Families of small regular graphs of girth 5

M. Abreu ${ }^{\text {a }}$, G. Araujo-Pardo ${ }^{\text {b }}$, C. Balbuena ${ }^{\text {c,* }}$, D. Labbate ${ }^{\text {a }}$
${ }^{\text {a }}$ Dipartimento di Matematica, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano, I-85100 Potenza, Italy
${ }^{\text {b }}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, México D. F., Mexico
${ }^{\text {c }}$ Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Campus Nord, Edifici C2, C/ Jordi Girona 1 i 3, E-08034 Barcelona, Spain

ARTICLE INFO

Article history:

Received 8 June 2011
Received in revised form 29 May 2012
Accepted 30 May 2012
Available online 27 June 2012

Keywords:

Small regular graphs
Cage
Girth
Amalgam

Abstract

In this paper we obtain $(q+3-u)$-regular graphs of girth 5 , for $1 \leq u \leq q-1$ with fewer vertices than previously known ones, for each prime $q \geq 13$, performing operations of reductions and amalgams on the Levi graph B_{q} of an elliptic semiplane of type C. We also obtain a 13-regular graph of girth 5 on 236 vertices from B_{11} using the same technique.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered are finite, undirected and simple (without loops or multiple edges). For definitions and notations not explicitly stated the reader may refer to [11].

Let G be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The girth of a graph G is the length $g=g(G)$ of a shortest cycle. The degree of a vertex $v \in V$ is the number of vertices adjacent to v. A graph is called k-regular if all its vertices have the same degree k, and bi-regular or (k_{1}, k_{2})-regular if all its vertices have either degree k_{1} or k_{2}. A (k, g)-graph is a k-regular graph of girth g and a (k, g)-cage is a (k, g)-graph with the smallest possible number of vertices. The necessary condition obtained from the distance partition with respect to a vertex yields a lower bound $n_{0}(k, g)$ on the number of vertices of a (k, g)-graph, known as the Moore bound.

$$
n_{0}(k, g)= \begin{cases}1+k+k(k-1)+\cdots+k(k-1)^{(g-3) / 2} & \text { if } g \text { is odd; } \\ 2\left(1+(k-1)+\cdots+(k-1)^{g / 2-1}\right) & \text { if } g \text { is even. }\end{cases}
$$

Biggs [9] calls excess of a (k, g)-graph G the difference $|V(G)|-n_{0}(k, g)$. Cages have been intensely studied since they were introduced by Tutte [30] in 1947. Erdős and Sachs [15] proved the existence of a (k, g)-graph for any value of k and g. Since then, most of the work carried out has been focused on constructing smallest (k, g) -graphs (see e.g. [1,2,4-8,12,16, $19,21,26,28,29,32$]). Biggs is the author of a report on distinct methods for constructing cubic cages [10]. More details about constructions of cages can be found in the surveys by Wong [32], by Holton and Sheehan [23, Chapter 6], or the recent one by Exoo and Jajcay [18].

In this paper, for each prime $q \geq 13$, we construct a family of $(q+3-u)$-regular graphs of girth 5 which ties the order of ($q+3,5$)-graphs from [24] for $u=0$, and improves the known bounds for $1 \leq u \leq q-1$ (cf. Table 1).

[^0]Table 1
Upper bounds for the order of $(k, 5)$-graphs.

k	Upper bound	Due to		New upper bound found in this paper
8	80	Royle		
9	96	Jørgensen		
10	126	Exoo		
11	$156{ }^{\text {a }}$	Jørgensen		
12	203	Exoo		
13	$240^{\text {a }}$	Exoo		236
14	288	Jørgensen		284
15	312	Jørgensen		310
16	336	Jørgensen		[336]
17	448	Schwenk		
18	480	Schwenk		
19	512	Schwenk		
20	576	Jørgensen		572
General case: $(q+3-u, 5)$-graphs for $q \geq 13$ and $0 \leq u \leq q-1$				
q	u	Upper bound	Due to	New upper bound found in this paper
Prime	$u=0$	$2\left(q^{2}-1\right)$	Jørgensen	$\left[2\left(q^{2}-1\right)\right]$
Prime	$1 \leq u \leq q-1$	$2\left(q^{2}-(q-1) u-1\right)$	Jørgensen	$2\left(q^{2}-q u-1\right)$
Prime power		$2\left(q^{2}-(q-1) u-1\right)$	Jørgensen	

${ }^{\text {a }}$ Recently we have known that Exoo has constructed a (11, 5)-graph on 154 vertices and also a (13, 5)-graph on 230 vertices; see [17].
To construct such a family we use the following new technique that was inspired by papers from Funk [20] and Jørgensen [24]. We consider the Levi graph B_{q} of an elliptic semiplane of type C which is bipartite (cf. Section 2). Then we perform two reduction operations on the set of vertices of B_{q} (cf. Section 3) and an amalgam operation with bi-regular graphs (cf. Section 4) into the reduced graph. The novelty, with respect to [20,24], lies in performing Reduction 1 (cf. Section 3) before choosing the graphs for the amalgam.

Note that the general case presented in Section 5, holds for primes $q \geq 23$ (cf. Theorems 12 and 14). Smaller cases ($q=13,17,19$) are treated with ad hoc similar constructions in Section 6 , where we also obtain a 13-regular graph of girth 5 on 236 vertices from B_{11} which improves the bound found by Exoo in [17].

We conclude this section with Table 1 summarizing the state of the art regarding the new upper bounds for the order of ($k, 5$)-graphs from $k \geq 8$ (i.e. degrees k for which no cage has been constructed so far). The table is based on the values and references that appear in Table 4 of [18], and highlights the contributions of the results contained in this paper. The numbers in brackets indicate that the value found in this paper ties the previously known one.

2. Preliminaries

In this section we introduce the (bipartite) Levi graph B_{q} of an elliptic semiplane of type C [14,20] and we fix a labelling on its vertices which will be central for our construction since it allows us to keep track of the properties (such as regularity and girth) of the graphs obtained from B_{q} applying the reductions (cf. Section 3) and amalgams (cf. Section 4).

