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In this paper we study the existence of solution for two different eigenvalue
problems. The first is nonlinear and the second is semilinear. Our approach is
based on results from the nonsmooth critical point theory. In the first theorem we
prove the existence of at least two nontrivial solutions when A is in a half-axis. In
the second theorem (based on a nonsmooth variant of the generalized mountain
pass theorem), we prove the existence of at least one nontrivial solution for every
A€ R, © 1999 Academic Press
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1. INTRODUCTION

In this paper we study nonlinear and semilinear eigenvalue problems
with discontinuities. Let Z ¢ R" be a bounded domain with a C! bound-
ary I'and f: Z X R = R be such that f(z,-) is locally bounded for every
z € Z. Since f need not be continuous in its second variable, we introduce
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the following auxiliary functions:

fo(z,x) = lim essinf f(z,y)
€l0|y—xl<e

and

fi(z, x) = Ii?g esssup f(z,y).

ly—xl<e

Note that if the one-sided limits f(z, x7) and f(z, x™) exist at (z, x),
then

fo(z,x) = min{f(z,x7), f(z,x")}

and
fi(z,x) = max{f(z,x7), f(z, x"}.

With the interval [ f,(z, x), fi(z, x)] filling in the gaps at the discontinu-
ity point of f(z,-), we consider the following multivalued elliptic eigen-
value problems:

~div([| Dx(x) """ Dx(2)) € A[ fo( 2, x(x)), ful 2, x(2))]

x|r =0, 2<p (1)
and
- ':le(aij(Z)D,‘x(Z))) — Ax(A) € [ fo(z, x(x)), fi(z, x(2))] |
x|r = 0
(2)

Here D = grad and D; = 9/9z;.

Problem (1) was studied for p = 2 (semilinear case) by Browder [3],
Pohozaev [12] and Chang [4, 5]. In [3, 12], f(z,-) is assumed to be
continuous, while in [4] f(z, - ) is required to be monotone. Chang studied
the problem using a nonsmooth Lagrange multiplier approach. In all these
works, existence of only one nontrivial solution (eigenvalue) is proved,
while in the present paper by using a variational approach we prove the
existence of two nontrivial solutions. Related results for the semilinear
problem can be found in Massabo [10] and Massabo—Stuart [11].

Problem (2) was studied by Rabinowitz [13], with f continuous. Our
variational approach here is based on a nonsmooth version of the
Palais—Smale condition introduced by Chang [5].
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2. PRELIMINARIES

As mentioned earlier, our approach is variational and uses the non-
smooth critical point theory for locally Lipschitz functionals due to
Chang [5]. For easy references, we recall here the main definition and
results of this theory.

Let X be a Banach space and X™ its topological dual. Throughout
this paper we assume that f: X — R is locally Lipschitz, i.e., for each
x € X there exists a neighborhood % of x and a constant & = k(%) such
that |f(y) — f(2)| < klly — z|| for all y,z € . It is well known that a
proper, convex, and lower semicontinuous function g: X — R U {eo} is
locally Lipschitz in the interior of its effective domain: dom g = {x € X:
g(x) < «}. Given y € X, we can define a “generalized directional deriva-
tive” of f at x, in the direction of y, by

Fo(xiy) = lim supf(x+h+Ay)_f(x+h).
h—0,110 A

Since f°(x; - ) is sublinear and continuous, it is the support function of a
convex set df(x), i.e.,

af(x) = {x* € X*: (x*,y) <f%x;y)forall y € X}.

We call df(x) the subdifferential of f at x. Evidently, 9f(x) is nonempty,
convex, and w*-compact at every x € X. If f is also convex, then df(x)
coincides with the subdifferential in the sense of convex analysis, and
fOox; ) =f'(x;-), where f'(x;-) is the usual directional derivative of
convex analysis, i.e., f'(x; y) = lim, o[(f(x + Ay) — f(x))/A]. The subdif-
ferential operator Jf has the following properties:

@ a(f, + f,)(x) € af(x) + df,(x) for all locally Lipschitz f;, f,:
X - R
) I(Af)x) = Araf(x)forall A € R

() x — df(x)is usc from X with the norm topology into X* with
the weak* topology.

