mates for virological response (VR; viral load levels <50 copies/ml), immunorecov-
yery (change in CD4 cells/μl from baseline to week 96), incidence of diarrhoea, nausea and rash were generated by Bayesian mixed treatment comparison (MTC). Point estimates were reported with corresponding 95% credible intervals. RESULTS: In total, 6 unique studies and 2 study extensions were included; consisting of 3 ATV/r, 1 DRV/r, 5 LPV/r, and 5 EFV treatment arms. Pooled MTC estimates for VR at week 48 were 80% (95% CR: 78.2%-81.6%) for ATV/r, 74.3% (72.9%-75.7%) for DRV/r, 74.9% (73.1%-76.8%) for LPV/r, and 74.9% (73.1%-76.8%) for EFV. The odds ratio (OR) (posterior mean [95% credible interval]) for the indirect comparison of telaprevir versus boceprevir was 2.70 [1.02-5.80] weeks PR) versus PR was respectively 12.56 [7.30-24.43] and 5.12 [2.90-10.30]. The OR for the indirect comparison of telaprevir versus boceprevir was 1.46 [0.89-2.5] (probability(OR=1) = 0.931). In treatment-experienced patients, the OR of telaprevir (12 weeks + RGT 24/48 weeks PR) versus PR was respectively 12.56 [7.30-24.43] and 5.12 [2.90-10.30]. The OR for the indirect comparison of telaprevir versus boceprevir was 2.70 [1.02-5.80] (probability(OR=1) = 0.978) for all patients, and 3.63 [1.28-9.7] and 1.39 [0.08-6.05] for prior relapsers and partial responders respectively. CONCLUSIONS: In the absence of direct comparative head-to-head studies between telaprevir versus boceprevir for the treatment of chronic HCV genotype 1 patients, MTC-based indirect comparison suggests better efficacy for telaprevir in both treatment-naïve and treatment-experienced patients compared to RGT boceprevir. RESULTS: Twelve publications were identified and included in the systematic review and MTC. In treatment-naïve patients, the odds ratio (OR) (posterior mean [95% credible interval]) for telaprevir (12 weeks + RGT 24/48 weeks PR) versus RGT PR was respectively 3.76 [2.79-5.22] and 2.96 [2.23-4.01]. The OR for the indirect comparison of telaprevir versus boceprevir was 1.46 [0.89-2.5] (probability(OR=1) = 0.931). In treatment-experienced patients, the OR of telaprevir (12 weeks + 48 weeks PR) and boceprevir (32 weeks + RGT 24/48 weeks PR) versus PR was respectively 12.56 [7.30-24.43] and 5.12 [2.90-10.30]. The OR for the indirect comparison of telaprevir versus boceprevir was 2.70 [1.02-5.80] (probability(OR=1) = 0.978) for all patients, and 3.63 [1.28-9.7] and 1.39 [0.08-6.05] for prior relapsers and partial responders respectively. CONCLUSIONS: In the absence of direct comparative head-to-head studies between telaprevir versus boceprevir for the treatment of chronic HCV genotype 1 patients, MTC-based indirect comparison suggests better efficacy for telaprevir in both treatment-naïve and treatment-experienced patients compared to RGT boceprevir. RESULTS: Twelve publications were identified and included in the systematic review and MTC. In treatment-naïve patients, the odds ratio (OR) (posterior mean [95% credible interval]) for telaprevir (12 weeks + RGT 24/48 weeks PR) versus PR was respectively 3.76 [2.79-5.22] and 2.96 [2.23-4.01]. The OR for the indirect comparison of telaprevir versus boceprevir was 1.46 [0.89-2.5] (probability(OR=1) = 0.931). In treatment-experienced patients, the OR of telaprevir (12 weeks + 48 weeks PR) and boceprevir (32 weeks + RGT 24/48 weeks PR) versus PR was respectively 12.56 [7.30-24.43] and 5.12 [2.90-10.30]. The OR for the indirect comparison of telaprevir versus boceprevir was 2.70 [1.02-5.80] (probability(OR=1) = 0.978) for all patients, and 3.63 [1.28-9.7] and 1.39 [0.08-6.05] for prior relapsers and partial responders respectively. CONCLUSIONS: In the absence of direct comparative head-to-head studies between telaprevir versus boceprevir for the treatment of chronic HCV genotype 1 patients, MTC-based indirect comparison suggests better efficacy for telaprevir in both treatment-naïve and treatment-experienced patients compared to RGT boceprevir. RESULTS: Twelve publications were identified and included in the systematic review and MTC. In treatment-naïve patients, the odds ratio (OR) (posterior mean [95% credible interval]) for telaprevir (12 weeks + RGT 24/48 weeks PR) versus PR was respectively 3.76 [2.79-5.22] and 2.96 [2.23-4.01]. The OR for the indirect comparison of telaprevir versus boceprevir was 1.46 [0.89-2.5] (probability(OR=1) = 0.931). In treatment-experienced patients, the OR of telaprevir (12 weeks + 48 weeks PR) and boceprevir (32 weeks + RGT 24/48 weeks PR) versus PR was respectively 12.56 [7.30-24.43] and 5.12 [2.90-10.30]. The OR for the indirect comparison of telaprevir versus boceprevir was 2.70 [1.02-5.80] (probability(OR=1) = 0.978) for all patients, and 3.63 [1.28-9.7] and 1.39 [0.08-6.05] for prior relapsers and partial responders respectively. CONCLUSIONS: In the absence of direct comparative head-to-head studies between telaprevir versus boceprevir for the treatment of chronic HCV genotype 1 patients, MTC-based indirect comparison suggests better efficacy for telaprevir in both treatment-naïve and treatment-experienced patients compared to RGT boceprevir.