Definition 1. Let $G F(q)$ be a finite field with $q \geq 2$ a prime power. Let B_{q} be the Levi graph of an elliptic semiplane of type C which is a bipartite graph with vertex set $\left(V_{0}, V_{1}\right)$ where $V_{r}=G F(q) \times G F(q), r=0,1$, and edge set defined as follows:

$$
\begin{equation*}
(x, y)_{0} \in V_{0} \text { is adjacent to }(m, b)_{1} \in V_{1} \text { if and only if } y=m x+b \tag{1}
\end{equation*}
$$

This graph is also known as the incidence graph of the biaffine plane [22], and it has been used in the problem of finding extremal graphs without short cycles [13,25].

The following properties of the graph B_{q} are well known (see $[22,25]$) and they will be fundamental throughout the paper.
Proposition 2. Let B_{q} be the (bipartite) Levi graph defined above. Let $P_{x}=\left\{(x, y)_{0} \mid y \in G F(q)\right\}$, for $x \in G F(q)$ and $L_{m}=$ $\left\{(m, b)_{1} \mid b \in G F(q)\right\}$, for $m \in G F(q)$. Then the graph B_{q} has the following properties:
(i) it is q-regular, vertex transitive, of order $2 q^{2}$, and has girth 6 for $q \geq 3$;
(ii) it admits a partition $V_{0}=\bigcup_{x=0}^{q-1} P_{x}$ and $V_{1}=\bigcup_{m=0}^{q-1} L_{m}$ of its vertex set;
(iii) each block P_{x} is connected to each block L_{m} by a perfect matching, for $x, m \in G F(q)$;
(iv) each vertex in P_{0} and L_{0} is connected straight to all its neighbours in B_{q}, meaning that $N\left((0, y)_{0}\right)=\left\{(i, y)_{1} \mid i \in G F(q)\right\}$ and $N\left((0, b)_{1}\right)=\left\{(j, b)_{0} \mid j \in G F(q)\right\} ;$
(v) the other matchings between P_{x} and L_{m} are twisted and the rule is defined algebraically in $G F(q)$ according to (1);
(vi) it has diameter 4 and any two distinct points in P_{x} (or in L_{m}) are at distance exactly 4 for $x, m \in G F(q)$.

For further information regarding these properties and for constructions of the adjacency matrix of B_{q} as a block $(0,1)$ matrix please refer to [3,7].

3. Reductions

In this section we will describe two reduction operations that we perform on the graph B_{q} that together with the amalgam operation will allow us to prove our main result i.e. the construction of new ($k, 5$)-graphs of smaller order than previously known ones.

Reduction 1. Remove vertices from P_{0} and L_{0}.
Let $T \subseteq S \subseteq G F(q), S_{0}=\left\{(0, y)_{0} \mid y \in S\right\} \subseteq P_{0}, T_{0}=\left\{(0, b)_{1} \mid b \in T\right\} \subseteq L_{0}$ and $B_{q}(S, T)=B_{q}-S_{0}-T_{0}$.
Lemma 3. Let $T \subseteq S \subseteq G F(q)$. Then $B_{q}(S, T)$ is bi-regular with degrees $(q-1, q)$ of order $2 q^{2}-|S|-|T|$. Moreover, the vertices $(i, t)_{0} \in V_{0}$ and $(j, s)_{1} \in V_{1}$, for each $i, j \in G F(q)-\{0\}, s \in S$ and $t \in T$ are the only vertices of degree $q-1$ in $B_{q}(S, T)$, together with $(0, s)_{1} \in V_{1}$ for $s \in S-T$ if $T \subsetneq S$.
Proof. It is an immediate consequence of Proposition 2(i), (v).
The key used in our construction (cf. Sections 5 and 6) to improve the known orders for ($k, 5$)-graphs is to apply Reduction 1 before applying the amalgam (cf. Section 4) for increasing the degree of B_{q}.

Reduction 2. Remove pairs of blocks $\left(P_{i}, L_{i}\right)$ from B_{q} or from $B_{q}(S, T)$.
Let $u \in\{1, \ldots, q-1\}$. Define $B_{q}(u)=B_{q}-\bigcup_{i=1}^{u}\left(P_{q-i} \cup L_{q-i}\right)$ the graph obtained from B_{q} by deleting the last u pairs of blocks of vertices P_{i}, L_{i}, and let $B_{q}(S, T, u)=B_{q}-S_{0}-T_{0}-\bigcup_{i=1}^{u}\left(P_{q-i} \cup L_{q-i}\right)$. For $u=0, B_{q}(0)=B_{q}$ and $B_{q}(S, T, 0)=B_{q}(S, T)$.

Lemma 4. Let $u \in\{0, \ldots, q-1\}$. Then, the graph $B_{q}(u)$ is $(q-u)$-regular of order $2\left(q^{2}-q u\right)$ and the graph $B_{q}(S, T, u)$ is bi-regular with degrees $(q-u-1, q-u)$ and order $2\left(q^{2}-q u\right)-|S|-|T|$. Moreover, the vertices $(i, t)_{0} \in V_{0}$ and $(j, s)_{1} \in V_{1}$, for each $i, j \in G F(q), s \in S$ and $t \in T$ are the only vertices of degree $q-u-1$ in $B_{q}(S, T, u)$, together with $(0, s)_{1} \in V_{1}$ for $s \in S-T$ if $T \subsetneq S$.
Proof. It is immediate from Proposition 2(i), (iv) and Lemma 3.
Reduction 2 has been widely used by several authors and with different names (cf. e.g. [1,2,6,5,13,20,24]) and we use it together with Reduction 1 and the amalgam for our construction of ($k, 5$)-graphs. Note that, to our purpose, it is indifferent when to apply Reduction 2 with respect to the other two operations.

4. Amalgams

In this section we will describe an amalgam operation inspired by Funk [20] and Jørgensen [24] where regular bipartite graphs were transformed into (no longer bipartite) regular graphs of higher degree adding weighted edges with different weights on opposite sides of the bipartition.

Since we apply Reduction 1 before increasing the degree of B_{q}, we describe the amalgam operation performed on the reduced graph $B_{q}(S, T, u)$ for $0 \leq u \leq q-1$. The labelling for B_{q} introduced in Section 2, will be essential, in the choice of the graphs used for the amalgam, to guarantee regularity and girth 5 of the final graph.

Let Γ_{1} and Γ_{2} be two graphs of the same order and with the same labels on their vertices. In general, an amalgam of Γ_{1} into Γ_{2} is a graph obtained adding all the edges of Γ_{1} to Γ_{2}.