(d) If for each y in some neighborhood of x, f admits a Gateaux
derivative Df(y) and Df: X — X* is continuous, then df(x) = {Df(x)}.

(e) 0 e 9f(x)if x is a local minimum of f.

Remark 2.1. An extension of a well-known result of Rademacher (see
Christensen [6]) says that “If X,Y are separable Banach spaces with Y
reflexive, and f: X — Y is locally Lipschitz, then f is Gateaux differen-
tiable on a subset D; with X \ D, being Haar-null in X.”
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In the variational approach one will look for the critical points of an
appropriately defined “energy functional.” Due to the presence of discon-
tinuity, the energy functional is not C* but only locally Lipschitz. So, the
notion of critical points is defined as follows.

DerINITION 2.2. A point x, € X is said to be a critical point of f if
0 € df(xy).

A basic tool in the variational method is a compactness type condition
on the energy functional, known as the Palais—Smale condition, and
hereafter denoted by PS condition. In the present situation with a locally
Lipschitz energy functional, the PS condition takes the following form:

DeriNniTION 2.3. A locally Lipschitz functional f: X — R is said to
satisfy the PS condition if any sequence {x,}, along which {f(x,)} is
bounded and m(x,) = min[||x*||x~: x* € df(x,)] = 0 as n — o, pos-
sesses a convergent subsequence.

Remark 2.4. When X is reflexive, another equivalent definition of the
nonsmooth PS condition, suggested by the variational principle of Ekeland,
was introduced by Costa—Goncalves [7].

Using the compactness notion, Chang [5] proved the following non-
smooth version of the well-known “Mountain Pass Theorem,” originally
due to Ambrosetti—Rabinowitz [1]. Here B, = [x e X: x|l < p} and dB,
={x eX:|llxl = p}

THEOREM 2.5.  Assume that X is a reflexive Banach space and f: X — R
is a locally Lipschitz function which satisfies the PS condition and such that
() f0) =0, flss, = & for some p, £ > 0, and
(i) f(y) <0 for somey € X \ B,

Then f possesses a critical point x with f(x) > ¢&.

In the study of Problem (1) we will use the first eigenvalue of the
following quasilinear eigenvalue problem:

—div(lle(x)”r2 Dx(z)) = AMx(2)*x(z) inZz 3)
xlr =0
By Lindqvist [9], the first eigenvalue A, of (3) exists, and is positive,
simple, and isolated. A corresponding eigenfunction u, € W ?(Z) N
L*(Z) can be chosen so that u,(z) > 0 a.e. on Z. Moreover, A, is the
minimum of the Rayleigh quotient, i.e.,

1 Dxl;

Cx
(B3}

Ay = min

e wWhr(Z)]|.
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3. EXISTENCE THEOREM FOR PROBLEM (1)

For our study of the nonlinear eigenvalue problem (1), we will need the
following assumptions for f. Let F(z,x) = ({f(z, r) dr denote the poten-
tial of f(z,-).

H(f),: f: Z X R — Ris a Borel measurable function such that

() f,, f, are both finite, and N-measurable (i.e., for every mea-
surable x: = Z —» R, z = f,(z, x(2)), f(z, x(2)) is measurable, a property
called the “superpositional measurability’).

(i) With some a e L(Z),c=20and 0 < 6 <p — 1, |f(z, P <
a(z) + clr|’ forae. z € Zand all r € R.

(i) lim,  ,|f(z, OI/Irl?~* < A, uniformly for a.e. z € Z.
(iv) F(z,r) > 0forae. z€ Z and some r € R.

We define J,V: W ?(Z) - R by
1
J(x) = —IDxll} and V(x) = [ F(z,x(z)) dz
p z

It follows from [5] that V" is locally Lipschitz. It is also clear that J is
continuous and convex, and hence locally Lipschitz.

We say that x € W 7(Z) is a solution of Problem (1) if there exists a
function g € LU(Z) with f(z,x(2)) < g(2) < fi(z,x(z)) a.e. on Z such
that

—div(|| Dx(x) P2 Dx(z)) =g(z) ae.onZ.

Such a solution is usually referred to as a strong solution.

