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Forkhead box O-class (FOXO) proteins are evolutionally conserved transcription factors. They belong to a
family of proteins consisting of FOXO1, FOXO3a, FOXO4 and FOXO6 in humans. Increasing evidence suggests
that FOXO proteins function as tumor suppressors by transcriptionally regulating expression of genes
involved in cell cycle arrest, apoptosis, DNA repair and oxidative stress resistance. Activation of various
protein kinases, including Akt, IκB kinase (IKK) and ERK, leads to phosphorylation of FOXO proteins and their
ubiquitinationmediated by E3 ligases such as SKP2 andMDM2 in human primary tumors and cancer cell lines.
As a result, the tumor suppressor functions of FOXO proteins are either diminished or abrogated due to their
ubiquitination–proteasome degradation, thereby favoring cell transformation, proliferation and survival.
Thus, ubiquitination and proteasome degradation of FOXO proteins play an important role in tumorigenesis
and represent a viable target for cancer treatment. This article is part of a Special Issue entitled: PI3K–AKT–
FoxO axis in cancer and aging.
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1. Introduction

Phosphatase and tensin homolog deleted in chromosome 10
(PTEN) is frequently mutated or deleted in a large spectrum of
human tumor types [1,2]. PTEN functions primarily as a lipid
phosphatase by antagonizing the effect of phosphoinositide 3-kinase
(PI3K) [3,4]. Loss of PTEN increases the levels of phosphatidylinositol
(3,4,5) trisphosphate (PIP3) in the plasma membrane, which in turn
leads to activation of protein kinase B (PKB or Akt).

Akt plays a central role in cell survival by activating or inactivating
a number of downstream effector proteins including FOXO transcrip-
tion factors [5]. Increasing evidence suggests that FOXO proteins
possess tumor suppression functions by regulating expression of
genes involved in apoptosis, cell cycle arrest, oxidative stress
resistance and DNA repair [5]. Activation of Akt due to frequent loss
of PTEN or constitutively activation of PI3K in human tumors results in
phosphorylation and inhibition of FOXO proteins [6]. Akt phosphor-
ylation also induces nuclear export of FOXO proteins through the
nuclear pore complex, which is dependent on 14-3-3 chaperone
proteins and the exportin receptor, chromosomal region maintenance
protein 1 (CRM1) [7,8]. Thus, the nuclear, transcription-dependent
tumor suppressor function of FOXOs is abolished due to Akt-mediated
phosphorylation and nuclear exportation (Fig. 1).

2. Akt activation promotes FOXO protein degradation

In addition to Akt-mediation phosphorylation of FOXO, Akt
activation promotes degradation of these proteins, and this process
is inhibited by proteasome inhibitors [9]. Also, insulin induces FOXO1
protein degradation in HepG2 cells [10], and this degradation requires
FOXO1 phosphorylation mediated by the PI3K/Akt pathway. Consis-
tent with this, levels of FOXO1 are high in serum-starved normal
chicken embryo fibroblasts, and FOXO1 protein undergoes rapid
phosphorylation and degradation following platelet-derived growth
factor treatment [11]. Moreover, Akt phosphorylation-dependent
proteasome degradation of FOXO1 plays a key role in oncogenic
transformation induced by the PI3K/Akt pathway. Thus, Akt inhibits
the activity of FOXO by promoting phosphorylation and nuclear
exportation of these proteins, and also by inducing their degradation
by the proteasome. In addition to Akt, other kinases such as IκB kinase
(IKK) and ERK also promote proteolysis of FOXO3a [12,13].