Let P_{i} and L_{i} be defined as in Section 2. Consider the graph $B_{q}(S, T, u)$, for some $T \subseteq S \subseteq G F(q)$ and $u \in\{0, \ldots, q-1\}$. Let $S_{0} \subseteq P_{0}, T_{0} \subseteq L_{0}$ as in Reduction 1, and let $P_{0}^{\prime}:=P_{0}-S_{0}$ and $L_{0}^{\prime}:=L_{0}-T_{0}$ be the blocks in $B_{q}(S, T, u)$ of orders $q-|S|$ and $q-|T|$, respectively.

Let H_{1}, H_{2}, G_{i}, for $i=1,2$, be graphs of girth at least 5 and orders $q-|S|, q-|T|$ and q, respectively. Let H_{1} be a k-regular graph. If $|S|=|T|$, let H_{2} be k-regular and otherwise let it be $(k, k+1)$-regular with $|S-T|$ vertices of degree $k+1$. If $T=\emptyset$, let G_{1} be a k-regular graph and otherwise let it be $(k, k+1)$-regular with $|T|$ vertices of degree $k+1$. Finally, let G_{2} be a $(k, k+1)$-regular with $|S|$ vertices of degree $k+1$.

We define $B_{q}^{*}(S, T, u)$ to be the amalgam of H_{1} into P_{0}^{\prime}, H_{2} into L_{0}^{\prime}, G_{1} into P_{i} and G_{2} into L_{i}, for $i \in\{1, \ldots, q-u-1\}$ and $u \in\{0, \ldots, q-2\}$. We also define $B_{q}^{*}(S, T, q-1)$ to be the amalgam of H_{1} into P_{0}^{\prime}, H_{2} into L_{0}^{\prime}.

To simplify notation in our results, we label P_{i} and L_{i} as in Section 2, but assume that the labellings of H_{1}, H_{2}, G_{1} and G_{2}, correspond to the second coordinates of $P_{0}^{\prime}, L_{0}^{\prime}, P_{i}$ and L_{i} respectively for $i \in\{1, \ldots, q-u-1\}$ and $u \in\{0, \ldots, q-2\}$. Suppose also that the vertices of degree $k+1$, if any, in H_{2}, G_{1} and G_{2} are labelled in correspondence with the elements of $S-T, T$ and S, respectively.

With such a labelling, let $\alpha \beta$ be an edge in H_{1}, H_{2}, G_{1} or G_{2}, and define the weight or the Cayley Colour of $\alpha \beta$ to be $\pm(\beta-\alpha) \in G F(q)-\{0\}$. Let \mathcal{P}_{ω} be the set of weights in H_{1} and G_{1}, and let \mathcal{L}_{ω} be the set of weights in H_{2} and G_{2}.

Cayley Colours have been used by Funk in [20] to construct ($k, 5$)-graphs from elliptic semiplanes. The following result is a special case of [20, Theorem 2.8] for the labelling we have chosen for B_{q} (cf. Section 2). On the other hand, it generalizes such a theorem since we delete vertices from P_{0} and L_{0}, pairs of blocks P_{i}, L_{i} and amalgam with graphs which are not regular, but chosen in such a way that the obtained amalgam is regular.

Theorem 5. Let $T \subseteq S \subseteq G F(q), u \in\{0, \ldots, q-1\}$. Let H_{1}, H_{2}, G_{1} and G_{2} be defined as above and suppose that the weights $\mathcal{P}_{\omega} \cap \mathcal{L}_{\omega}=\emptyset$. Then the amalgam $B_{q}^{*}(S, T, u)$ is a $(q+k-u)$-regular graph of girth at least 5 and order $2 q(q-u)-|S|-|T|$.
Proof. The order and the regularity of $B_{q}^{*}(S, T, u)$ follow from Lemma 4 and the choice of H_{1}, H_{2}, G_{1} and G_{2}. Note that the vertices of L_{i}, with degree $q-u-1$ in $B_{q}(S, T, u)$, have degree $k+1$ in G_{2}, which add up to degree $q+k-u$ in $B_{q}^{*}(S, T, u)$, for $i \in\{1, \ldots, q-u-1\}$. Similarly for the vertices in L_{0} and for those in P_{i}, for $i \in\{1, \ldots, q-u-1\}$.

Let C be a shortest cycle in $B_{q}^{*}(S, T, u)$ and suppose, by contradiction, that $|C| \leq 4$. Therefore, $C=(x y z)$ or $C=(w x y z)$. Since B_{q} has girth 6 and $H_{1}, H_{2}, G_{1}, G_{2}$ have girth at least 5, then C cannot be completely contained in B_{q} or in some H_{i} or G_{i} for $i=1$, 2. Then, w.l.o.g. the path $x y z$ in C is such that $x, y \in P_{i}$ and $z \in L_{m}$ for some $i, m \in G F(q)$. Since the edges between P_{i} and L_{m} form a matching, then $x z \notin E\left(B_{q}\right)$ and hence $x z \notin E\left(B_{q}^{*}(S, T, u)\right)$. Thus $|C|>3$ and we can assume $|C|=4$ and $C=(w x y z)$.

If $w \in P_{i}$, by the same argument, $w z \notin E\left(B_{q}^{*}(S, T, u)\right)$ and we have a contradiction. There are no edges between P_{i} and P_{j} in $B_{q}^{*}(S, T, u)$, so $w \notin P_{j}$ for $j \in G F(q)-\{i\}$, which implies that $w \in L_{n}$ for some $n \in G F(q)$. If $n \neq m$, we have a contradiction since there are no edges between L_{m} and L_{n} in $B_{q}^{*}(S, T, u)$. Therefore $x, y \in P_{i}$ and $w, z \in L_{m}$. Let $x=(i, \alpha)_{0}, y=(i, \beta)_{0}, z=(m, \gamma)_{1}$ and $w=(m, \delta)_{1}$ as in the labelling chosen in Section 2 . Then $w x, y z \in E\left(B_{q}^{*}(S, T, u)\right)$ imply that $\alpha=m \cdot i+\delta$ and $\beta=m \cdot i+\gamma$, respectively, which give $\beta-\alpha=\gamma-\delta$. On the other hand $x y, w z \in E\left(B_{q}^{*}(S, T, u)\right)$ imply that $\alpha \beta \in E\left(H_{1}\right) \cup E\left(G_{1}\right)$ and $\gamma \delta \in E\left(H_{2}\right) \cup E\left(G_{2}\right)$, so $\pm(\alpha-\beta) \in \mathcal{P}_{\omega}$ and $\pm(\gamma-\delta) \in \mathcal{L}_{\omega}$, a contradiction, since by hypothesis $\mathcal{P}_{\omega} \cap \mathcal{L}_{\omega}=\emptyset$.

