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The main purpose of this paper is to study common invariant

subspaces of any matrix in the centralizer of a given matrix A ∈
Mn(F), where F denotes an algebraically closed field. In particular,

we obtain a necessary and sufficient condition for the existence of a

common eigenvector for all the matrices in this set.
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1. Introduction

Though invariant subspaces were defined by von Neumann in 1935, their use did not begin until

much later, with no results obtained for a long time.

Invariant subspaces are connected tomany disciplines. For example, the controllability subspace of

a linear dynamical systemwith state equation ẋ(t) = Ax(t)+ Bu(t) is known to be the least invariant

subspace under the matrix Awhich contains the range of matrix B.

When considering matrices with coefficients in an algebraic closed field, invariant subspaces may

be deduced from the Jordan canonical form of the matrix, as shown in [3], which provide a com-

prehensive treatment of geometrical, algebraic, topological, and analytic properties of invariant sub-

spaces.

Some previous related results are the following ones. It is known (see [5]) that two matrices A1, A2

have a common eigenvector if, and only if,
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n⋂
k,l=1

Ker[Ak
1, A

l
2] �= {0}.

In the caseofdimensionof the invariant subspacegreater than1,Georgeand Ikramov [2]proved that

ifmatrices A1, A2 have a common invariant subspace of dimension d, then the d-th compoundmatrices

(A1)d, (A2)d have a common eigenvector. Conversely, if (A1)d, (A2)d have a common eigenvector and

if all eigenvalues of (A1)d are simple and A2 is non-singular, then there exists a common invariant

subspace of dimension d for A1 and A2. Tsatsomeros [6] extends this result to the case where A1 and

A2 are arbitrary.

Halmos proved that if A is a matrix and if V is an A-invariant subspace, then there exist matrices B

and C such that BA = AB, CA = AC, V is the kernel of B and V is the range of C. Moreover, there exist B

and C such that additionally satisfy BC = CB = O. See [1] for a short proof of this result.

Here we will study the existence of eigenvectors and invariant subspaces which are common to all

the matrices belonging to the commutant (centralizer) of a given matrix A.

Throughout this note F will represent an algebraically closed field (for example, F = C). We will

denote byMn(F) the vector subspace consisting of square matrices of order n and by Gln(F) the set of

invertible matrices in Mn(F).

2. Preliminaries

Throughout the note we will consider a matrix A ∈ Mn(F), such that the characteristic polynomial

can be completely factored into linear factors over F:

QA(t) = (−1)n(t − λ1)
n1 · . . . · (t − λr)

nr .

As it is known, under the assumption that the characteristic polynomial ofA splits into linear factors

overF, there exists S ∈ Gln(F) such that A = SJS−1, where J is the Jordan canonical form of thematrix

A, throughout the paper the notation we use is the one which can be found for example in [4].

A vector subspace V ⊆ F
n is called A-invariant when A(V) ⊆ V .

The commutant (centralizer) of the matrix A is the set

Z(A) = {X ∈ Mn(F) | AX − XA = 0}.

3. Common eigenvectors and invariant subspaces

Let A be a matrix in Mn(F), where F is an algebraically closed field.

In order to find common invariant subspaces for all matrices in Z(A), we observe that we can reduce

ourselves to the case where the matrix A is in Jordan reduced form.

Lemma 3.1 [3]. Let us assume that A = SJS−1, with J the Jordan reduced form of matrix A. Then V is an

A-invariant subspace if, and only if, S−1V is a J-invariant subspace.

From now on, we will consider A = J is a matrix in Jordan reduced form.

It is well-known (a proof can be found in [3]), that if

J(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 . . . 0 0

1 λ . . . 0 0
...

...
...

...

0 0 . . . λ 0

0 0 . . . 1 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Mα(F) (3.1)
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then Z(J(λ)) is the set of lower triangular Toeplitz matrices:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T(x1, . . . , xα) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2 x1

x3 x2 x1

. . . . . . . . . . . .

xα xα−1 xα−2 . . . x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; x1, x2, . . . , xα−1, xα ∈ F

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (2)

On the other hand, let us consider two matrices

J1(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 . . . 0 0

1 λ . . . 0 0
...

