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Abstract

Let an affine Weyl group Ŵ act as a group of affine transformations on a real vector space V . We analyze the Ŵ -orbit of a
regular element in V and deduce applications to Kostant’s formula for powers of the Euler product and to the representations of Ŵ
as permutations of the integers.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 20F55; 17B10

1. Introduction

This paper stems from the attempt to deepen two seemingly unrelated topics: on one hand the combinatorial
interpretation of Kostant’s recent results on the powers of the Euler product suggested in type A by Tate and Zelditch,
and on the other hand the problem of giving a uniform and conceptual description of certain affine Weyl groups as
permutations of the integers. The common denominator of these two subjects lies in their intimate connection with the
orbit of a distinguished vector under the action of an affine Weyl group. The results of the paper should be regarded for
the first topic as a generalization of Tate and Zelditch’s approach, and for the other as a systematic treatment of well-
established results on affine Weyl groups of the classical type. To be more precise, let us fix notation. Let (V, (·, ·)) be
a Euclidean space, ∆ a finite crystallographic irreducible root system in V , ∆+ a fixed positive system for ∆.

Set ρ =
1
2

∑
α∈∆+ α and let θ be the highest root of ∆. We define the dual Coxeter number h∨ of ∆ as

h∨
=

2(ρ,θ)
(θ,θ)

+ 1. The affine Weyl group Ŵ of ∆ is the group generated by reflections on V with respect to the

set of affine hyperplanes Hα,k = {x ∈ V | (x, α) = k}, α ∈ ∆+, k ∈ Z. For each q ∈ R+, we denote by Ŵq the
group generated by reflections in V with respect to the set of hyperplanes Hα,qk , α ∈ ∆+, k ∈ Z; thus Ŵq is naturally
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isomorphic to Ŵ . We notice that scaling the inner product by 1
q changes Ŵ into Ŵq (and does not change h∨). We

assume throughout the paper that

(θ, θ) =
1

h∨
. (1.1)

For each λ ∈ V , we denote by Ŵq · λ the orbit of λ under Ŵq .
A basic step in our work is the analysis of Ŵ 1

2
·ρ. A motivation for this study occurs in the framework of Kostant’s

work on Dedekind’s η function, which we now recall. Let g be a complex finite-dimensional semisimple Lie algebra,
h a Cartan subalgebra of g and ∆ the corresponding root system. Let V = h∗

R, the real span of a fixed set of simple
roots, endowed with the invariant form induced by the Killing form of g. (It is well-known that then (1.1) holds.)

If λ is a dominant weight let χλ denote the character of the irreducible g-module Vλ with highest weight λ. Set also
a = exp(2π i ·2ρ). Working on previous results of Macdonald, Kostant found the following remarkable expansion for
(certain) powers of the Euler product

∏
∞

m=1(1 − xm).

Theorem 1.1 ([10, Thm 3.1]).(
∞∏

m=1

(1 − xm)

)dim(g)

=

∑
λ dominant

χλ(a) dim(Vλ) x (λ+2ρ,λ). (1.2)

Moreover, χλ(a) ∈ {−1, 0, 1}.

In [11] Kostant has improved the previous formula determining the set Palc of weights which give a non zero
contribution in the sum (see Theorem 3.1 below). The main outcome is that

Palc = {λ dominant weight | λ + ρ ∈ Ŵ 1
2

· ρ}.

Moreover, he proves that the contribution of each λ ∈ Palc is determined by the parity of ` 1
2
(w), where w ∈ Ŵ 1

2
is

the element such that λ + ρ = w(ρ), and ` 1
2

is the length function on Ŵ 1
2
.

On the other hand, in [1], Adin and Frumkin made explicit, by using the well-known connection between dominant
weights and partitions, the combinatorial content of Kostant’s result in type A. Their result also makes it easy
to determine the sign of χλ(a). After the appearance of Kostant’s paper, a simple approach to the combinatorial
interpretation of Kostant’s result in type A using the affine Weyl group was explained by Tate and Zelditch in [15].
We shall obtain results analogous to those of [15] for all classical types and for G2. The exposition of these results is
the content of Section 3.

The crucial observation is that ρ is the unique element in the weight lattice of ∆ lying in the fundamental alcove
of Ŵ 1

2
. By the basic properties of the action of the affine group on V , this implies that Ŵ 1

2
· ρ is the set of weights

which lie in some alcove of Ŵ 1
2
, or, equivalently, which do not belong to any of the reflecting hyperplanes. Once

the root systems are explicitly described in coordinates, this allows us to easily describe Palc by purely arithmetical
conditions, for all types.

We shall write down this description only for the classical types and for G2. For each of these cases, we shall also
give a simple rule for recovering the parity of `(w) from w(ρ). For type A, we re-obtain the rule of [1]. The affine Weyl
group is the semidirect product of the finite Weyl group W of g and the group Q∨ acting on V by translations, hence
Ŵ 1

2

∼=
1
2 Q∨oW . Moreover, if w = tτv, where tτ is the translation by τ ∈

1
2 Q∨, and v ∈ W , then `(w) ≡ `(v) mod 2.

Our rule is in fact a sort of Euclidean algorithm which produces v and τ from w(ρ).
The last section of the paper deals with affine Weyl groups regarded as permutation groups of the set of integers.

This point of view was introduced by Lusztig [12] for type Ã, and generalized to the other classical cases by his
students (and other people). A thorough and systematic account of the combinatorial aspects of the theory can now be
found in Chapter 8 of [3].

From the explicit description of Ŵ 1
2

· ρ, we see that in cases Ã and C̃ we can quite naturally associate to each

w ∈ Ŵ 1
2

a permutation of Z, uniquely determined by w(ρ). In this way, we obtain an injective homomorphism of Ŵ 1
2

into S(Z), the group of permutations of Z, which agrees with the usual permutation representation. This suggests that
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the known permutation representations of all classical affine Weyl groups can be obtained from the explicit description
of the orbit Ŵq ·λ, for an appropriate choice of q and λ. In fact, the final outcome of our study is a uniform and concise
treatment of the known permutation representations of classical Weyl groups. Our point of view is also successful for
type G̃2. To our knowledge, a similar unified approach does not appear in the literature, even if the existence of
a connection between the orbit of a regular vector and the permutation representation of Ŵ is noted in Eriksson’s
unpublished Ph.D. Thesis [6].

We have already explained the content of Sections 3 and 4. The results of Section 2 are a kind of “context free”
preparation for the next Sections, and rely on the standard theory of the geometric action of affine Weyl groups. The
main contribution is Proposition 2.1.

2. Preliminary results

We retain the notation set at the beginning of the Introduction: V is an n-dimensional Euclidean space with inner
product (·, ·), ∆ is a finite crystallographic irreducible root system of rank n in V . Denote by W the corresponding
finite reflection group. Let Π = {α1, . . . , αn} be a set of simple roots for ∆ (with positive system ∆+). Denote by Q
the root lattice. For β ∈ Q set β∨

=
2β

(β,β)
, and let

Q∨
=

n∑
i=1

Zα∨

i ,

P =
{
λ ∈ h | (λ, α∨) ∈ Z ∀ α ∈ ∆

}
,

be the coroot and weight lattices. Denote by P+ the set of dominant weights:

P+
= {λ ∈ P | (λ, α∨) ≥ 0 ∀ α ∈ Π }.

Let ω1, . . . , ωn be the fundamental weights, so that P =
∑n

i=1 Zωi and ρ =
∑n

i=1 ωi . Remark that if θ∨
=∑n

i=1 miα
∨

i then h∨
= 1 +

∑n
i=1 mi .