Remark 6. The graph $B_{q}^{*}(S, T, u)$ has girth exactly 5 since B_{q} has diameter 4 (cf. Proposition $2(\mathrm{vi})$) and any edge in $G_{i}, i=1,2$, creates a 5-cycle between vertices at distance 4 .

5. New regular graphs of girth 5

In this section we will construct new $(q+3)$-regular graphs of girth 5 , for any prime $q \geq 23$, applying Reductions 1,2 and amalgam to the graph B_{q} as previously described. In each case we will specify the sets S and T of vertices to be deleted from P_{0} and L_{0} and the graphs $H_{1}, H_{2}, G_{1}, G_{2}$ to be used for the amalgam into $B_{q}^{*}(S, T, u)$.

For each prime $q \geq 23$, we construct a family of $(q+3-u)$-regular graphs of girth 5 which ties the order of $(q+3,5)$ graphs from [24] for $u=0$, and improves the known bounds for $1 \leq u \leq q-1$ (cf. Table 1). As mentioned in the Introduction, smaller cases $(q=13,17,19)$ are treated with ad hoc similar constructions in Section 6, where we also obtain a 13-regular graph of girth 5 on 236 vertices from B_{11} which improves the bound found by Exoo in [17].

Recall that every prime q is either congruent to 1 or 5 modulo 6 . We will now treat these two cases separately, when $q=6 n+1$ or $q=6 n+5$ is a prime.

5.1. Construction for primes $q=6 n+1$

Throughout this subsection we will consider $n \geq 5$. The smaller cases will be treated in Section 6 since some of the graphs in this section have girth smaller than 5 when $n<5$.

Let H_{1} and H_{2} be two graphs of order $q-1$ with the vertices labelled from 1 through $6 n$, and partitioned into $W_{1}=$ $\{1,2, \ldots, 3 n\}$ and $W_{2}=\{3 n+1, \ldots, 6 n\}$.

Define the set of edges $E\left(H_{1}\right)=A_{1} \cup B_{1} \cup C_{1}$ as follows.

Set	Edges	Description
A_{1}	$\{(i, i+1) \mid i=1, \ldots, 3 n-1\} \cup\{(3 n, 1)\}$	$(3 n)$-cycle with weights 1 and $3 n-1$
B_{1}	$\{(i, i+2) \mid i=3 n+1, \ldots, 6 n-2\} \cup\{(6 n-1,3 n+1)$,	One or two cycles according to the parity of n,
	$(6 n, 3 n+2)\}$	with weights 2 and $3 n-2$
C_{1}	$\{(i, 3 n+i) \mid i=1, \ldots, 3 n\}$	Prismatic edges between W_{1} and W_{2} of weight $3 n$

The graph H_{1} is cubic and has weights $\pm\{1,2,3 n-2,3 n-1,3 n\}$.
Lemma 7. The graph H_{1} has girth 5.
Proof. Let C be a shortest cycle in H_{1}. If C is a subgraph of either the induced subgraph $H_{1}\left[W_{1}\right]$ or $H_{1}\left[W_{2}\right]$ then $|C| \geq 5$, since $H_{1}\left[W_{1}\right]$ has girth at least 15 and $H_{1}\left[W_{2}\right]$ has girth at least 9 . Otherwise, there is a path $x y z$ in C is such that either $x, y \in W_{1}$ and $z \in W_{2}$ or $x \in W_{1}$ and $y, z \in W_{2}$. The first case has the following subcases:
(i) $x=1, y=3 n, z=6 n$;
(ii) $x=i, y=i-1, z=3 n+i-1$, for $i=2, \ldots, 3 n$;
(iii) $x=i, y=i+1, z=3 n+i+1$, for $i=1, \ldots, 3 n-1$;
(iv) $x=3 n, y=1, z=3 n+1$.

The second case has similar subcases. If we show that $z \notin N_{H_{1}}(x)$ then $|C| \neq 3$, and if $\{y\}=N_{H_{1}}(x) \cap N_{H_{1}}(z)$ then $|C| \neq 4$. In subcase (i) the neighbourhoods of x and z in H_{1} are $N_{H_{1}}(x)=\{2,3 n, 3 n+1\}$ and $N_{H_{1}}(z)=\{3 n, 3 n+2,6 n-2\}$, respectively. Thus, $z \notin N_{H_{1}}(x)$ and $\{y\}=N_{H_{1}}(x) \cap N_{H_{1}}(z)$. Hence, $|C| \geq 5$. All the other cases are analogous. The cycle $(1,2,3,3 n+3,3 n+1)$ is a 5 -cycle in H_{1}.

Define the set of edges $E\left(H_{2}\right)=A_{2} \cup B_{2} \cup C_{2}$ as follows.

| Set | Edges | Description |
| :--- | :--- | :--- | :--- |
| A_{2} | $\{(i, i+3) \mid i=1, \ldots, 3 n-3\} \cup\{(3 n-2,1),(3 n-1,2)$, | Three n-cycles with weights 3 and $3 n-3$ |
| | $(3 n, 3)\}$ | |
| B_{2} | $\{(i, i+4) \mid i=3 n+1, \ldots, 6 n-4\} \cup\{(6 n-3,3 n+$ | One, two or four cycles according to the congruency |
| | $1),(6 n-2,3 n+2),(6 n-1,3 n+3),(6 n, 3 n+4)\}$ | of $3 n$ modulo 4, with weights 4 and $3 n-4$ |
| C_{2} | $\{(i, 3 n+4+i) \mid i=1, \ldots, 3 n-4\} \cup\{(3 n-3,3 n+$ | Prismatic edges between W_{1} and W_{2} of weights 4 |
| | $1),(3 n-2,3 n+2),(3 n-1,3 n+3),(3 n, 3 n+4)\}$ | and $3 n+4 \equiv 3 n-3$ mod q |

The graph H_{2} is cubic and has weights $\pm\{3,4,3 n-4,3 n-3\}$.
Lemma 8. The graph H_{2} has girth at least 5.
Proof. Similar to the proof of Lemma 7.
Lemma 9. Let G be a graph of girth at least 5. Let $x_{1} x_{2}, x_{3} x_{4} \in E(G)$ be two independent edges of G such that $N_{G}\left(x_{i}\right) \cap N_{G}\left(x_{j}\right)=\emptyset$, for all $i, j \in\{1,2,3,4\}, i \neq j$. Let v be a vertex such that $v \notin V(G)$ and let G^{\prime} be a graph with $V\left(G^{\prime}\right)=V(G) \cup\{v\}$ and $E\left(G^{\prime}\right)=E(G)-\left\{x_{1} x_{2}, x_{3} x_{4}\right\} \cup\left\{\left(v, x_{i}\right) \mid i=1,2,3,4\right\}$. Then G^{\prime} has girth at least 5.