...
...

...

0 0 . . . λ 0

0 0 . . . 1 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, J2(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 . . . 0 0

1 λ . . . 0 0
...

...
...

...

0 0 . . . λ 0

0 0 . . . 1 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

such that J1(λ) ∈ Mα(F) and J2(λ) ∈ Mβ(F).

(1) If α > β , the set of solutions of the system J1(λ)X = XJ2(λ) is the set of matrices of the form

TD(x1, . . . , xβ)=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

T(x1, . . . , xβ)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

. . . . . . . . . . . .

0 0 0 . . . 0

x1

x2 x1

x3 x2 x1

. . . . . . . . . . . .

xβ xβ−1 xβ−2 . . . x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

for x1, x2, . . . , xβ−1, xβ ∈ F, and

(2) if α < β , then the set of solutions of the system J1(λ)X = XJ2(λ) is the set of matrices of the

form

TL(x1, . . . , xα) =
[
T(x1, . . . , xα) 0

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2 x1

x3 x2 x1

. . . . . . . . . . . .

xα xα−1 xα−2 . . . x1

0 . . . 0

0 . . . 0

. . . . . .

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

for x1, x2, . . . , xα−1, xα ∈ F.
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Let us return to our particular set-up. Let us write

J = diag(J(λ1), . . . , J(λr))

with λi, 1 � i � r, the distinct eigenvalues of matrix J, and

J(λi) = diag(J1(λi), . . . , Jmi
(λi)), 1 � i � r,

where

Jj(λi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λi 0 . . . 0 0

1 λi . . . 0 0

...
...

...
...

0 0 . . . λi 0

0 0 . . . 1 λi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Mα(i,j)(F), 1 � j � mi. (3.6)

We will consider that for all eigenvalue λi, 1 � i � r, the Jordan blocks corresponding to J(λi) are

ordered in decreasing order of their sizes; that is to say, α(i, 1) � · · · � α(i,mi).

Lemma 3.2.

(a) A matrix X ∈ Mn(F) belongs to Z(J) if, and only if, X = diag(X1, . . . , Xr) with Xi ∈ Z(J(λi)),
1 � i � r.

(b) For 1 � i � r, consider the partition of matrix Xi ∈ Z(J(λi)) according to the block partition of

matrix J(λi),

Xi =

⎡
⎢⎢⎢⎢⎣

X1
i,1 . . . X1

i,mi

...
...

X
mi

i,1 . . . X
mi

i,mi

⎤
⎥⎥⎥⎥⎦

. (3.7)

Then all matrix blocks Xk
i,j ∈ Mα(i,j)×α(i,k), 1 � j � r, 1 � k � mi are of the form T(x1, . . . , xα),

TD(x1, . . . , xα) or TL(x1, . . . , xα) for some values of the parameters x1, . . . , xα .

Proof. Then matrices Xk
i,j ∈ Mα(i,j)×α(i,k) satisfy the linear system of matrix equations:

Jj(λi) · Xk
i,j = Xk

i,j · Jk(λi); 1 � j, k � mi (3.8)

and therefore all of them are of one of the types in the statement. �

Theorem 3.3. Matrices X in Z(J) have a common eigenvector if, and only if, there exist i ∈ {1, . . . , r}
such that mi = 1 or the Jordan blocks in J(λi) have orders

α(i, 1) > α(i, 2) � α(i, 3) � · · · � α(i,mi).

Proof. We write αi = ∑
1�j�mi

α(i, j). If we denote by e1, . . . , en the vectors in the natural basis of

F
n, it is obvious that if there exists i ∈ {1, . . . , r} such that mi = 1 or mi > 1 and α(i, 1) > α(i, 2),

then all matrices in Z(J) have as a common eigenvector eα1+...αi−1+α(i,1).

Conversely, if we assume mi > 1 and α(i, 1) = α(i, 2), for all i ∈ {1, . . . , r}, we can consider the

following matrices in Z(J):
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• Y a lower bidiagonal matrix with all non-zero entries equal to 1.