Fix q ∈ R+. Recall the group Ŵq defined in the Introduction. Then Ŵq = Tq o W where Tq is the group of
translations of V by elements in q Q∨. It is clear that Ŵ1 is the usual affine Weyl group. Ours is a slight extension of
the usual definition which turns out to be very useful for our goals.

For α ∈ V \ {0}, β ∈ V denote by sα, tβ the reflection in α and the translation by β, respectively.
Recall that Ŵq is a Coxeter group with generators si = sαi for i = 1, . . . , n and s0 = tqθ∨sθ . We denote by `q the

length function with respect to this choice of generators. Set Hrq,α = {x ∈ V | (x, α) = rq} for r ∈ Z and α ∈ ∆+.
The alcoves of Ŵq are the connected components of V \

⋃
α∈∆+

r∈Z
Hrq,α . The fundamental alcove is the alcove

Cq =
{

x ∈ V | (x, α) > 0 ∀ α ∈ ∆+, (x, θ) < q
}
.

It is well-known that Ŵq acts on the set of alcoves and this action is simply transitive. This means that wCq is an
alcove and for each alcove C ′

q there exists a unique w ∈ Ŵq such that C ′
q = w(Cq). Moreover, Cq is a fundamental

domain for the action of Ŵq on V . In particular if y belongs to some alcove, then there exist unique w ∈ Ŵq and
x ∈ Cq such that w(x) = y. We shall tacitly use these standard properties in the following.

Definition 2.1. We say that v ∈ V is q-regular if it belongs to some alcove, or, equivalently,

v ∈ V \

⋃
α∈∆+

r∈Z

Hrq,α.

Any alcove can be expressed as an intersection (ranging over ∆+) of strips H rq
α = {x ∈ V | rq < (x, α) <

(r + 1)q}, (r ∈ Z). Denote by k(w, α) the integers such that

wCq =

⋂
α∈∆+

H k(w,α)q
α .

The collection {k(w, α)}α∈∆+ has been introduced by Shi and called the alcove form of w.
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Remark 2.2. Suppose that µ is q-regular. If µ ∈ wCq , then

k(w, α) =

⌊
(µ, α)

q

⌋
(2.1)

and

`q(w) =

∑
α∈∆+

∣∣∣∣⌊ (µ, α)

q

⌋∣∣∣∣ . (2.2)

To obtain (2.1), it suffices to remark that the r.h.s. counts the number of hyperplanes Hrq,α separating Cq from
wCq . Since the total number of separating hyperplanes Hrq,α when α ranges over ∆+, gives `q(w) (see [8, 4.5]),
(2.2) follows.

We state as a proposition the following elementary observation, which will play a prominent role in the sequel.

Proposition 2.1. Fix λ ∈ V . Let L be a lattice in V such that λ + L is Ŵq -stable and (λ + L) ∩ Cq = {λ}. Then

Ŵq · λ = {µ ∈ λ + L | for all α ∈ ∆, (µ, α) 6∈ qZ}.

Proof. Assume µ ∈ Ŵq · λ. Since λ + L is Ŵq -stable, µ ∈ λ + L . Moreover, since Ŵq acts on the set of alcoves, µ

belongs to some alcove, which means that for all α ∈ ∆, we have (µ, α) 6∈ qZ.
Conversely, assume that µ ∈ λ + L and, for all α ∈ ∆, (µ, α) 6∈ qZ. Then µ belongs to some alcove. Since Ŵq

acts transitively on the set of alcoves, and preserves λ+ L , there exists w ∈ Ŵq such that w(µ) ∈ Cq ∩ (λ+ L) = {λ}.
�

Remark 2.3. If λ + L is W -stable and q Q∨
⊂ L then λ + L is Ŵq -stable.

Lemma 2.2. We have Cq ∩ P = {ρ} if and only if

(θ, θ)

2
(h∨

− 1) < q ≤
(θ, θ)

2
(h∨

+ m − 1) (2.3)

where m = min1≤i≤n mi . In particular,

P ∩ C 1
2

= {ρ}.

Proof. Note that (ρ, θ) =
(θ,θ)

2 (h∨
−1), hence ρ ∈ Cq ∩ P if and only if (θ,θ)

2 (h∨
−1) < q. Obviously Cq ∩ P = {ρ}

if and only if ρ + ωi 6∈ Cq for all i = 1, . . . , n. This implies

q ≤ (ρ + ωi , θ) =
(θ, θ)

2
(h∨

− 1) +
(θ, θ)

2
mi =

(θ, θ)

2
(h∨

+ mi − 1)

as desired. �

Note that m = 1 if ∆ is not of type E8; in this latter case m = 2.

3. Application to Euler products

The first application of the above results is connected with the work of Kostant on the powers of the Euler product∏
∞

m=1(1 − xm).
Let g be a complex finite-dimensional semisimple Lie algebra, h a Cartan subalgebra of g and ∆ the corresponding

root system. In the notation of the previous section, we choose V to be the real span h∗

R of a fixed set of simple roots
endowed with the invariant form induced by the Killing form of g. With this choice we have indeed that (θ, θ) =

1
h∨

(see e.g. [10, Section 2]).
If λ ∈ P+, let χλ denote the character of the irreducible g-module Vλ with highest weight λ. Recall relation (1.2).

In [11, Theorem 2.4] a general criterion for determining the set

Palc = {λ ∈ P+
| χλ(a) 6= 0}

is provided (see also [9, Exercise 10.19]). Kostant’s theorem can be rephrased as follows:
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Theorem 3.1. We have

λ ∈ Palc ⇐⇒ λ + ρ ∈ Ŵ 1
2

· ρ.

Moreover, if λ + ρ = w(ρ), w ∈ Ŵ 1
2
, then χλ(a) = (−1)

` 1
2
(w)

.

Corollary 3.2. A weight λ belongs to Palc if and only if it is dominant and

(λ + ρ, α) 6∈
1
2

Z for any α ∈ ∆. (3.1)

In such a case, λ belongs to the root lattice Q and

χλ(a) = (−1)
∑

α∈∆+b2(λ+ρ,α)c. (3.2)

Proof. By Lemma 2.2 we have that C 1
2

∩ P = {ρ}. Recall that (θ, θ) =
1

h∨ . Then 1
2 Q∨

⊂ Q, hence we can apply

Proposition 2.1. Moreover, if λ + ρ ∈ Ŵ 1
2

· ρ, then λ + ρ ∈ ρ + Q +
1
2 Q∨

⊂ ρ + Q, hence λ ∈ Q. Finally (3.2)
follows readily from Theorem 3.1 and (2.2). �

In the rest of this section we provide an explicit rendering of Corollary 3.2 for the classical root systems. We find
combinatorial conditions that guarantee that λ ∈ Palc and determine χλ(a). For this last purpose it is convenient to
use the following general fact rather than the formula (3.2). Denote by ` the length function in W .

Lemma 3.3. If tτw ∈ Ŵq , τ ∈ q Q∨, w ∈ W , then `q(tτw) ≡ `(w) mod 2.

Proof. We shall use several times the following well-known fact from the theory of Coxeter groups (see e.g. [8, 5.8]):
cancellations occur in pairs, so that if an element has an expression in terms of the generators of a certain parity, its
length has the same parity. Since tτw has certainly an expression involving `q(tτ ) + `(w) generators, it suffices to
show that `q(tτ ) is even. Since q Q∨ is the Z-span of qW · θ∨ it suffices to prove that if u ∈ W , then `q(tqu(θ∨)) is
even. This follows from the relation tqu(θ∨) = us0sθ u−1. �

In the classical cases we shall explicitly determine for each λ ∈ Palc the unique element w ∈ Ŵ 1
2

such that

λ+ρ = wρ and compute τ ∈
1
2 Q∨, u ∈ W such that w = tτ u. Applying Lemma 3.3 we obtain that χλ(a) = (−1)`(u).