Proof. Let C be a shortest cycle in G^{\prime}. If $E(C) \subset E(G)$ then, by hypothesis, $|C|>4$. Otherwise $v \in V(C)$ and $x_{i} v x_{j}$ is a path in C for some $i, j \in\{1,2,3,4\}, i \neq j$. In G^{\prime} the set $\left\{x_{i} \mid i=1,2,3,4\right\}$ is independent, so $|C|>3$. By hypothesis, $N_{G^{\prime}}\left(x_{i}\right) \cap$ $N_{G^{\prime}}\left(x_{j}\right)=\{v\}$ in G^{\prime} and hence $|C|>4$.

Let G_{1} be a graph on q vertices labelled from 0 through $q-1$ and defined as follows: $G_{1}:=H_{1}-\left\{(1,3 n),\left(\left\lfloor\frac{3 n+1}{2}\right\rfloor, 3 n+\right.\right.$ $\left.\left.\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)\right\}+\left\{(0,1),\left(0,\left\lfloor\frac{3 n+1}{2}\right\rfloor\right),(0,3 n),\left(0,3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)\right\}$.

Lemma 10. The graph G_{1} has girth at least 5 .
Proof. The edges $e_{1}=(1,3 n)$ and $e_{2}=\left(\left\lfloor\frac{3 n+1}{2}\right\rfloor, 3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)$ are independent in H_{1}. The neighbourhoods of the endvertices of e_{1} and e_{2} are:

$$
\begin{aligned}
& N(1)=\{2,3 n, 3 n+1\} \\
& N\left(\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)=\left\{\left\lfloor\frac{3 n+1}{2}\right\rfloor-1,\left\lfloor\frac{3 n+1}{2}\right\rfloor+1,3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor\right\} \\
& N(3 n)=\{1,3 n-1,6 n\} ; \\
& N\left(3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)=\left\{3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor-1,3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor+1,\left\lfloor\frac{3 n+1}{2}\right\rfloor\right\}
\end{aligned}
$$

which satisfy the hypothesis of Lemma 9 . Since G_{1} is constructed from H_{1} in the same way as G^{\prime} from G in Lemma 9 , we can conclude that G_{1} has girth at least 5 .

All together the weights of H_{1} and G_{1} modulo q give

$$
\mathcal{P}_{\omega}:= \begin{cases} \pm\left\{1,2, \frac{3 n+1}{2}, 3 n-2,3 n-1,3 n\right\} & \text { if } n \text { is odd } \tag{2}\\ \pm\left\{1,2, \frac{3 n}{2}, \frac{3 n+2}{2}, 3 n-2,3 n-1,3 n\right\} & \text { if } n \text { is even. }\end{cases}
$$

Let G_{2} be a graph on q vertices labelled from 0 through $q-1$ and defined as follows:

$$
G_{2}:= \begin{cases}H_{2}-\{(3,22),(5,24)\}+\{(0,3),(0,5),(0,22),(0,24)\} & \text { if } n=5 ; \\ H_{2}-\{(3,3 n+7),(4,3 n+8)\}+\{(0,3),(0,4),(0,3 n+7),(0,3 n+8)\} & \text { if } n \geq 6\end{cases}
$$

Note that for $n=5$ the edge $(0,3 n+8)=(0,23)$ has weight -8 which lies already in \mathcal{P}_{ω} and Theorem 5 cannot be applied. This is why, in the definition of G_{2}, we choose to delete the edge $(5,24)$ from H_{2}, instead of $(4,3 n+8)=(4,23)$.

Lemma 11. The graph G_{2} has girth at least 5 .

Proof. First suppose $n \geq 6$. As in Lemma 10, the edges $(3,3 n+7),(4,3 n+8)$ are independent in H_{2} and the neighbourhoods $N(3)=\{6,3 n, 3 n+7\} ;$
$N\left(\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)=\left\{\left\lfloor\frac{3 n+1}{2}\right\rfloor-1,\left\lfloor\frac{3 n+1}{2}\right\rfloor+1,3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor\right\} ;$
$N(3 n)=\{1,3 n-1,6 n\}$;
$N\left(3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)=\left\{3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor-1,3 n+\left\lfloor\frac{3 n+1}{2}\right\rfloor+1,\left\lfloor\frac{3 n+1}{2}\right\rfloor\right\}$
satisfy the hypothesis of Lemma 9 . Since G_{2} is constructed from H_{2} as G^{\prime} from G in Lemma $9, G_{2}$ has girth at least 5 .
Similarly for $n=5$.
All together the weights of H_{2} and G_{2} modulo q give

$$
\mathcal{L}_{\omega}:= \begin{cases} \pm\{3,4,7,9,11,12\} & \text { if } n=5 \tag{3}\\ \pm\{3,4,3 n-7,3 n-6,3 n-4,3 n-3\} & \text { if } n \geq 6\end{cases}
$$

Theorem 12. Let q be a prime such that $q=6 n+1, n \geq 2$. Then, there is $a(q+3-u)$-regular graph of girth 5 and order $2\left(q^{2}-q u-1\right)$, for each $0 \leq u \leq q-1$.
Proof. We treat the cases $n=2,3$ in Section 6 . For $n=4, q=6 n+1=25$ is not a prime, therefore we can assume that $n \geq 5$.