THeorReM 3.1.  If H(f), holds, then there exists A, > O such that (1) has
at least two nontrivial solutions for every A > A,.

Proof. Define A: WE2(Z) - W19(Z) by

(A(x),y) =/Z||Dx(z)||p72(Dx(z),Dy(z))RN dz

for all x,y € W) ?(Z). Here {-,-) is the duality bracket for the pair
Wy 2(Z2), w1 4(Z)).
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Claim 1. A is monotone and demicontinuous, hence maximal mono-
tone. To prove this claim, for x, y € W ?(Z) we have

(A(x) —A(y), x =y

=Ljawnw*0ku»Du—yxnm~w
—anmnw*uwu»Du—yxnm~ﬂ
ZLMMﬂW&—LMMdWWw&W&

- LD Dy e+ [ D) e

> || Dxlly + 1Dylly — I1Dxll5 ™ I Dyll, — 1Dyl I Dxll,
by Hdlder’s inequality
= (D15~ = IDylly~ ) (ILDxll, = IDyll,).

From this it follows that A is monotone and in fact, strictly monotone.
Next we check the demicontinuity of A4. To this end, let x, — x in
W4 P(Z). Then for every y € W ?(Z) we have

(s = 4G = [ (D5, (D), D32

— | Dx(2) [P *(Dx(2), Dy(2))av) dz

Since x, = x in W ?(Z), Dx,, —» Dx in LY(Z) and we may assume that
DX,(z) = Dx(z) a.e. on Z. Using the generalized Lebesgue dominated
convergence theorem we have, as n — o,

[ 1D, P, (2), D))
= [ 1D (Dx(2), Dy(2)r dz,

which implies that

KA(x,) —A(x), 9| - 0.
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As y e WHP(Z) was arbitrary, it follows that A(x,) 5 Ax) in
w~t4(Z), and so A is demicontinuous (actually it is clear that from this
argument that A is continuous). Finally, recall that a monotone demicon-
tinuous and everywhere defined operator is maximal monotone (see, e.g.,
Zeidler [15]). This proves Claim 1.

Now we define R,: Wi ?(Z) - R by

1
R,(x) =J(x) — AWV(x) = ;IIDxII},’ - )\fZF(z,x(z)) dz.

Then R, is locally Lipschitz, and therefore
IR,(x) € dJ(x) —AdV(x) =A(x) — AV(x). (4)

Claim 2. R, satisfies the nonsmooth PS condition. To this end, let
{x,} € W} P(Z) be any sequence such that, with some M > 0 and m(x) =
inf{[x*],.: x* € dR,\(x)],

|R\(x,)| <M foralln>1, and m(x,) >0 asn — .

Here || - || (resp., || - || resp., || - ||, ) denotes the norm of W3#(Z) (resp., of
Ww-14(Z)). Recall that dR,(x,) is nonempty, w-compact, and convex.
Since |- ||, is w*-lower semicontinuous, we can find x* € dR,(x,) such
that m(x,) = llx¥ll,. By (4), x} = A(x,) — Ag, with some g, € JV(x,).
For every n > 1, we have from H(f) (ii)

n

1
M= Ry(x,) = —IDx I} = A[ F(z,x,(2)) dz
p z

1 p 6+1
> I—)IIDx,,Ilp — Mallgllx,ll, = Acyllx,ll

Let B=p/(6+ 1) > 1and B’ its conjugate exponent. By the Young’s
inequality with any € > 0, we have

(|’\|C1)B, e’
6+1 — + p

0+1
b o< ,

Acqllx, N7 < [Alellx, |l —|lx,Il5.
1 r 1 GBB B P
Therefore,
1 P (1 |Cl)ﬁ g p
R\(x,) = ;IIDxnllp = Mallgllx,ll, = T F” Alp
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Now since Allx,ll5 < [|Dx,|l5 for all n > 1, we get

B

R 1 €
A(x,) = B

(|)‘|Cl)3/

Dx |7 — A X -
| Dx |15 leellgllx, 11, Y

(5)

Choose € >0 so that 1/p > €?/(A, B). By (5), {x,} is a bounded
sequence in W ?(Z). Hence we may assume that x, —x in W27(Z)
and hence x, — x in L?(Z) (recall that W 7(Z) is embedded compactly
in L?(Z)). We now show that fy(z, x,(2)) < g,(2) < fi(z,x,(z)) ae.on Z
forall n > 1. So, let V: L?(Z) — R be defined by

V(x) = /ZF(z,x(z)) dz.