In [15] essentially the same analysis was applied only to type An obtaining Theorem 1.2 of [1]. In the following we
adopt the realization of the irreducible root systems as subsets of RN given in [5]. We denote by 〈·, ·〉 the standard
inner product of RN and by {ei } the canonical basis.

3.1. Type An

Recall that in [5] h∗

R is identified with the subspace of Rn+1 orthogonal to λ0 =
∑n+1

i=1 ei . In this setting

∆+
= {ei − e j | i < j}

and

Q =

(
n+1∑
i=1

Zei

)
∩ h∗

R.

The map λ 7→ λ̄ = λ − 〈λ, en+1〉λ0 maps P bijectively onto
∑n

i=1 Zei , P+ onto

Pn =

{
n∑

i=1

λi ei | λi ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

}
.
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We finally recall that ρ =
∑n+1

i=1
n−2i+2

2 ei , θ = e1 − en+1, hence h∨
= n + 1. Since 〈θ, θ〉 = 2 and (θ, θ) =

1
h∨ , we

have

(·, ·) =
1

2h∨
〈·, ·〉. (3.3)

This implies in particular that 1
2 Q∨

= (n + 1)Q.
If λ ∈ h∗

R set λi = 〈λ̄, ei 〉. Since 〈λ0, α〉 = 0 for all α ∈ h∗

R we see that 〈λ̄, α〉 = 〈λ, α〉 for all α ∈ ∆. Also recall
that ρ̄ =

∑n
i=1(n − i + 1)ei . Applying Corollary 3.2 we deduce the following result, which is the first statement of

Theorem 1.2 from [1].

Proposition 3.4. For λ =
∑n

i=1 λi ei ∈ Pn we have

λ ∈ Palc ⇐⇒ λi + n − i + 1 6≡ λ j + n − j + 1 mod(n + 1).

(1 ≤ i 6= j ≤ n + 1).

Note that, since λ ∈ Q, we have

n+1∑
i=1

λi =

n+1∑
i=1

〈λ, ei 〉 =

(
n+1∑
i=1

〈λ, ei 〉

)
− (n + 1)〈λ, en+1〉 = −(n + 1)〈λ, en+1〉.

Hence n + 1 divides
∑n+1

i=1 λi , so we can write

λi + (n − i + 1) −
1

n + 1

n+1∑
j=1

λ j = (n − ri + 1) + (n + 1)qi (3.4)

with ri ∈ {1, 2, . . . , n + 1}.
Set τ = (n + 1)

∑n+1
i=1 qi ei . By Proposition 3.4 the ri are pairwise distinct, so, by (3.4)

(n + 1)

n+1∑
i=1

qi =

n+1∑
i=1

(n − i + 1) −

n+1∑
i=1

(n − ri + 1) = 0,

hence τ ∈
1
2 Q∨. We can write

λ + ρ =

n+1∑
i=1

(
λi + (n − i + 1) −

1
n + 1

n+1∑
j=1

λ j −
n

2

)
ei

=

n+1∑
i=1

(
n − 2ri + 2

2

)
ei + (n + 1)

n+1∑
i=1

qi ei .

The action of W on V is described explicitly in [5]. In particular it is known that, if v ∈ W , then there is an
element σv of Sn such that v(ei ) = eσv(i). This fact establishes the well-known isomorphism between W and
Sn . Thus if we set σ to be the element of Sn such that σ(i) = ri , and let v be the element of W such that
σv = σ−1, then v(ρ) =

∑n+1
i=1 ( n−2i+2

2 )v(ei ) =
∑n+1

i=1 (
n−2σ(i)+2

2 )ei =
∑n+1

i=1 (
n−2ri +2

2 )ei hence λ + ρ = tτv(ρ)

and χλ(a) = (−1)`(v).

Remark 3.1. It is well-known (and easy to prove) that (−1)`(v)
= sign(σv) thus χλ(a) is the sign of the permutation

i 7→ ri .

3.2. Type Cn

We have ∆+
= {ei ± e j | 1 ≤ i < j ≤ n} ∪ {2ei | 1 ≤ i ≤ n}, ρ =

∑n
i=1(n − i + 1)ei , θ = 2e1 so that

h∨
= n + 1. Moreover

P =

n∑
i=1

Zei , Q =

{
n∑

i=1

λi ei

∣∣∣∣∣ n∑
i=1

λi ∈ 2Z

}
,
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P+
=

{
n∑

i=1

λi ei ∈ P | λ1 ≥ λ2 ≥ · · · λn ≥ 0

}
.

This time 〈θ, θ〉 = 4, so that (·, ·) =
1

4h∨ 〈·, ·〉 and 1
2 Q∨

= 2h∨Zn . By Corollary 3.2 we have

Proposition 3.5. For λ =
∑n

i=1 λi ei ∈ P+ we have

λ ∈ Palc ⇐⇒
λi + n − i + 1 6≡ ±(λ j + n − j + 1) mod 2(n + 1) (i 6= j)
λi + n − i + 1 6∈ (n + 1)Z.

It is well-known that the finite Weyl group W acts faithfully on {±e1, . . . ,±en} by signed permutations. It follows
that W · ρ is the set of elements of type

∑n
i=1 ai ei with {±a1, . . . ,±an} = {±1, . . . ,±n}. Now assume that λ ∈ Palc

and µ = λ + ρ, µ =
∑n

i=1 µi ei . Denote by µi the unique element in {±1, . . . ,±n} such that µi ≡ µi mod 2(n + 1)

and set µ =
∑n

i=1 µi ei . Notice that by Proposition 3.5 the µi are distinct and different from 0, n+1. Then there exists
v ∈ W such that µ = v(ρ). Moreover from the description of 1

2 Q∨ it follows that µ − µ ∈
1
2 Q∨. Set τ = µ − µ. It

follows that λ + ρ = tτv(ρ) and hence, by Lemma 3.3, we have χλ(a) = (−1)`(v).

Remark 3.2. If v ∈ W define (±i)σv = ± 〈v(ρ), en−i+1〉 for i = 1, . . . , n. Since, as observed above, W acts as
signed permutations on {±e1, . . . ,±en} we have that the map v 7→ σv defines a homomorphism from W to the set of
signed permutations of {±1, . . . ,±n}. If σ is such a signed permutation then set |σ | to be the element of Sn defined
by i |σ |

= |iσ | and set nσ = |{i | iσ < 0, i = 1, . . . , n}|. It is well-known that χ(σ) = sign(|σ |)(−1)nσ is a character
of the group of signed permutations. Since χ(σsi ) = −1 it follows at once that (−1)`(v)

= χ(σv). This shows that
χλ(a) = sign(|σv|)(−1)nσv . Observe that |σv| is the permutation of {1, 2, . . . , n} defined by setting i |σv | = |µn−i+1|

and nσv = |{i | µi < 0}|.

3.3. Type Bn

We have ∆+
= {ei ± e j | 1 ≤ i < j ≤ n} ∪ {ei | 1 ≤ i ≤ n}, ρ =

∑n
i=1

2n−2i+1
2 ei , θ = e1 + e2, hence

h∨
= 2n − 1. Moreover

P =

{
n∑

i=1

xi

2
ei | xi all even or all odd

}
, Q =

n∑
i=1

Zei ,

P+
=

{
n∑

i=1

λi ei ∈ P | λ1 ≥ λ2 ≥ · · · λn ≥ 0

}
.