Let $S=T=\{0\}$ and choose H_{i}, G_{i} for $i=1,2$ as previously described in this subsection. Lemmas $7,8,10$ and 11 together with (2) and (3) imply that the hypothesis of Theorem 5 is satisfied. Therefore, the graphs $B_{q}^{*}(S, T, u)$ are $(q+3-u)$-regular of girth 5 and order $2\left(q^{2}-u-1\right)$ for each $0 \leq u \leq q-1$. The girth of $B_{q}^{*}(S, T, u)$ is exactly 5 by Remark 6 .
5.2. Construction for primes $q=6 n+5$

We consider $n \geq 3$ throughout this subsection and we treat smaller cases in Section 6 since some of the graphs in this section have girth smaller than 5 when $n<3$.

Let H_{1} and H_{2} be two graphs of order $q-1$ with the vertices labelled from 1 through $6 n+4$, and partitioned into $W_{1}=\{1,2, \ldots, 3 n+2\}$ and $W_{2}=\{3 n+3, \ldots, 6 n+4\}$.

Define the set of edges $E\left(H_{1}\right)=A_{1} \cup B_{1} \cup C_{1}$ as follows.

Set	Edges	Description
A_{1}	$\{(i, i+1) \mid i=1, \ldots, 3 n+1\} \cup\{(3 n+2,1)\}$	$(3 n+2)$-cycle with weights 1 and $3 n+1$
B_{1}	$\{(i, i+2) \mid i=$	One or two cycles according to the parity of n, with
	$3 n+3, \ldots, 6 n+2\} \cup\{(6 n+3,3 n+3),(6 n+4$,	weights 2 and $3 n$
	$3 n+4)\}$	
C_{1}	$\{(i, 3 n+i+2) \mid i=1, \ldots, 3 n+2\}$	Prismatic edges between W_{1} and W_{2} of weight $3 n+2$

The graph H_{1} is cubic and has weights $\pm\{1,2,3 n, 3 n+1,3 n+2\}$.
Define the set of edges $E\left(H_{2}\right)=A_{2} \cup B_{2} \cup C_{2}$ as follows.

Set	Edges	Description
A_{2}	$\{(i, i+3) \mid i$	One $3 n+2$-cycle with weights 3 and $3 n-1$
	$=1, \ldots, 3 n-1\} \cup\{(3 n, 1),(3 n+1,2),(3 n+2,3)\}$	
B_{2}	$\{(i, i+4) \mid i=3 n+3, \ldots, 6 n\} \cup\{(6 n+1,3 n+3),(6 n+$	One, two or four cycles according to the congruency
	$2,3 n+4),(6 n+3,3 n+5),(6 n+4,3 n+6)\}$	of n modulo 4, with weights 4 and $3 n-2$
C_{2}	$\{(i, 3 n+i+6) \mid i=1, \ldots, 3 n-2\} \cup\{(3 n-1,3 n+$	Prismatic edges between W_{1} and W_{2} of weights 4
	$3),(3 n, 3 n+4),(3 n+1,3 n+5),(3 n+2,3 n+6)\}$	and $3 n+6 \equiv 3 n-1 \bmod q$

The graph H_{2} is cubic and has weights $\pm\{3,4,3 n-2,3 n-1\}$.
Let G_{1} be a graph on q vertices labelled from 0 through $q-1$ and defined as follows:

$$
G_{1}:= \begin{cases}H_{1}-\{(1,12),(6,17)\}+\{(0,1),(0,6),(0,12),(0,17)\} & \text { if } n=3 \\ H_{1}-\left\{(1,3 n+3),\left(\left\lfloor\frac{3 n+1}{2}\right\rfloor, 3 n+2+\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)\right\} & \\ +\left\{(0,1),\left(0,\left\lfloor\frac{3 n+1}{2}\right\rfloor\right),(0,3 n+3),\left(0,3 n+2+\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)\right\} & \text { if } n \geq 4\end{cases}
$$

Note that for $n=3$ the independent edges $(1,3 n+3)=(1,12)$ and $\left(\left\lfloor\frac{3 n+1}{2}\right\rfloor, 3 n+2+\left\lfloor\frac{3 n+1}{2}\right\rfloor\right)=(5,6)$ of H_{1} have a common neighbour, namely $N_{H_{1}}(12) \cap N_{H_{1}}(16)=\{14\}$, and Lemma 9 cannot be applied. This is why we choose the independent edges $(1,12)$ and $(6,17)$ in H_{1} with pairwise disjoint neighbourhoods to define G_{1}.

All together the weights of H_{1} and G_{1} modulo q give

$$
\mathcal{P}_{\omega}:= \begin{cases} \pm\{1,2,6,9,10,11\} & \text { if } n=3 \tag{4}\\ \pm\left\{1,2, \frac{3 n+1}{2}, \frac{3 n+5}{2}, 3 n, 3 n+1,3 n+2\right\} & \text { if } n \text { is odd and } n \geq 5 \\ \pm\left\{1,2, \frac{3 n}{2}, \frac{3 n+6}{2}, 3 n, 3 n+1,3 n+2\right\} & \text { if } n \text { is even }\end{cases}
$$

Let G_{2} be a graph on q vertices labelled from 0 through $q-1$ and defined as follows: $G_{2}:=H_{2}-\{(3,3 n+9)$, (4, $3 n+$ $10)\}+\{(0,3),(0,4),(0,3 n+9),(0,3 n+10)\}$.

All together the weights of H_{2} and G_{2} modulo q give

$$
\begin{equation*}
\mathscr{L}_{\omega}:= \pm\{3,4,3 n-5,3 n-4,3 n-2,3 n-1\} . \tag{5}
\end{equation*}
$$

Lemma 13. The graphs H_{1}, H_{2}, G_{1} and G_{2} have girth at least 5 .
Proof. Similar to Lemmas 7, 8, 10 and 11.
Note that in general, the girth of H_{1} is exactly 5 , since $(1,2,3,3 n+5,3 n+3)$ is a 5-cycle in H_{1}.
Theorem 14. Let q be a prime such that $q=6 n+5$, for $n \geq 3$. Then, there is $a(q+3-u)$-regular graph of girth 5 and order $2\left(q^{2}-q u-1\right)$ for each $0 \leq u \leq q-1$.
Proof. Let $S=T=\{0\}$ and choose H_{i}, G_{i} for $i=1,2$ as previously described in this subsection. By (4) and (5) and Lemma 13, all the hypothesis of Theorem 5 are satisfied. Thus, the graphs $B_{q}^{*}(S, T, u)$ are $(q+3-u)$-regular of girth 5 and order $2\left(q^{2}-u-1\right)$ for each $0 \leq u \leq q-1$. The girth of $B_{q}^{*}(S, T, u)$ is exactly 5 by Remark 6 .