Evidently, V|W1p(z) V. From Chang [5] it follows that Vs locally
Lipschitz. By Theorem 2.2 of [5], we see that ¢V (x) c dV(x) € L4(Z) for
all x € W 7(Z). By the definition of subdifferentials we have

(91'/\(x) = {v eLYZ): f v(z)u(z)dz < I'/\O(x; u) forall u € L”(Z)}.
z
Making a substitution r(n) = x(z) + A(z) + niu(z) in

VO(x;u)

1, -
lim sup—|V(x+h+ ) —V(x+h
jim sup s [P(x+ o+ du) = V(x4 w)]

. 1 et h 4 au(2)
lim sup—/ fﬁ A zf(z,r) drdz,
h—0,110 A (x+h)z)

we obtain that

-~ ) 1 1
Vo(x;u) = h»l(l),nlwsqufzfo f(z,x(z) + h(z) + niu(z))
XAu(z) dndz
< / lim supflf(z,x(z) +h(z) + nAu(z))u(z) dndz
0

Z h—0,1]0

(Fatou’s lemma)

< f{u>0)f1(Z,X(Z))u(Z) dz + /;Ko)fo(z,x(z))u(z) dz.
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Thus, for v € d¥(x) and all y € L?(Z) we get

Lr@y@ds [ fzx@)y()d | folz0(2)y(2) de

Therefore, v(z) € [ f,(z, x(2)), fi(z, x(2))] a.e. on Z, which yields
fo(z,x,(2)) <g.(z) <fi(z,x,(z)) ae.onZ foralln>1.

By H(f),(i), {g,} is a bounded sequence in L7(Z) and so, we may
assume that g, —» g in L9(Z). Now

lim supKA(xn),xn —x) - Xg,, x, —x>] = limsup{x*, x, — x),

where (-, denotes the duality bracket for the pair (L*(Z), LY(Z))

ng
limsup{ A(x,),x, —x) — limsup A(g,, x, — X),,

< limsupll¢2 I, [lx, — xll = .

Consequently, limsup{ A(x,), x, —x) < 0.

Note that {A(x,)} € W~ *9(Z) is bounded and so we may assume that
A(x,) W in wt4(Z2). Since A is maximal monotone, it has property
(M) (see Zeidler [15]). Therefore, w = A(x) and { A(x,), x,,) = {A(x), x),
and thus [|Dx,|l, - | Dxll,. As Dx, - Dx in the uniformly convex space
LP(Z,R"), we have Dx, — Dx in L?(Z,R"). Hence x, — x in W;?(Z),
and this proves Claim 2.

Note by (5) that R, is bounded below, which together with Claim 2
allows the application of theorem 3.5 of [5] to show that

& = inf[Ry(x): x € WH?(2)]

is a critical value of R,. So there exists x, € W;?(Z) such that 0
IR, (x,). Thus A(x,) € A dV,(x,), and consequently ( A(x,) — Ag,y> =0
for all y € W§7(Z) and some g € dV,(x,). Therefore, A(x,) = Ag with
g € L«(Z). Using a generalized Green's formula due to Kenmochi
[8, Prop. 1.4], we have

—div(||DxA(z) P~ DxA(z)) =g(z) ae.onZ

X|r=0
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with g € LI(Z) satisfying fy(z, x,(2))) < g(2) < fi(z,x,(2)) ae. on Z.
Therefore, x, is a solution of Problem (1). We now show that x, # 0.
By H(f),(iv) and the fact that W 7(Z) is dense in L7(Z), there exists
some x € Wy ?(Z) such that V(x) > 0. So we can find A, > 0 such that
R,(x) < 0forall A > Ay. Hence, & < 0 = R,(0), which implies that x, # 0.