Since (θ, θ) = 2 we have (·, ·) =
1

2h∨ 〈·, ·〉.

Proposition 3.6. For λ =
∑n

i=1 λi ei ∈ P+ we have

λ ∈ Palc ⇐⇒

λi ∈ Z for i = 1, . . . , n,

2(λi + n − i) + 1 6≡ ±2(λ j + n − j) + 1 mod 2(2n − 1)

(i 6= j).

Proof. By Corollary 3.2 we have that λ ∈ Q =
∑n

i=1 Zei . The second condition follows directly from (3.1) and the
observation that 〈λ + ρ, ei 〉 6∈ Z for i = 1, . . . , n. �

Observe that

1
2

Q∨
=

1
2

{
τ ∈ h∗

R | (τ, x) ∈ Z ∀ x ∈ P+
}

=
1
2

{
τ ∈ h∗

R | 〈τ, x〉 ∈ 2h∨Z ∀ x ∈ P+
}

= h∨
{
τ ∈ h∗

R | 〈τ, x〉 ∈ Z ∀ x ∈ P+
}
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= h∨

{
τ =

n∑
i=1

τi ei ∈ h∗

R | τi ∈ Z,

n∑
i=1

τi even

}
.

Assume that λ ∈ Palc and set µ = λ + ρ, so that µ =
∑n

i=1
µi
2 ei with µi ∈ 2Z + 1 for i = 1, . . . , n. Denote by µi

the unique element in {±1, ±3, . . . ,±(2n −3)}∪ {2n −1} such that µ ≡ µi mod 2(2n −1) and set µ̃ =
∑n

i=1
µi
2 ei .

Consider µ − µ̃: if µ − µ̃ ∈
1
2 Q∨ we set µ = µ̃. Otherwise let i∗ be the unique index such that µi∗ = 2n − 1. and

set µ = µ̃ −
2n−1

2 ei∗ . This is equivalent to changing 2n − 1 into −(2n − 1) in the sequence of remainders. Then we
obtain that µ − µ ∈

1
2 Q∨. Now we observe that in any case µ ∈ W · ρ, say µ = v(ρ). Hence if we set τ = µ − µ,

we obtain that µ = λ + ρ = tτv(ρ) and χλ(a) = (−1)`(v).

Remark 3.3. If v ∈ W , we define (±i)σv = ±2
〈
v(ρ), en−(i−1)/2

〉
for i = 1, 3, . . . , 2n − 1. Since also in

type B the Weyl group acts as signed permutations on {±e1, . . . ,±en} we have that the map v 7→ σv defines
a homomorphism from W to the set of signed permutations of {±1, ±3, . . . ,±(2n − 1)}. Arguing as in type C
we find that χλ(a) = sign(|σv|)(−1)nσv where |σv| is the permutation of {1, 3, . . . , 2n − 1} defined by setting
i |σv | = |µn−(i−1)/2| and nσv = |{i | µi < 0}|.

3.4. Type Dn

We have ∆+
= {ei ± e j | 1 ≤ i < j ≤ n}, ρ =

∑n
i=1(n − i)ei , θ = e1 + e2, hence h∨

= 2n − 2. Moreover

P =

{
n∑

i=1

λi

2
ei | λi all even or all odd

}
,

Q =

{
n∑

i=1

λi ei |

n∑
i=1

λi even

}
,

P+
=

{
n∑

i=1

λi ei ∈ P | λ1 ≥ λ2 ≥ · · · ≥ |λn|

}
.

Since (θ, θ) = 2 we have (·, ·) =
1

2h∨ 〈·, ·〉. As in type Bn , Corollary 3.2 implies the following result.

Proposition 3.7. For λ =
∑n

i=1 λi ei ∈ P+ we have

λ ∈ Palc ⇐⇒
λi ∈ Z for i = 1, . . . , n,

n∑
i=1

λi even,

λi + n − i 6≡ ±(λ j + n − j) mod (2n − 2) (i 6= j).

Observe that in this case 1
2 Q∨

= h∨Q. Assume that λ ∈ Palc and set µ = λ + ρ, so that µ =
∑n

i=1 µi ei with
µi ∈ Z for i = 1, . . . , n. Denote by µi the unique element in {±1, ±2, . . . ,±(n − 2)} ∪ {0, n − 1} such that
µ ≡ µi mod (2n − 2) and set µ̃ =

∑n
i=1 µi ei . Consider µ − µ̃: if µ − µ̃ ∈

1
2 Q∨ we define µ = µ̃. Otherwise let

i∗ be the unique index such that µi∗ = n − 1 and set µ = µ̃ − 2(n − 1)ei∗ . This is equivalent to changing n − 1 into
−(n −1) in the sequence of remainders. Then we obtain that µ−µ ∈

1
2 Q∨. As in type Bn we have µ = v(ρ), v ∈ W

and µ = λ + ρ = tτv(ρ) with τ = µ − µ. As before, χλ(a) = (−1)`(v).

Remark 3.4. This time the action of W on ρ defines a homomorphism v 7→ |σv| onto the set of permutations
of {0, 1, 2, . . . , n − 1}. The permutation |σv| is defined by setting i |σv | = |〈v(ρ), en−i 〉|. Since |σsi | is a simple
transposition, it follows as before that (−1)`(v)

= sign(|σv|), hence χλ(a) is the sign of the permutation of
{0, 1, . . . , n − 1} defined by setting i 7→ |µn−i |.
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3.5. Type G2

It is amusing to work out our Euclidean algorithm for type G2 also. Following [5] we realize the root system of
type G2 in

V =

{
(x1, x2, x3) ∈ R3

| x1 + x2 + x3 = 0
}

.

As above 〈·, ·〉 is the standard inner product on R3 and {e1, e2, e3} is the canonical basis. We have

∆ = {±(ei − e j ) | 1 ≤ i, j ≤ 3} ∪
{
±(2ei − e j − ek) | {i, j, k} = {1, 2, 3}

}
,

Π = {e1 − e2, −2e1 + e2 + e3}, so that ρ = −e1 − 2e2 + 3e3, θ = −e1 − e2 + 2e3, hence h∨
= 4. Moreover

P = Q = V ∩

(
3∑

i=1

Zei

)
, P+

=

{
3∑

i=1

λi ei ∈ P | 0 ≥ λ1 ≥ λ2

}
.

Since (θ, θ) = 6 we have (·, ·) =
1

6h∨ 〈·, ·〉. Set εi = −1 for i = 1, 2 and ε3 = 1. Corollary 3.2 implies the following
result.

Proposition 3.8. For λ =
∑3

i=1 λi ei ∈ P+ we have that λ ∈ Palc if and only if

λi + εi i 6≡ λ j + ε j j mod (12) (i 6= j) (3.5)

2(λi + εi i) 6≡ λ j + ε j j + λk + εkk mod (12) ({i, j, k} = {1, 2, 3}) (3.6)

An easy calculation shows that in this case

1
2

Q∨
= 4

{
3∑

i=1

xi ei ∈ Q | x1 ≡ x2 ≡ x3 mod (3)

}
. (3.7)

Assume that λ ∈ Palc and set µ = λ + ρ, so that µ =
∑3

i=1 µi ei with µi = λi + εi i ∈ Z and µ1 + µ2 + µ3 = 0.
Denote by [µi ]n = µi + nZ ∈ Z/nZ. By the Chinese remainder theorem the map [µi ]12 7→ ([µi ]3, [µi ]4) is an
isomorphism.