• Z = diag(Z1, . . . , Zr) with

Zi =

⎡
⎢⎢⎢⎢⎣

Z1i,1 . . . Z1i,mi

...
...

Z
mi

i,1 . . . Z
mi

i,mi

⎤
⎥⎥⎥⎥⎦

(3.9)

with block matrices Zli,k of the form T(x1, . . . , xα), TD(y1, . . . , yβ),

TL(z1, . . . , zγ ) with all the values of the parameters different (for example, satisfying an arith-

metic recurrence).

Then the eigenvectors of matrix Y , corresponding are:

eα(1,1), eα(1,1)+α(1,2), . . . , eα1
; eα1+α(2,1), . . . , eα1+α2

; . . . , en

and none of them is an eigenvector of matrix Z. Therefore matrices Y and Z , both of them belonging

to Z(J), have no common eigenvector. �

Remark 3.4. Let us assume thatX, Y ∈ Z(J) share an eigenvector v (that is to say,Xv = λv,Yv = μv for

someλ,μ ∈ F). If Jkv �= 0, k ∈ N, then X and Y also have as common eigenvectors Jv, J2v, . . . , Jkv, . . .

Example 3.5. We can consider the following matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 1 −2 0 0

1 1 −2 4 0 0

0 0 11 −18 0 0

0 0 6 −10 0 0

2 −1 8 −14 −2 −1

−3 4 −17 30 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

with Jordan form J and Jordan basis S:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0

1 2 0 0 0 0

0 0 2 0 0 0

0 0 0 −1 0 0

0 0 0 1 −1 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 0 0 0

1 1 1 −1 0 0

0 0 2 3 0 0

0 0 1 2 0 0

1 0 1 −1 −1 −1

−1 1 −1 −1 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.11)

The commutant of J is:

Z(J) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 0 0 0 0

x2 x1 x3 0 0 0

x4 0 x5 0 0 0

0 0 0 x6 0 0

0 0 0 x7 x6 0

0 0 0 0 0 x8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; xi ∈ F

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.12)
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In this case, r = 3, m1 = 2, m2 = 1, m3 = 1 and:

α(1, 1) = 2, α(1, 2) = 1, α1 = 3,

α(2, 1) = 2, α2 = 2,

α(3, 1) = 1, α3 = 1.

It is immediate that e2, e5, e6 are the common eigenvectors of Z(J) and thus

v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.13)

are the common eigenvectors of Z(A).

Corollary 3.6. The number of common eigenvectors of all matrices in Z(J) is

�{i ∈ {1, . . . , r} |mi = 1 or mi > 1 and α(i, 1) > α(i, 2)}.
Corollary 3.7. Let V be a d-dimensional invariant common subspace for all matrices in Z(J), with d � 2.

Then, all matrices in Z(J) have a common eigenvector belonging to V if, and only if, the restriction of J to V

fulfill the conditions in the Theorem 3.3.

Proof. Given any basis {u1, . . . , ud} of the vector subspace V , the matrices in Z(J), in a basis of F
n of

the form {u1, . . . , ud, ud+1, . . . , un} are of the form:

⎡
⎣ X1 X2

0 X3

⎤
⎦ X1 ∈ Md(F), X3 ∈ Mn−d(F) (3.14)

with X1 ∈ Z(J|V ) and X3 ∈ Z(J|G), where G represents a complementary vector subspace of V and the

statement follows. �

Example 3.8. We can consider the following matrix:

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0

1 2 0 0

0 0 2 0

0 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.15)

The commutant of J is:

Z(J) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 0 x2 0

x3 x1 x4 x2

x5 0 x6 0

x7 x5 x8 x6

⎤
⎥⎥⎥⎥⎥⎥⎦

; xi ∈ F, 1 � i � 8

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (3.16)
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We have that V = 〈e2, e4〉 is a 2-invariant subspace for all matrices in Z(J), which are of the form:

⎡
⎣ X1 X2

0 X3

⎤
⎦ (3.17)

in basis {e2, e4, e1, e3}.
Since J|V =

⎡
⎣ 2 0

0 2

⎤
⎦ and Z(J|V ) =

⎧⎨
⎩

⎡
⎣ x1 x2

x3 x4

⎤
⎦ ; xi ∈ K

⎫⎬
⎭, there is no commoneigenvector formatrices

in Z(J|V ) and thus matrices in Z(J) have no common eigenvector belonging to V .