6. Small cases

We now present some ad hoc constructions of graphs $B_{q}^{*}(S, T, u)$ for small prime values of q. The first two constructions complete the proof of Theorem 12 and we treat them here separately since some of the graphs in Section 5 have girth smaller than 5 when $n<5$. Furthermore, we also obtain a 13-regular graph of girth 5 on 236 vertices from B_{11} which improves the bound found by Exoo in [17] as well as a 20-regular graph of girth 5 of order 572 from B_{17} which improves the bound found by Jørgensen [24] (cf. Table 1).

6.1. $q=13$

In this case, let $S=T=\{0\}, H_{1}, H_{2}, G_{1}$ and G_{2} be as in Fig. 1. The graphs G_{i} are obtained from H_{i} deleting two independent edges satisfying the hypothesis of Lemma 9 and joining all their end-vertices to a new vertex, say 0 , for $i=1$, 2 . Specifically $G_{1}=H_{1}-\{(1,10),(3,12)\}+\{(0,1),(0,3),(0,10),(0,12)\}, G_{2}=H_{2}-\{(2,8),(5,11)\}+\{(0,2),(0,8),(0,5),(0,11)\}$ and as unlabelled graphs G_{1} is isomorphic to G_{2}. Hence, the graphs G_{1} and G_{2} have order 13 , girth 5 and are bi-regular with one vertex of degree four and all other vertices of degree three.

Note that as unlabelled graphs H_{1} is isomorphic to H_{2} and they are both isomorphic to one of the two cubic graphs on 12 vertices of girth 5, specifically \#84 in the list of cubic graphs of order 12 from [27,31].

Lemma 15. Let $S=T=\{0\}, H_{1}, H_{2}, G_{1}$ and G_{2} be as described above. Then the graph $B_{13}^{*}(0,0, u)$ is a $(16-u)$-regular graph of girth 5 and order $336-26 u$, for $0 \leq u \leq 12$.
Proof. The weights of these graphs are $\mathcal{P}_{\omega}= \pm\{1,3,4\}$ and $\mathcal{L}_{\omega}= \pm\{2,5,6\}$. Thus, by Theorem 5, the graph $B_{13}^{*}(0,0, u)$ is a $(16-u)$-regular graph of girth 5 and order $26(13-u)-2=336-26 u$, for $0 \leq u \leq 12$.

- For $u=0$, we obtain a 16 -regular graph of girth 5 and order 336 , with exactly the same order as the $(16,5)$-graph that appears in [24].
- For $u=1$, we obtain a 15 -regular graph of girth 5 and 310 vertices which has two vertices less than the (15,5)-graph that appears in [24].
- For $u=2$ we obtain a 14-regular graph of girth 5 and 284 vertices which has four vertices less than the $(14,5)$-graph that appears in [24].
6.2. $q=19$

Let $S=T=\{0\}$ and let H_{1}, H_{2}, G_{1} and G_{2} be as in Fig. 2. The graphs G_{i} are obtained from H_{i} deleting two independent edges satisfying the hypothesis of Lemma 9 and joining all their end-vertices to a new vertex, say 0 , for $i=1,2$. Specifically $G_{1}=H_{1}-\{(1,10),(9,16)\}+\{(0,1),(0,9),(0,10),(0,16)\}$ and $G_{2}=H_{2}-\{(8,13),(11,15)\}+$

Fig. 1. The graphs H_{i} and G_{i} for $i=1,2$ and $q=13$.
$\{(0,8),(0,13),(0,11),(0,15)\}$. Hence, the graphs G_{1} and G_{2} have order 19 , girth 5 and are bi-regular with one vertex of degree four and all other vertices of degree 3 .

Lemma 16. Let $S=T=\{0\}, H_{1}, H_{2}, G_{1}$ and G_{2} be as described above. Then the graph $B_{19}^{*}(0,0, u)$ is a $(22-u)$-regular graph of girth 5 and order $720-38 u$, for $0 \leq u \leq 18$.

Proof. The weights of these graphs are $\mathcal{P}_{w}= \pm\{1,2,3,7,9\}$ and $\mathcal{L}_{w}= \pm\{4,5,6,8\}$. Thus, by Theorem 5 , the graph $B_{19}^{*}(0,0, u)$ is a $(22-u)$-regular graph of girth 5 and order $38(19-u)-2=720-38 u$, for $0 \leq u \leq 18$.

- For $u=0$, we obtain a 22 -regular graph of girth 5 and order 720 , with exactly the same order as the $(22,5)$-graph that appears in [24].
- For $u=1$, we obtain a 21-regular graph of girth 5 and 682 vertices which has two vertices less than the $(21,5)$-graph that appears in [24].

6.3. $q=11$

For $q=11$ we are going to remove 6 vertices from B_{11} instead of 2 , but we will construct a $(q+2)$-regular graph instead of a $(q+3)$-regular one.

Lemma 17. Let $S=\{0,1,2,4,6,8\}$ and $T=\emptyset$. Let $H_{1}=(3,5,10,7,9)$ be a 5 -cycle with weights $\pm\{2,3,5\}, G_{1}=$ $(0,2,4,6,8,10,1,3,5,7,9)$ be a 11-cycle with weight $\{ \pm 2\}$, and $H_{2}=G_{2}=(0,1,2,3,4,5,6,7,8,9,10)+(0,4)+$ $(2,6)+(1,8)$ be a 11 -cycle with three chords and weights $\pm\{1,4\}$ (see Fig. 3). Then the graph $B_{11}^{*}(S, T, u)$ is a $(13-u)$-regular graph of girth 5 and order $22(11-u)-6=236-22 u$, for $u \leq 10$. In particular, we obtain a 13-regular graph of girth 5 and order 236 for $u=0$.

Proof. Since $\mathcal{P}_{\omega}= \pm\{2,3,5\}$ and $\mathscr{L}_{\omega}= \pm\{1,4\}$, the thesis follows by Theorem 5 .
Note that the graph $B_{11}^{*}(S, T, 0)$ has four vertices less than the one constructed in [17].
6.4. $q=17$

For $q=17$ we are going to remove 6 vertices instead of 2 and construct a $(q+3)$-regular graph, obtaining a better result than the one obtained in [10].