Since
∑3

i=1 µi = 0, we have obviously that
∑3

i=1[µi ]n = 0. Relation (3.5) implies that ([µi ]3, [µi ]4) 6=

([µ j ]3, [µ j ]4) if i 6= j . Moreover we have the following further conditions:[
µ j
]

4 cannot be all equal,[
µ j
]

4 6= 0 j = 1, 2, 3,

[µi ]4 +
[
µ j
]

4 6= 0 if i 6= j.

(3.8)

Let us check the first condition: if [µ1]4 = [µ2]4 = [µ3]4 = x then

−2([µ1]3, x) + ([µ2]3, x) + ([µ3]3, x) = ([µ1]3 + [µ2]3 + [µ3]3, 0) = (0, 0)

and this contradicts (3.6). For the second condition suppose [µi ]4 = 0. Let j, k be such that {i, j, k} = {1, 2, 3}. Since
[µi ]4 + [µ j ]4 + [µk]4 = 0 we have that −2[µi ]4 + [µ j ]4 + [µk]4 = −3[µi ]4 = 0 hence

−2([µi ]3, [µi ]4) + ([µ j ]3, [µ j ]4) + ([µk]3, [µk]4) = ([µi ]3 + [µ j ]3 + [µk]3, 0) = (0, 0).

The third condition is obtained in the same way.
Set S = {([µi ]3, [µi ]4) | i = 1, 2, 3}. The conditions in (3.8) imply that there are two possibilities for S: either

S = {(a, [1]4), (b, [1]4), (c, [2]4)} or S = {(a, [3]4), (b, [3]4), (c, [2]4)}. Relation (3.5) forces a 6= b, so that
a − b = ±[1]3. Define the ordered sets

S1 = ((a, [1]4), (b, [1]4), (c, [2]4)),

S2 = ((a, [3]4), (b, [3]4), (c, [2]4)).
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The algorithm works as follows. Let i∗, j∗, k∗ be such that ([µi∗ ]12, [µ j∗ ]12, [µk∗ ]12) = Sx , x = 1, 2, and write
µy = 4q̃y + r̃y, y ∈ {i∗, j∗, k∗

}, where the sequence of remainders r̃y is (1, 1, 2) if x = 1 and (3, 3, 2) if x = 2; this
of course determines the q̃y . Now change the sequence of quotiens q̃y into a new sequence qy in such a way to obtain
the following new remainders ry

(ri∗ , r j∗ , rk∗)

x = 1 a − b = [1]3 (1, −3, 2)

x = 1 a − b = −[1]3 (−3, 1, 2)

x = 2 a − b = [1]3 (3, −1, −2)

x = 2 a − b = −[1]3 (−1, 3, −2).

This choice implies qi∗ ≡ q j∗ ≡ qk∗ mod (3). For instance assume x = 1, a − b = [1]3. Since a = [qi∗ + 1]3,
b = [q j∗ ]3, and c = [qk∗ + 2]3, we have that 0 = a − b − [1]3 = [qi∗ − q j∗ ]3 and, since

∑3
i=1 qi = 0 we also obtain

that [qi∗ − qk∗ ]3 = 0. The other cases are checked similarly.
In all cases we have that, if we set τ =

∑
i qi ei then τ ∈

1
2 Q∨. Moreover {r1, r2, r3} = ± {1, 2, −3}. We now

observe that
∑

i ri ei is in W ·ρ. This is an immediate consequence of the general fact that, if λ ∈ P and (λ, λ) = (ρ, ρ),
then λ = wρ for some w ∈ W . (A less attractive proof is obtained by simply listing all twelve elements of W · ρ.)
Thus µ = tτv(ρ), where v is the unique element of W such that v(ρ) =

∑
i ri ei .

A more explicit description of v and the determination of χλ(a) will be performed at the end of Section 4.

4. Affine Weyl groups as permutations of Z

In this section we will show how one can construct realizations of the classical affine Weyl groups as permutations
of Z from the knowledge of the orbit Ŵq · λ, for an appropriate choice of λ and q. Our treatment takes into account
all the representations of classical affine Weyl groups known in literature. We obtain analogous results also for G̃2.

We shall use the following obvious facts several times.

Fact 4.1. Let p ∈ N+ and assume that:

(1) A = {a1, . . . , ap} is a set of representatives of Z/pZ;

(2) f : A → Z, ai 7→ a f
i is a map such that {a f

1 , . . . , a f
p } is still a set of representatives of Z/pZ.

Then f̃ : Z → Z, ai + kp 7→ a f
i + kp for all k ∈ Z, is a permutation of Z which extends f .

Fact 4.2. Let q ∈ R+ and assume that λ ∈ h∗

R is q-regular. Then w 7→ w(λ) is a bijection from Ŵq to the orbit Ŵq ·λ

of λ under Ŵq .

Types Ãn−1, C̃n , B̃n , and D̃n .
We shall use the following notation: for a, b ∈ Z with a < b, c ∈ Z with c > 0, A ⊆ Z we set

[a, b] = {z ∈ Z | a ≤ z ≤ b}, [c] = [1, c]; ±A = A ∪ −A.

For any set N , we denote by S(N ) the group of permutations of N .
We realize the classical root systems as in [5], except that we reverse the order of the canonical basis of Rn . Thus

if {ei | i ∈ [n]} is the canonical basis of Rn , the simple roots and the highest root are:

for An−1 : αi = ei+1 − ei for i = 1, . . . , n − 1; θ = en − e1;

for Cn : α1 = 2e1, αi = ei − ei−1 for i = 2, . . . , n; θ = 2en;

for Bn : α1 = e1, αi = ei − ei−1 for i = 2, . . . , n; θ = en−1 + en;

for Dn : α1 = e1 + e2, αi = ei − ei−1 for i = 2, . . . , n; θ = en−1 + en .

If ∆ is of type An−1, then ∆ is a subset of V = {
∑n

i=1 xi ei |
∑n

i=1 xi = 0}. We extend the faithful action of W on
V to Rn by fixing pointwise V ⊥. We also naturally extend the translation action of Ŵq to Rn .
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Set

λ =

∑
i∈[n]

iei .

Observe that

λ =


nλ0 + ρ in type An−1,

ρ in type Cn,

ρ + ω1 in type Bn,

ρ + 2ω1 in type Dn .

We set Q∨

〈·,·〉 =
∑

α∈Π Z 2α
〈α,α〉

, thus

Q∨

〈·,·〉 =
1
c

Q∨

with c = 〈θ, θ〉h∨. The element λ is p
c -regular where

p =

{
n in type An−1,

2n + 1 in types Bn, Cn, and Dn .

In particular, by Fact 4.2, w 7→ w(λ) is a bijection from Ŵ p
c

to Ŵ p
c

· λ. We notice that

Ŵ p
c

= pQ∨

〈·,·〉 o W,

where we identify pQ∨

〈·,·〉 with the group of translations of Rn by elements of pQ∨

〈·,·〉. We also observe that for types

An and Cn we have p
c =

1
2 .

We set

I =

{
[n] in type An−1,

[−n, n] in types Bn, Cn, Dn .

Thus I is a set of representatives of Z/pZ. For types Bn , Cn , and Dn , we set

e0 = 0, e−i = −ei

for all i ∈ [n]. Thus ei is defined for all i ∈ I . It is well-known that the finite Weyl group W permutes {ei | i ∈ I }.
For all w ∈ Ŵ p

c
, and i ∈ I , we set

iw∗ = 〈w(λ), ei 〉. (4.1)

Then, by Fact 4.2, w∗ determines w. Since 〈·, ·〉 is W -invariant and W permutes the ei , for w ∈ W we have that

eiw∗ = w−1ei .