Next we establish the existence of a second nontrivial solution y, €
Wi P(Z). Due to H(f)(ii), there exist w < A, and & > 0 such that for
almost all ze Z we have |f(z,r)| < ulrl?~" for all |r| < &. Hence,
|F(z, )l < Cu/plrl” for all |r| < 8. From H(®f) (i), with a,(-) = a(-) +
¢/p € L*(Z), we have

|F(z,r)| < (a(z) + %)Irl < a,(2)

forall s <lrl<1landae. z< Zandwith p <p, <p*=Np/(N —p)
|F(z,7r)] < ay(z)lrIP* forall |r| > 1.

Let ¢, > 0 be large enough so that a,(z) < ¢,|r|”™ for a.e. z € Z and all
8 <Irl < 1. Thus, with ¢, = ¢, + ¢/p

I
|F(z,r)| < —Irl” + c,Ir[”* ae.on Z.
p

Therefore,

C2

1 M
R,(x) = —(1 — —)IIDxIIf,’ — [| Dx|| (6)
p M

\PL/P

Since u < A, p < p, and [|Dx|l, is an equivalent norm on Wy ?(Z), by
(6) we see that there exists p > 0 small enough such that R,(x) > 8> 0
for some B and all x satisfying [|Dx||, = p. This allows the application
of Theorem 2.5 to obtain y, € W #(Z) such that 0 € JR,(y,). Now as
above, from this inclusion we can conclude that y, is a solution of Prob-
lem (1). Moreover, x, #y, # 0, since R,(x,) < 0=R,0) <R,(y). 1

Remark 3.2. Theorem 3.1 provides the existence of multiple nontrivial
solutions of the eigenvalue Problem (1) with A € R running on a half line.
In contrast, Chang [5, theorem 5.5] deals with a semilinear eigenvalue
problem (i.e., p = 2) and proves existence of one nontrivial solution for
some value of A. Also, the present theorem extends to quasilinear eigen-
value problems with discontinuities Theorem 3.35 of Ambrosetti-
Rabinowitz [1].
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4. EXISTENCE THEOREM FOR (2)

In this section we prove an existence theorem for the semilinear eigen-
value problem (2). For this purpose, we introduce the following assump-
tions on the discontinuous term f.

H(),: f: Z X R — R is a Borel measurable function such that

(i) f,, f, are both finite and N-measurable;

(i) |f(z,nl <az2) + ¢,lr|’ for ae. z € Z, all r € R, and some
a, € L(Z)and 0 <s < (N + 2)/(N - 2),if N> 2;

i) lim, ol f(z, »I/Ir] = 0 uniformly for a.e. z € Z;

(iv) 0< 0F(z,r) <rf(z,r) for ae. z€ Z, all |r| > &, and some
0>2and £> 0;

V) rf(z,r)>0forae. ze Zandall r € R.

The assumptions on the coefficients of the partial differential operators
are the following, with 0 < ¢ <c;and 1/6 < c¢/2cy,

H@): With a; € L(Z) and a;; =a; for all 1 <i,j <N, for ae.
ze€ Z and all £ € RY we have

N

el < X a(2)&& < ol

ij=1

By a solution of (2) we mean a function x € H;(Z) such that with some
g € LA(Z) satisfying f,(z, x(2)) < g(2) < fi(z, x(2)) a.e. on Z, we have

N

— Y Di(a;(2)D;x(z)) — Ax(z) =g(z) ae.on Z.
ij=1

Our variational approach will be based on the following nonsmooth
version of Theorem 5.3 of Rabinowitz [13], whose proof can be carried out
the same way, except we need to use the nonsmooth deformation theorem,
Theorem 3.1, of Chang [5].

ProposITION 4.1. Let Y=V & X be a reflexive Banach space with
dimV <o, G: Y = R locally Lipschitz satisfying the nonsmooth PS condi-
tion and

(i) there exist p, a > 0 such that G(x) > a forallx € X with || x|| = p;

(ii)  there exist u € X and R > p such that G(x) < 0 for all x € §Q,
where Q ={veV: |lvll <1} ®{Bu:0< B <R} and JQ is the boundary
of QinV & span{u}.
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Then, ¢ = inf, . max, ., G(h(x)) = a is a critical value, where T' =
{h € C(Q,Y): his the identity on Q}.