We can actually generalize, with an analogous reasoning as that in the proof of Theorem 3.3, the

statement in Theorem 3.3 to (non-trivial) invariant subspaces of dimension greater than 1.

Theorem 3.9. Let us assume that for some i ∈ {1, . . . , r}, one of the following conditions hold:

(i) mi = 1 and α(i, 1) � d � 2,

(ii) mi > 1 and α(i, 1) � α(i, 2) + d, d � 2.

Then all matrices in Z(J) have as a d-dimensional common invariant subspace the vector subspace spanned

by

eα1+···+αi−1+α(i,1)−d+1, eα1+···+αi−1+α(i,1)−d+2, . . . , eα1+···+αi−1+α(i,1).

Proof. The vector subspace spanned by vectors above is an Xi-invariant subspace and thus an

X-invariant subspace for all X ∈ Z(J). Its dimension is clearly d. �

Remark 3.10. Note that the vector subspaces above are not necessarily the only d-dimensional com-

mon invariant subspaces, since the sum of invariant subspaces (like vector subspaces above and sub-

spaces spanned by eigenvectors) is again an invariant subspace for all matrices in Z(J). Theorem above

provides a lower bound for the number of common invariant subspaces for all X ∈ Z(J) of dimension

d � 2 (though in general this is not a tight bound, as can be seen in next example).

Example 3.11. Let us return to matrix A in Example 3.5. Condition 1 in Theorem 3.9. is satisfied

by eigenvalue λ2 = −1. Therefore all matrices in Z(J) have a 2-dimensional common invariant

subspace:

〈e4, e5〉.
Directly, the non-trivial X-invariant subspaces for all X ∈ Z(J), can be found and are the following

ones.

Dimension d = 2 : 〈e2, e3〉, 〈e2, e5〉, 〈e2, e6〉, 〈e4, e5〉, 〈e5, e6〉
Dimension d = 3 : 〈e1, e2, e3〉, 〈e2, e3, e5〉, 〈e2, e3, e6〉, 〈e2, e5, e6〉, 〈e4, e5, e6〉
Dimension d = 4 : 〈e1, e2, e3, e5〉, 〈e1, e2, e3, e6〉, 〈e2, e3, e4, e5〉, 〈e2, e3, e5, e6〉, 〈e2, e4, e5, e6〉
Dimension d = 5 : 〈e1, e2, e3, e4, e5〉, 〈e1, e2, e3, e5, e6〉, 〈e2, e3, e4, e5, e6〉.

Acknowledgments

The authors wish to thank Prof. F. Puerta for his detailed revision of the manuscript and helpful

comments.

This work was partially supported by Grant MTM2010-19356-C02-02.



1292 M.D. Magret, M.E. Montoro / Linear Algebra and its Applications 437 (2012) 1285–1292

References

[1] I. Domanov,On invariant subspaces ofmatrices: a newproof of a theoremofHalmos, LinearAlgebraAppl. 433 (2010) 2255–2256.

[2] A. George, Kh.D. Ikramov, Common invariant subspaces of two matrices, Linear Algebra Appl. 287 (1999) 171–179.
[3] I. Gohberg, P. Lancaster, L. Rodman, Invariant Subspaces of Matrices with Applications, SIAM, 1986.

[4] F. Puerta, Àlgebra lineal, Ed. ETSEIB-UPC, 1990.
[5] D. Shemesh, Common eigenvectors of two matrices, Linear Algebra Appl. 62 (1984) 11–18.

[6] M. Tsatsomeros, A criterion for the existence of common invariant subspaces ofmatrices, Linear Algebra Appl. 322 (2001) 51–59.


	On the existence of a common eigenvector for all matrices in the commutant of a single matrix
	1 Introduction
	2 Preliminaries
	3 Common eigenvectors and invariant subspaces
	Acknowledgments
	References