This makes clear that w 7→ w∗ is an injective homomorphism of the finite Weyl group W into S(I ). In fact, this is the
usual permutation representation of W . For An−1, {w∗ | w ∈ W } is the whole symmetric group Sn ; for both Cn and
Bn , {w∗ | w ∈ W } is the group of all permutations of [−n, n] such that (−i)w∗ = −iw∗ ; for Dn , {w∗ | w ∈ W } is the
group of all permutations of [−n, n] such that (−i)w∗ = −iw∗ and |{i ∈ [n] | iw∗ < 0}| is even.

We recall that for type An−1 the lattice Q∨

〈·,·〉 is the subgroup of
∑

i∈[n]
Zei with zero coordinate sum. For type Cn ,

Q∨

〈·,·〉 =
∑

i∈[n]
Zei , while for both Bn and Dn , Q∨ is the subgroup of

∑
i∈[n]

Zei of all elements with even coordinate

sum. In particular, since Ŵ p
c

= pQ∨

〈·,·〉 o W , we obtain in any case that for all w ∈ Ŵ p
c

and i ∈ I

iw∗ ∈ Z and {iw∗ mod p | i ∈ I } = {i mod p | i ∈ I }.

Thus, since I is a set of representatives of Z/pZ, the map w∗ satisfies conditions (1), (2) of Fact 4.1. It follows that
w∗ extends to a bijection of Z onto itself, which we still denote by w∗, defined by

(i + kp)w∗ = iw∗ + kp (4.2)
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for all i ∈ I . We notice that in types Cn , Bn , and Dn , since 0w∗ = 0, we have that zw∗ = z for all z ∈ pZ = (2n +1)Z
and w ∈ Ŵ p

c
.

We shall verify that w 7→ w∗ is an injective homomorphism of Ŵ p
c

into the group of all permutations of Z. It is
obvious that w∗ is uniquely determined by I w∗ , and hence by w(λ), so injectivity follows immediately from Fact 4.2.
Assume ŵ, û ∈ Ŵ , ŵ = tηw, û = tτ u, with w, u ∈ W and τ, η ∈ pQ∨

〈·,·〉. Then for i ∈ I

i ŵ∗ = 〈ŵ(λ), ei 〉 = 〈η, ei 〉 + 〈w(λ), ei 〉 = 〈η, ei 〉 + iw∗ ,

and since 〈η, ei 〉 ∈ pZ and eiw∗ = w−1(ei ), we obtain

(i ŵ∗)û∗ = 〈η, ei 〉 + iw∗û∗ = 〈η, ei 〉 + 〈τ, eiw∗ 〉 + iw∗u∗ = 〈η + w(τ), ei 〉 + iw∗u∗ .

On the other hand, ŵû = tη+w(τ)wu, hence

i (ŵû)∗ = 〈η + w(τ), ei 〉 + i (wu)∗ ,

and since i (wu)∗ = iw∗u∗ , we obtain that i (ŵû)∗ = i ŵ∗û∗ .

Remark 4.3. Suppose that we are given a homomorphism w 7→ w′ from Ŵ p
c

to S(Z) such that (4.1) holds. Then, for

all w ∈ Ŵ p
c

, w′

|I = w∗|I . If w ∈ Ŵ p
c

and u = tη, η ∈ pQ∨

〈·,·〉, then, for i ∈ I ,

i (uw)′
= 〈η + w(λ), ei 〉 = 〈η, ei 〉 + iw

′

= iu′w′

= 〈η + λ, ei 〉
w′

= (〈η, ei 〉 + i)w
′

.

From the explicit description of Q∨

〈·,·〉, it is clear that for all i ∈ I and k ∈ Z there exists η ∈ Q∨

〈·,·〉 such that
〈η, ei 〉 = k. It follows that relation (4.2) holds with w′ in place of w∗, and therefore w′

= w∗. Thus the w∗ are the
only permutations of Z such that (4.1) holds and w 7→ w∗ is a homomorphism of Ŵ p

c
into S(Z).

Combining the previous discussion with the results of Section 2 we obtain Lusztig’s description of the affine group
of type Ãn−1 [12, Section 3.6]. Recall that, in this case, p = n = h∨, and p

c =
1
2 .

Theorem 4.1. If ∆ is of type An−1, the map w 7→ w∗ is a permutation representation of Ŵ 1
2

in S(Z). Its image

{w∗ | w ∈ Ŵ 1
2
} is the group of all f ∈ S(Z) such that

(1) (z + n) f
= z f

+ n for all z ∈ Z;
(2)

∑n
i=1 i f

=
∑n

i=1 i .

Proof. The first statement has already been proved. It is clear from definitions that (z + n)w∗ = zw∗ + n for all
w ∈ Ŵ 1

2
. It is also clear that condition (2) holds for all v ∈ W . If w ∈ Ŵ p

c
, w = tηv, η ∈ nQ∨

〈·,·〉, v ∈ W , then

n∑
i=1

iw∗ =

n∑
i=1

〈η, ei 〉 +

n∑
i=1

iv∗ .

But it is obvious, by the explicit description of Q∨

〈·,·〉, that
∑n

i=1〈η, ei 〉 = 0, hence (2) holds for w.

It remains to prove that if f ∈ S(Z) satisfies (1), (2), then there exists w ∈ Ŵ 1
2

such that f = w∗. Let f be such

that (1), (2) hold and set ai = i f , i = 1, . . . , n. Then ai 6= a j mod n if i 6= j (otherwise f is not a bijection). It
follows from Proposition 2.1 that

n∑
i=1

(
ai −

1
n

n∑
j=1

a j

)
ei = w(ρ)

for some w ∈ Ŵ 1
2
. Observe that 1

n

∑n
j=1 a j =

n+1
2 , hence

∑n
i=1 ai ei =

n+1
2 λ0 + w(ρ) = w(λ). This implies that

〈w(λ), ei 〉 = ai , hence f = w∗. �
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Remark 4.4. The affine reflection s0 is equal to t θ∨

2
sθ . Since θ = en − e1 and θ∨

2 = n(en − e1), we obtain that

j s0∗ = 〈tn(en−e1)sθ (λ), e j 〉

=

〈
n(en − e1) + ne1 +

n−1∑
i=2

iei + en, e j

〉
=

0 for j = 1,

j for 2 ≤ j ≤ n − 1,

n + 1 for j = n.

Clearly, for i ∈ [n − 1], si∗ acts on [n] as the transposition (i, i + 1).

Remark 4.5. We may apply formula (2.1) with µ = λ. Since positive roots in An−1 are of the form αi j = e j −ei , i <

j , we deduce, using (3.3), the following relation

k(w, αi j ) =

⌊
(w(λ), αi j )

1
2

⌋
=

⌊
〈w(λ), e j − ei 〉

h∨

⌋
=

⌊
jw∗ − iw∗

n

⌋
.

This is one statement of Theorem 4.1 from [14] (taking into account the different notational conventions). We also
have, by (2.2)

` 1
2
(w) =

∑
1≤i< j≤n

∣∣∣∣⌊ jw∗ − iw∗

n

⌋∣∣∣∣ ,
a formula which appears, with different derivations, in [2,7,13,14].

Theorem 4.2. If ∆ is of type Cn , then w 7→ w∗ is an injective homomorphism of Ŵ 1
2

into S(Z). Its image

{w∗ | w ∈ Ŵ 1
2
} is the subgroup of all permutations f of Z such that

(1) (−z) f
= −z f for all z ∈ Z;

(2) (z + k(2n + 1)) f
= z f

+ k(2n + 1) for all z, k ∈ Z.

