A = (f - 2)/2 and B = f/2 . Now we are ready to see another class
of addition sets .

The next result was first communicated to me by James Shearer .

Negative Quadratic Residue (NQ) Type

THEOREM 3 .5 . When v = 4t + 1 is a prime, the quadratic residues
modulo v form an addition set with parameters v, k, A, d = 4t + 1, 2t,
t, -t and g is any residue in the index class 1 .

Proof. When v = 4t + 1 is a prime, then f = 2t is even. The cyclo-
tomic matrix (3 .4) implies that

(1,0)=(1,1)=t.

Hence if we take g to be any residue in index class 1, then Theorem 3.4
implies that the second power residues form a (4t + 1, 2t, t, g)-addition
set. The value of d is then determined from the equation k 2 = d + Av .

The corresponding difference set is due to Paley [9] .

0

	

1

0 A B
(3 .4)

1 B B



I

2

3

together with the relations

16A = v - 11 - 6s,

16B=v-3 + 2s + 8t,

16C=v - 3 + 2s,

16D=v-3 + 2s - 8t,

16E=v+1-2s,

where v = s2 + 4t2 with s -= 1 (mod 4) is the proper representation of v ;
the sign oft is ambiguously determined. Here a representation v = s 2 + 4t2
is said to be proper if (v, s) = 1. A proper representation of v with s - 1
(mod 4) uniquely identifies s [8, p. 123] . The value of t is also identified
except for sign .

The case N = 4 gives us two types ofaddition sets.

Negative Biquadratic Residue (NB) Type

THEOREM 3.7. The fourth power residues of a prime v = 16t 2 + I form
an addition set with parameters v, k, A, d = 16t 2 + 1, 4t 2 , t 2, -t2 and g
is any residue in the index class 2.

582a/I9/I-5

is a prime, the quadratic residues modulo v form a difference set with param-
eters v,k,A,d=4t-1,2t-1,t-1, t .

Hence whenever v is an odd prime, the quadratic residues form an
addition set. The sign of d determines whether it is a positive type or a
negative type .

Let v be a prime of the form 4f + 1 . When f is even, the cyclotomic
numbers are given in [11, p. 51] by the cyclotomic matrix

0

	

1 2 3

(3.5)

A C D

B D E E

C E C E

D E E B

CYCLIC DIFFERENCE SETS 63

THEoREM 3.6 (Positive Quadratic Residue (PQ) type) . When v = 4t - 1
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Proof. When v = 16t 2 + 1, then s = 1 andf is even. Hence the cyclo-
tomic numbers C and E are equal in (3.5) . Therefore (2, 0) = (2, 1) _
(2, 2) _ (2, 3) = (v - 1)/16 = t 2 . Thus the theorem follows from
Theorem 3 .4 .

The corresponding theorem in difference sets is due to Chowla [2] .

THEOREM 3.8 (Positive Biquadratic Residue (PB) type) . The fourth
power residues of primes v = 4x2 + 1, x odd, form a difference set with
parameters v, k, A, d = 4x2 + 1, x2 , (x2 - 1)/4, (3x2 + 1)/4 .

Negative Modified Biquadratic Residue (NBO) Type

THEOREM 3.9 . The set of biquadratic residues and zero of a prime
v = 16t 2 -I- 9 form an addition set with parameters v, k, A, d = 16t 2 + 9,
4t2 + 3, t2 + 1, -t 2 and g is any residue in the index class 2 .

Proof When v = 16t 2 + 9, then s = -1 and f is even. Hence the
cyclotomic numbers are C = (v - 9)/16 and E = (v + 7)/16 . Thus

1+(2,0)=1+(2,2)=(2,1)=(2,3)=(v+7)/16=t2+1 .

The theorem follows from Theorem 3.4 .
The corresponding result in difference sets is attributed to M . Hall, Jr .

It is for the case when v = 4x 2 + 9 is a prime with x odd.
The smallest addition set of the NQ (Negative Quadratic Residue)

type is the (5, 2, 1, 2)-addition set given in Section 1 . The smallest one of
the NB (Negative Biquadratic Residue) type has parameters v, k, A, g =
17, 4, 1, 9 . The next smallest one has parameters v, k, A, g = 257, 64, 16, 9 .
The smallest addition set of the NBO (Negative Modified Biquadratic
Residue) type has parameters v, k, A, g = 73, 19, 5, 25 . The next one has
parameters v, k, A, g = 409, 103, 26, 121 .

4. CONCLUSION

We have seen that addition sets are nontrivial generalizations of
difference sets . They give rise to many new combinatorial objects . Their
properties are very similar to those of the difference sets. Many results
on difference sets can be generalized to the case of addition sets . In the next
paper [6], we will see a generalization of the multiplier theorem and some
nonexistence results . Using these results, a computer search for addition
sets with small parameters was carried out . A list of these addition sets
will also be given in [6] .
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