Remark 4.2. (a) If G|, <0, and there exist u € 9B, N X and R > p
such that G(y) < 0 for all y € V' @ span{u} with ||yl > R,, then Gl, <0
for large R and Q defined as before. (b) A special case of this proposition
is the nonsmooth mountain pass theorem of Chang [5].

Using this proposition we can prove the following existence theorem for
Problem (2).

THEOREM 4.3.  Assume that H(f), and H(a) hold. Then Problem (2) has
a nontrivial solution for every A € R.

Proof. Let a: H}(Z) X H}(Z) - R be the bilinear Dirichlet form
defined by

a(xy) = | ¥ a a,(z) Dix(z) Dyy(z) dz

tjl

By H(a), a(-,-) is symmetric, bounded and coercive (i.e., a(x,x) >
cllxll®). Let 4 e Z(HXZ), H*(Z)) be the strongly monotone operator
defined by {A(x), y) = a(x, y), where < -, - ) denotes the duality bracket
for the pair (Hy(Z), H *(Z)). Invoking Theorem 7.C of Showalter [14]
(see also Theorem 22.G of Zeidler [15]), we see that A4 has a sequence {A,}
of positive eigenvalues with A, — o. The corresponding eigenvectors {¢,}
form an orthonormal basis of HO(Z) furnished with the equivalent inner
productz(x y) = a(x,y). So a(¢,, ¢,) =0 for k = m, and a(o,,, ¢,,) =
Al gl =1,

We first assume that A, < A < A, ;. Let V' =span{¢, }_,and X =V *
in Hy(Z). Also, define R,: Hy(Z) - R by

1 N
R\(x) = 3 Y fzaij(z) D;x(z) Djx(z) dz

i,j=1
1
—oM L@ = [ F(z.x(2)) d

For x € X, we have x =X, _ ;.1 B, ¢,, with B, € R. So we have

1 A
R =3 X (1 - A—)B,,% - V(%)

m>k+1 m
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where as before V(x) = [,F(z, x(2)) dz. By H(f),(iii), for any given € > 0
there exists 6 > 0 such that

|F(z,r)| < elrl* forae.ze Zandall |r| < 6.

On the other hand, from H(f),(ii) we have, for a.e. z € Z and all |r| > §,

c a,(z c
|F(z,r)| <ay(2)lrl + flrlerl = ( |1£|S) + ?1)|I'|SJrl

”al” Cq ) )
< ( ) n ? |r|.3+l _ ’ylr|.s+l.

65
Thus, for a.e. z € Z and all r € R we obtain |[F(z, r)| < elr|* + yIrI**!,
which implies that

[V (x)l S/le(Z’x(z))ldzsE./le(z)lzdz+7.[Z|x(2)|s+l'dz.

Note that s + 1 < 2N /(N — 2). Thus, by the Sobolev embedding theo-
rem, we conclude that Hj(Z) is embedded continuously in L***(Z).
Hence for each x € Hj(Z), with v,,y, > 0,

[V(x)] < yoellxll? + yllxl*

If [[x]l < (y,e/v,)Y ¢~ D, then [V(x)] < 2y,€llx])’.

Since € > 0 was arbitrary, we deduce that V(x) = o(||x||?). Therefore,
we can write

1
e o O LI )

Since A, < A < A, _,, we conclude that A/A, <1 for all m >k + 1,
and thus from (7) it follows that there exist p > 0 and « > 0 such that, for
all x € X with [[x|| = p,

R,(x) = a>0.