Fig. 2. The graphs H_{i} and G_{i} for $i=1,2$ and $q=19$.

Fig. 3. The graphs $H_{2}=G_{2}$ for $q=11$.

Lemma 18. Let $S=T=\{7,10,12\}, H_{1}, H_{2}, G_{1}$ and G_{2} be as in Fig. 4. The graphs G_{1} and G_{2} have order 17, girth 5 and are bi-regular with three vertices of degree four and all other vertices of degree 3 . Then the graph $B_{17}^{*}(S, T, u)$ is a ($20-u$)-regular graph of girth 5 and order $572-34 u$, for $u \geq 16$.

Proof. In this case $\mathcal{P}_{w}= \pm\{1,3,4,5\}$ and $\mathscr{L}_{w}= \pm\{2,6,7,8\}$, thus, by Theorem 5, the graph $B_{17}^{*}(S, T, u)$ is a (20 $\left.-u\right)-$ regular graph of girth 5 and order $34(17-u)-6=572-34 u$ for $u \leq 16$.

In [24] the author constructs $(k, 5)$-graphs of order $32(k-2)$, while we have constructed $(k, 5)$-graphs of order $34(k-3)-6$ which have $44-2 k$ fewer vertices, for $k \in\{4, \ldots, 20\}$. In particular, we obtain a 20 -regular graph of girth 5 and order 572 which has four vertices less than the one constructed in [24]. Note also that as unlabelled graphs $H_{1} \cong H_{2}$ and they are both isomorphic to the Heawood graph.

Fig. 4. The graphs H_{i} and G_{i} for $i=1,2$ and $q=17$.

Acknowledgements

We wish to thank the anonymous referees for their valuable suggestions. The research was supported by the Ministerio de Educación y Ciencia, Spain, the European Regional Development Fund (ERDF) under project MTM2011-28800-C02-02, the Catalonian Government under project 1298 SGR2009, CONACyT-México under project 57371 and PAPIIT-México under projects IN101912, IN104609.

References

[1] M. Abreu, M. Funk, D. Labbate, V. Napolitano, On (minimal) regular graphs of girth 6, Australas. J. Combin. 35 (2006) 119-132.
[2] M. Abreu, M. Funk, D. Labbate, V. Napolitano, A family of regular graphs of girth 5, Discrete Math. 308 (10) (2008) 1810-1815.
[3] M. Abreu, C. Balbuena, D. Labbate, Adjacency matrices of polarity graphs and other C_{4}-free graphs of large size, Des. Codes Cryptogr. 55 (2-3) (2010) 221-233.
[4] G. Araujo, D. González-Moreno, J.J. Montellano, O. Serra, On upper bounds and conectivity of cages, Australas. J. Combin. 38 (2007) $221-228$.
[5] G. Araujo-Pardo, C. Balbuena, T. Héger, Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages, Discrete Math. 310 (2010) $1301-1306$.
[6] G. Araujo-Pardo, C. Balbuena, Constructions of small regular bipartite graphs of girth 6, Networks 57-2 (2011) 121-127.
[7] C. Balbuena, Incidence matrices of projective planes and other bipartite graphs of few vertices, SIAM J. Discrete Math. 22 (4) (2008) 1351-1363
[8] C.T. Benson, Minimal regular graphs of girth eight and twelve, Canad. J. Math. 18 (1966) 1091-1094.
[9] N. Biggs, Algebraic Graph Theory, Cambridge University Press, New York, 1996.
[10] N. Biggs, Construction for cubic graphs with large girth, Electron. J. Combin. 5 (1998) \#A1.
[11] J.A. Bondy, U.S.R. Murty, Graph Theory, in: Springer Series: Graduate Texts in Mathematics, vol. 244, 2008.
[12] G. Brinkmann, B.D. McKay, C. Saager, The smallest cubic graphs of girth nine, Combin. Probab. Comput. 5 (1995) 1-13.
[13] W.G. Brown, On Hamiltonian regular graphs of girth six, J. Lond. Math. Soc. 42 (1967) 514-520.
[14] P. Dembowski, Finite Geometries, Springer, New York, 1968, reprint 1997.
[15] P. Erdös, H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Uni. Halle (Math. Nat.) 12 (1963) $251-257$.
[16] G. Exoo, A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15 and 16, Electron. J. Conbin. 3 (1996).
[17] G. Exoo, Regular graphs of given degree and girth, http://ginger.indstate.edu/ge/CAGES.
[18] G. Exoo, R. Jajcay, Dynamic cage survey, Electron. J. Combin. 15 (2008) \#DS16.
[19] W. Feit, G. Higman, The non-existence of certain generalized polygons, J. Algebra 1 (1964) 114-131.
[20] M. Funk, Girth 5 graphs from elliptic semiplanes, Note Mat. 29 (suppl. 1) (2009) 91-114.
[21] A. Gács, T. Héger, On geometric constructions of (k, g)-graphs, Contrib. Discrete Math. 3 (1) (2008) 63-80.
[22] P. Hafner, Geometric realisation of the graphs of McKay-Miller-Širáň, J. Combin. Theory Ser. 90 (2004) 223-232.
[23] D.A. Holton, J. Sheehan, The Petersen Graph, Cambridge University, 1993.
[24] L. Jørgensen, Girth 5 graphs from difference sets, Discrete Math. 293 (2005) 177-184.
[25] F. Lazebnik, V.A. Ustimenko, Explicit construction of graphs with an arbitrary large girth and of large size, Discrete Appl. Math. 60 (1995) $275-284$.
[26] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (1999) 137-146.
[27] M. Meringer, Regular graphs, http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html.
[28] M. O'Keefe, P.K. Wong, A smallest graph of girth 10 and valency 3, J. Combin. Theory Ser. 29 (1980) 91-105
[29] M. O'Keefe, P.K. Wong, The smallest graph of girth 6 and valency 7, J. Graph Theory 5 (1) (1981) 79-85.
[30] W.T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. (1947) 459-474.
31] Wolfram Alpha http://www.wolframalpha.com/
[32] P.K. Wong, Cages-a survey, J. Graph Theory 6 (1982) 1-22.

[^0]: * Corresponding author.

 E-mail addresses: marien.abreu@unibas.it (M. Abreu), garaujo@matem.unam.mx (G. Araujo-Pardo), m.camino.balbuena@upc.edu (C. Balbuena), domenico.labbate@unibas.it (D. Labbate).