Proof. Recall that in this case p = 2n + 1 and p
c =

1
2 . It follows directly from definitions that, for all w ∈ Ŵ p

c
,

w∗ satisfies conditions (1), (2). It remains to prove that all permutations of Z which satisfy conditions (1), (2) lie in
{w∗ | w ∈ Ŵ p

c
}.

The anti-symmetry condition (1) implies in particular that 0 f
= 0, hence any odd f ∈ S(Z) satisfies (2) if and only

if it permutes the non zero cosets in Z/pZ. This means that {0, ±1 f , . . . ,±n f
} is a set of representative of Z/pZ or,

equivalently, that

i f
6≡ 0, i f

± j f
6≡ 0 mod p, for 1 ≤ i < j ≤ n (4.3)

(notice that p being odd, i f
6≡ 0 mod p if and only if 2i f

6≡ 0 mod p).
Now we recall that P = Q∨

〈·,·〉 and λ = ρ, so that, by Lemma 2.2, λ+ Q∨

〈·,·〉 ∩C p
c

= {λ}. Since Ŵ p
c

= pQ∨

〈·,·〉 o W ,

it is clear that Ŵ p
c

acts on λ + P . By Proposition 2.1 we obtain that Ŵ p
c

· λ is the set of all µ ∈ λ + P such that

(µ, α) 6∈
p
c Z or, equivalently, 〈µ, α〉 6∈ pQ∨

〈·,·〉 for each root α. By the explicit description of the root system, this
means that, if µ =

∑n
i=1 µi ei , then

2µi , µi ± µ j 6∈ pZ for 1 ≤ i < j ≤ n.

Comparing the above conditions with (4.3), we deduce that for each f ∈ S(Z) such that (1), (2) hold, there exists
w ∈ Ŵ p

c
such that

∑n
i=1 i f ei = w(λ), and therefore such that f = w∗. �

Remark 4.6. In our setting, the affine reflection s0 is equal to t 2n+1
c θ∨sθ . Since θ = 2en and 1

c θ∨
=

1
2θ = en , we

obtain that

j s0∗ = 〈t(2n+1)en sθ (λ), e j 〉 = 〈en + λ, e j 〉 =

{
j for 1 ≤ j < n,

n + 1 for 1 ≤ j < n.

Clearly, for i ∈ [n − 1], si∗ acts on [n] as the transposition (i, i − 1), while sn∗ acts on [−n, n] as the transposition
(−n, n).
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Remark 4.7. The representation of the Weyl group of type C̃n as a subgroup of S(Z) obtained in Theorem 4.2
coincides with the one presented by Bedard [4]. A different representation appears in literature (see [14,13]). We
can also get this representation in our framework. Indeed, we note that, with the notation of Lemma 2.2, there are
two possible values of q verifying Eq. (2.3): 2n + 1 and 2n + 2. Hence we can define an injective homomorphism
w 7→ w∗∗ of Ŵ 2n+2

c
into S(Z) setting

iw∗∗ = 〈w(λ), ei 〉 for i ∈ [−n, n], ± (n + 1)w∗∗ = ±(n + 1),

(i + k(2n + 2))w∗∗ = iw∗∗ + k(2n + 2).

Then si∗∗ and si∗ have the same action on [−n, n], for i ∈ [n]. The action of s0∗∗ is defined by j s0∗∗ = j for 1 ≤ j < n,
ns0∗ = n + 2, and by the condition of compatibility with translation by 2n + 2.

Theorem 4.3. If ∆ is of type Bn then w 7→ w∗ is an injective homomorphism of Ŵ p
c

into S(Z). Its image

{w∗ | w ∈ Ŵ p
c
} is the subgroup of all permutations f of Z such that

(1) (−z) f
= −z f for all z ∈ Z;

(2) (z + k(2n + 1)) f
= z f

+ k(2n + 1) for all z, k ∈ Z;

(3)
∑n

i=1 i f
≡

(
n+1

2

)
mod 2.

Proof. It remains to prove that w∗ satisfies (3) for all w ∈ Ŵ p
c

and that each f ∈ S(Z) such that (1), (2), (3) hold is

equal to some w∗, w ∈ Ŵ p
c

.
If w ∈ W , then {1w∗ , . . . , nw∗} differs from [n] at most in the sign of elements, hence it is clear that(

n + 1
2

)
=

n∑
i=1

i ≡

n∑
i=1

iw∗ mod 2.

Since Q∨

〈·,·〉 is the the set of all elements in
∑n

i=1 Zei with even coordinate sum and Ŵ p
c

= pQ∨

〈·,·〉 o W , it is clear

that w∗ satisfies (3) for all w ∈ Ŵ p
c

.

The above argument also shows that λ+ Q∨

〈·,·〉 is Ŵ p
c

-stable. Moreover, it is easily seen that λ+ Q∨

〈·,·〉 ∩ C p
c

= {λ}.

Thus we may apply Proposition 2.1, with L = Q∨

〈·,·〉, so as to obtain that Ŵ p
c

· λ is the set of all µ ∈ λ + Q∨

〈·,·〉 such

that 〈µ, α〉 6∈ pZ, for each root α. From the explicit description of Q∨

〈·,·〉 and of the root system, we obtain that, if

µ =
∑n

i=1 µi ei ∈
∑n

i=1 Zei , then µ ∈ Ŵ p
c

· λ if and only if

n∑
i=1

µi ≡

(
n + 1

2

)
mod 2, and µi , µi ± µ j 6∈ pZ for 1 ≤ i < j ≤ n.

Now it is clear that the same argument used in the proof of Theorem 4.2 shows that if f ∈ S(Z) satisfies condition
(1), then condition (2) is equivalent to (4.3). We easily conclude that each f ∈ S(Z) such that (1), (2), (3) hold is
equal to w∗ for some w ∈ Ŵ p

c
. �

Remark 4.8. Condition (3) in Theorem 4.3 can be replaced by the following one:

(3′)
∑n

i=1

(
i f

− i f
)

∈ 2(2n + 1)Z.
or, equivalently,

(3′′) |{i ≤ n | i f > n}| is even.
In fact, if we set i f

= ki (2n + 1) + i f , then we have
∑n

i=1 i f ≡

(
n+1

2

)
hence

∑n
i=1 i f

≡

(
n+1

2

)
if and only

if
∑n

i=1 ki is even, which is equivalent to condition (3′). Moreover, { j ≤ n | j f > n} =
∑n

i=1 |ki | ≡
∑n

i=1 ki ,

and since ki (2n + 1) = i f
− i f , we obtain that (3′′) is equivalent to (3′) and hence to (3).

We finally deal with type Dn . In this case, we identify Ŵ p
c

with a subgroup of its B̃n-analog. Namely, if WBn is the
finite Weyl group for type Bn , we may identify the finite Weyl group of Dn with the subgroup of WBn

W ′
= {w ∈ WBn | iw∗ < 0 for an even number of i ∈ [n]}



P. Cellini et al. / Journal of Pure and Applied Algebra 208 (2007) 1103–1119 1117

and we set

Ŵ p
c

= pQ∨

〈·,·〉 o W ′.

For j ∈ Z we denote by j its residue modulo p. It is clear that if w ∈ Ŵ p
c

, w = tηv, with η ∈ pQ∨

〈·,·〉 and v ∈ W ′,

then iv∗ = iw∗ for all i ∈ [n], and η =
∑n

i=1(i
ŵ∗ − iw∗)ei , hence from Theorem 4.3 we directly obtain the following

result.

Theorem 4.4. If ∆ is of type Dn then w 7→ w∗ is an injective homomorphism of Ŵ p
c

into S(Z). Its image

{w∗ | w ∈ Ŵ p
c
} is the subgroup of all permutations f of Z such that

(1) (−z) f
= −z f for all z ∈ Z;

(2) (z + k(2n + 1)) f
= z f

+ k(2n + 1) for all z, k ∈ Z;

(3)
∑n

i=1 i f
≡

(
n+1

2

)
mod 2, and |{i ∈ [n] | i f < 0}| is even.