Next we show that there exists R > p such that R,(x) <0 for all
x € span{¢, }5t1 with |lx|| > R. To this end, let x € V. Then x=
vk _. B, b, with B, € R, and so

Ry\(x) =

N|

k A ,
mi_:l(l - E)Bm - fZF(z,x(z)) dz.
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We have

LF(z,x(z)) dz = ﬁx>o}j;X(Z)f(z,r) drdz—f

{x<0}

/»0 f(z,r)drdz.

x(2)
By H(f),(v), [,F(z, x(2))dz > 0. Hence

1 k A
EEE (1— A—)Béso

m

since A, < A < A, ,. Therefore, R,|; < 0. Now let x € span{¢, }**! and
assume that |[x|[=1. Then x = Z"“l,B ¢,, with g, € R. Hence for
n > 0 we have

1 k+1 A
Ry(nx) = 5 > (1 - )Bﬁnz = V(nx)
m=1 m

1 . A ey
< — _— — J—
<3 o Bism (nx)

With H(f),(iv), we obtain (see also Remark 2.13 of Rabinowitz [13])
F(z,r) 263|r|9—c4, with ¢;, ¢, > 0. (8)

which implies that V(x) = ¢,llxll§ — ¢,|Z]. Thus we have

A

1 A
R,\(Tix) < -(1- Bk+17] 3776”)5”2 + C4|Z|
2 )‘k+1

1 A
2 (1 - Aot )Bk2+1772 — e’ +clZl.

Since 0 > 2, it follows from the above inequality that R,(nx) — —o as
n — =. So, there exists R > p such that R,(x) < 0forall x € span{¢,,}:*1
with ||x]| > R.

Next we will check that R, satisfies the nonsmooth PS condition. To
this end, let {x,} € H}(Z) be such that |R,(x,)| < M for all n > 1, and
m(x,) - 0 as n —» . Let v, € JR,(x,) with |[v,ll, = m(x,). We have
v, = Ax, — Ax, —u, with u, € dV(x,) for all n > 1. Let 1/0< y<
min{3, ¢/(2¢,)}. Then for large n > 1, —y{v,, x,> < vllx,|l which implies
that

—y(A(x,),x,) + yAx,l5 + y(u,,x,), < ylx,l,
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where (-, - ), denotes the inner product in L2(Z). So, we have for some u,

M + yllx,ll = Ry(x,) = ¥{(A(x,), x,) + Azl + y(u,, x,),

c ) 1 )
> (E - Cl‘)/)HDanz + Ay = 5 |l

[ (F(z.5,(2)) = yu,(2)5,(2)) dz. (9)

From the proof of Theorem 3.1 we know that u,, € dV(x,) if and only if
folz, x,(2) <u,(2) <f(z,x(2) ae. on Z By H(),(iv) we see that
0F(z,r) < rfy(z,r) and 6F(z,r) < rfi(z,r) for almost all z € Z and all
lr| > & Thus

[ (ru(2)x,(2) = F(z.x,(2))) d2

= (vu(2)x,(2) = F(z,x,(2))) dz
{lx,|= ¢}

+ gﬁwunxnﬂ—ﬁ

{lx,l<

F(z,x,(2))dz
13

x| <

> '[{Ix,,lzg)(rg —1)F(z,x,(2))dz — /; }F(z,xn(z))dz.

lx,|< &

(10)

Using (8) we have

fﬂx ‘25}(79 - 1)F(z,x,(2))dz > f{ (v6 — 1)(cslx,(2)|" = c4) dz

x> ¢}

=(vy0 — 1)/Z(c3|xn(z)|6 - c4)dz

_(79_1)'/; (c3|xn(z)|6—c4)dz

[x,l< &}
> (y0 = 1)(csllx, I — e, ZI) = (v0 — 1)(c5€"1Z1 = ¢,| Z).
(11)
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Moreover, by H(f),(ii) we see that

f F(z,x,(z))dz <cg forsomecg > 0. (12)
{lx,l< ¢}

By combiing (9)-(12) we obtain, for some ¢g > 0,

¢ 2 1 2
M+ yllx, | = (E - 017)||Dx,,||2 + Ay = 5 Il

+ (v — Dcgllx, Iy — cg.
Since 6 > 2, Young’s inequality with € > 0 implies
llx,II5 < 8(e) + ellx,lIf

with 6(e) — «© as € | 0. Therefore,

¢ 2 1 0
M+ ylx || (5 - Clv)HDanz =[5 = v el

+(90 — Deglla, I§ — er(e)

with c,(e) = = as € | 0. Choose € > 0 such that vy — 1 > u,A(3 — Me;
then for some ¢g > 0