Remark 4.9. For both types Bn and Dn we find that s0 = t(2n+1)θ sθ and hence

s0(λ) = (2n + 1)θ + λ − 〈λ, θ〉θ = λ + 2θ =

n−2∑
i=1

iei + (n + 1)en−1 + (n + 2)en .

It follows that

i s0∗ = i for i ∈ [n − 2], (n − 1)s0∗ = n + 1, ns0∗ = n + 2.

Since n + 1 = −n + (2n + 1), and n + 2 = −(n − 1)+ (2n + 1), we have that (n + 1)s0∗ = n − 1, and (n + 2)s0∗ = n.
Thus s0∗ acts on {−n + 2, . . . , n + 2} as the product of transpositions (n − 1, n + 1)(n, n + 2). For i ∈ [n], the action
of si ∗ on [−n, n] is the usual one, hence, for 2 ≤ i ≤ n, si ∗ is the product of transpositions (i − 1, i)(−(i − 1), −i);
s1∗ is the transposition (1, −1) for Bn , while is the product of transpositions (1, −2)(2, −1) for Dn .

Type G2.
In this case we shall define an injective homorphism of Ŵ (=Ŵ1) into S(Z). We omit everywhere the subscript

1, so T is the subgroup of translations of Ŵ and C is the fundamental alcove. The rest of the notation is the same
as Section 3.5. The map w 7→ w∗, Ŵ → S(Z), we are going to define is determined by w(ρ). Injectivity will be an
immediate consequence of the fact that ρ ∈ C .

We set e−i = −ei for i ∈ [3], εi = −1 for i = ±1, ±2, ε3 = ε−3 = 1. Then we define, for all w ∈ Ŵ ,

0w∗ = 0, iw∗ = εi 〈w(ρ), ei 〉 for i ∈ ±[3].

If v ∈ W , and i ∈ ±[3], then there exist unique j ∈ ±[3] and vi ∈ V ⊥ such that v(ei ) = e j + vi . Then for w = v−1

we have 〈w(ρ), ei 〉 = 〈ρ, v(ei )〉 = ε j j , hence

w−1(ei ) = εiεiw∗ eiw∗ + vi ,

with vi ∈ V ⊥. It follows directly that for all w, w′
∈ W , (ww′)∗ = w∗w

′
∗, hence w 7→ w∗ is an injective

homomorphism of W into the set of all permutations of [−3, 3].
It is easily seen that the image W∗ of W under this homomorphism is the set (group) of all permutations f of

[−3, 3] such that (−i) f
= −i f and

∑
i∈[3]

εi i f
= 0. Notice that this last condition is equivalent to {−1 f , −2 f , 3 f

}

being equal to either {−1, −2, 3} or {1, 2, −3}. By restricting maps to ±[3] we obtain that the map w 7→ w∗

defines an isomorphism between W and the group of functions f : ±[3] → ±[3] such that (−i) f
= −i f and

{−1 f , −2 f , 3 f
} = ±{1, 2, −3}.

We recall that

Q∨
= 8

{
3∑

i=1

xi ei ∈ Q | x1 ≡ x2 ≡ x3 mod 3

}
,

in particular, for each t ∈ T and i ∈ ±[3], i t∗ ≡ i mod 8. For all w ∈ Ŵ , we define 4w∗ = 4. Then it is clear that w∗

maps the set of representatives [−3, 4] of Z/8Z into some set of representatives of Z/8Z, hence Fact 4.1 applies and
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w∗ can be extended to a bijection w∗ of Z onto itself by setting (i + 8k)w∗ = iw∗ + 8k for all k ∈ Z. Notice that w∗

fixes pointwise 4Z.
We next verify that w 7→ w∗ is an injective homomorphism of the whole Ŵ into the group of all permutations of

Z. It is obvious that w∗ is determined by [−3, 3]
w∗ , hence by w(ρ), so, as remarked above, injectivity is immediate.

Assume ŵ ∈ Ŵ , ŵ = tηw with w ∈ W and η ∈ Q∨.Then for i ∈ ±[3]

i ŵ∗ = 〈ŵ(ρ), ei 〉 = εi 〈η, ei 〉 + εi 〈w(ρ), ei 〉 = εi (η, ei ) + iw∗ .

Let also û ∈ Ŵ , û = tτ u with u ∈ W and τ ∈ Q∨.Then

(i ŵ∗)û∗ = εi 〈η, ei 〉 + iw∗û∗ = εi 〈η, ei 〉 + εiw∗ 〈τ, eiw∗ 〉 + iw∗u∗

= εi 〈η, ei 〉 + εi 〈τ, w
−1ei 〉 + iw∗u∗ = εi 〈η + w(τ), ei 〉 + iw∗u∗ .

On the other hand we have ŵû = tη+w(τ)wu, hence

i (ŵû)∗ = εi 〈η + w(τ), ei 〉 + i (wu)∗ ,

and since i (wu)∗ = iw∗u∗ , we finally obtain that i (ŵû)∗ = i ŵ∗û∗ . Thus we have that Ŵ is isomorphic to the subgroup
Ŵ∗ = {w∗ | w ∈ Ŵ } of permutations of Z.

For a ∈ Z let a be the representative of a mod 8 in [−3, 4]. Then using the explicit description of Q∨ given above,
we obtain the following permutation representation of Ŵ .

Theorem 4.5. If ∆ is of type G2, then Ŵ is isomorphic to the group of all permutations f of Z such that

(1) (−z) f
= −z f for all z ∈ Z;

(2) (z + 8k) f
= z f

+ 8k and (4k) f
= 4k for all z, k ∈ Z;

(3) −1 f
− 2 f

+ 3 f
= 0, {−1 f , −2 f , 3 f } = {−1, −2, 3} or {−1 f , −2 f , 3 f } = {1, 2, −3}, and −(1 f

− 1 f ) ≡

−(2 f
− 2 f ) ≡ (3 f

− 3 f ) mod 3.

Proof. The statement follows directly from the above discussion. �

Remark 4.10. From the explicit description of α1, it is clear that s1∗ acts on [−3, 4] as (1, 2)(−1, −2). For s2 we
have s2(ρ) = ρ − α2 = e1 − 3e2 + 2e3, hence s2∗ acts on [−3, 4] as (1, −1)(2, 3)(−2, −3).

For w ∈ W , let |w∗| be the permutation of [3] defined by i |w∗| = |iw∗ |, for i = 1, 2, 3. Then from the explicit
description of s1∗ and s2∗ it is clear that, for w ∈ W , the parity of `(w∗), and hence of `(w), is exactly the sign of
|w∗|. This observation, combined with Lemma 3.3 and the discussion developed in Section 3.5, solves the problem of
determining explicitly χλ(a), λ ∈ Palc. With this identification (−1)`(v) is the sign of the permutation |v∗| hence, if
λ ∈ Palc and we write λ+ρ = µ = τ +

∑
i ri ei as described in Section 3.5, then χλ(a) is the sign of the permutation

i 7→ |ri |, i = 1, 2, 3.
Finally, we have s0(ρ) = θ∨

+ sθ (ρ) = 8θ + ρ − 3θ = ρ + 5θ = −6e1 − 7e2 + 13e3, hence s0∗ is the unique
permutation f of Z which has properties (1) and (2) of Theorem 4.5 and such that 1 f

= 6, 2 f
= 7, 3 f

= 13.
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