C
M+ Al > (3 - cly)qunn% — ¢ (13)

Since || Dx||, is an equivalent norm on H(Z), we infer that {x,} ¢ H}(Z)
is bounded. Hence we may assume that x, 5 xin H}(Z). Thus by the
Sobolev embedding theorem H}(Z) is embedded compactly in L**1(Z).
Therefore we also have that x, — x in L***(Z) since s + 1 < 2N /(N —
2). Recall that u, € 9V(x,) for all n > 1, and V' is locally Lipschitz on
L**Y(Z). So {u,} c L"(Z) is bounded, where 1/v + 1/(s + 1) = 1. But
L*(Z) is embedded compactly in H™*(Z) = H}(Z)*. Therefore, {u,} C
H™Y(Z) is relatively compact. Hence we may assume that u, — u in
H Y(Z)as n — ». With v, = A(x,) — Ax, —u, and |lv,ll, — 0, we have

A(x,) — Ax, > u=A(x) — Ax in Hﬁl(Z) as n — o,

Let j denote the embedding of Hy(Z) into H *(Z) (duality map). If
A& o(A), then x, =(A4 —A) v, +u,) > (A — 1) w=x in
Hy(Z) as n —» «. If A € 0(A), then A = A, for some m > 1. Hence
x, — p,(x,) =y in H}Z) as n — %, where p, denotes the orthogonal
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projection to the eigenspace corresponding to A,. As the eigenspace is
finite dimensional, we conclude that {x,} has a strongly convergent subse-
quence in H}(Z). In any case, R, satisfies the PS condition. Thus, when
A < A < A, we may apply Proposition 4.1 to obtain a critical point
of R,.

Now it remains to check the case when A < A;. To this end, set
x5 = (A(x), x) — Alxll3. Then |-|, is a norm on HX(Z) equivalent to
the usual norm, and

Ry(x) = Flxli = V(x).

As V(x) = o(||x]|?), which in turn implies V(x) = o(|x|3), it follows that
there exist p, « > 0 such that R,(x) > « > 0 forall |x|, = p. Let |x|, = 1.
By (8) we see that for every n > 0 we have

n? n?
Ry(mx) < 7|in — collxllfm® — ¢, = - callxllgn® — ¢,

which implies that R,(nx) - —ow as n — o.

To verify the PS condition, let {x,} € H}(Z) be a sequence such
that |R,(x,)l <M and m(x,) — 0. As before, let v, € JR,(x,) so that
vl = m(x,). Then v, = A(x,) — Aj(x,) — u, with u, € JV(x,). Argu-
ing as before, for n > 1 large enough and some ¢y > 0 we have

M 1| I\ >R 1| 13 - d
+ = > - — + —
Oxn)\ /\(xn) Hxn)\ Gj-zun(z)xn(z) Z

> (; - %)Ixnli + %fz(un(z)xn(z) —F(z,x,(2)))dz

11y,
> (E — 6)|xﬂ|A — Cy.

from which we deduce that {x,} ¢ H}(Z) is bounded. So we can extract a
strongly convergent subsequence, which implies that R, satisfies the PS
condition and thus all the condition of Proposition 4.1, when A < A,.

Therefore, for any A € R, we can apply Proposition 4.1 on R, and
deduce that it has a critical value ¢ > 0 with x, € Hy(Z), a corresponding
critical point, i.e., 0 € dR,(x,). Obviously, x, # 0. Also, since 0 = A(x,) —
Ax, —u, with u, € 9V(x,), we have for all y € C;(Z)

5 [ ay(2) Dox(2) D) de = [ (Ax(2) +1(2)(2) e

ij=1
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Since Ax, + u, € L*(z), from the definition of the distribution deriva-

tive it follows that, with f (z, x,(2)) < u,(2) < fi(z, x,(2)) ae. on Z, we
have

N
- Y. Di(a;;(z) Dix(z)) — Ax,(z) =u,(z) ae.onZ

So x, is a nontrivial solution of Problem (2). 1

Remark 4.4. Theorem 4.3 extends Theorem 5.16 of Rabinowitz [13]

where f(z, r) is assumed to be continuous and the differential operator is

th

e Laplacian.
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