3. SKP2 works in concert with Akt to induce FOXO1 ubiquitination
and proteasome degradation

The ubiquitin–proteasome system (UPS) plays an essential role in
protein degradation. Before client proteins are recognized and
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Fig. 1. Regulation of FOXO proteins by phosphorylation-dependent ubiquitin–proteasome degradation pathways. Stimulation of cells by growth factors and insulin results in the
activation of Akt and ERK through the Ras- and PI3K-dependent pathways. This in turn leads to phosphorylation of FOXO transcription factors. Akt-mediated phosphorylation
promotes the localization of FOXO1 and other FOXO proteins in the cytoplasm, where the substrate-binding F-box protein SKP2 in the SCFSKP2 E3 ligase binds to and induces
ubiquitination and subsequent proteasome degradation of FOXO1. Activation of ERK by the Ras–Raf–MEK cascade also leads to phosphorylation of FOXO proteins, such as FOXO3a.
This phosphorylation further facilitates the recognition of FOXO3a by the E3 ligase MDM2, which promotes either monoubiquitination or polyubiquitination in the presence of high
levels of MDM2 or other E3 ligases such as SKP2. Monoubiquitination of FOXO proteins such as FOXO4 is subjected to deubiquitination mediated by the deubiquitination enzyme
HAUSP/USP7.
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targeted for degradation by the proteasome, ubiquitin is transferred
and covalently attached to substrates via sequential activation of
three enzymes including ubiquitin-activating enzyme (E1), ubiquitin-
conjugating enzyme (UBC, E2) and ubiquitin ligase (E3). Because
there is only one E1 protein in mammals (and relatively few E2
proteins), substrate targeting specificity is believed to be mediated by
E3. Based upon structure similarities E3 ligases are classified into two
main classes: the RING-finger proteins and the HECT-domain
proteins. The SKP1–CUL1–F-box protein (SCF) complex is a multi-
subunit RING-finger E3 ligase, which targets FOXO1. CUL1 provides a
scaffold function within this complex by recruiting the adaptor
protein SKP1 and the RING-finger protein RBX1 (Fig. 2A). SKP1 binds
to the F-box domain of the F-box containing proteins such as SKP2 and
β-TrCP (Fig. 2A). Most SCF substrates are recognized by and bound to
the F-box subunit. Through specific domains, such as the leucine-rich
repeat (LRR) in SKP2 and theWD40 domain in β-TrCP, SCF complexes
specifically recognize and bind to the substrates. Because substrate
phosphorylation is essential for targeting of the substrates by SCF
complexes, the phosphorylation sites are often called ‘phospho-
degron’. CUL1 also binds to the RING-finger protein RBX1, which
recruits UBC (E2) into the SCF complexes through its RING-finger
domain. By binding to both substrate and the E2 enzyme, the SCFSKP2

E3 complex enables transfer of the ubiquitin protein onto the
substrate (Fig. 2A).

FOXO1 is specifically bound by SKP2 in a number of cell types [14].
Consistent with the role of Akt in FOXO1 degradation, SKP2 binding of
FOXO1 requires Akt-mediated phosphorylation of FOXO1 at serine
256 [14]. SKP2 also induces polyubiquitination and degradation of
FOXO1. Importantly, SKP2-induced ubiquitin-dependent proteasome
degradation requires Akt phosphorylation of FOXO1 at serine 256
[14]. Therefore, like other well-studied substrates of SCFβ-TRCP and
SCFSKP2 complexes, such as IκBα, β-catenin and p27KIP1, recognition
and binding of FOXO1 by SKP2 requires the phospho-degron motif
that contains the serine 256 phosphorylation site (Fig. 2B). Although
to date it is unclear which lysine residue(s) in FOXO1 is specifically
targeted by SCFSKP2 for ubiquitination, these residues are likely
localized within the first 260 amino acids in the NH2-terminus of
FOXO1 [14]. Interestingly, among the known SCF targeting substrates,
including IκBα, β-catenin and p27KIP1, the ubiquitin accepting lysines
are usually located 9–14 amino acids within the region NH2-terminal
to the phospho-degron motif (Fig. 2B). Thus, it is possible that SCFSKP2

utilizes a similar mechanism in targeting FOXO1 for ubiquitination
and degradation (Fig. 2B).

4. Regulation of SKP2-mediated ubiquitination and proteasome
degradation of FOXO1 by other pathways

In addition to inducing phosphorylation of FOXO1, which is an
essential step for SKP2-mediated ubiquitination and proteasome
degradation of FOXO1, Aktmay contribute FOXO1 degradation by other
means. Loss of PTEN increases the levels of SKP2 mRNA, and this effect
of PTEN is Akt-dependent [15]. SKP2 levels and stability are regulated
by another E3 ligase anaphase-promoting complex/cyclosome and its
activator Cdh1 (APC/CCdh1) [16,17]. Akt phosphorylates SKP2 at serine
72; however, the functional significance of this phosphorylation is being
debated. Two reports suggest that this phosphorylation promotes
cytoplasmic localization of SKP2 and impairs APC/CCdh1-mediated
degradation of SKP2 in the nucleus [18,19]. However, another report
suggests that Akt-mediated phosphorylation of SKP2 at serine 72 does
not affect the subcellular localization of SKP2 [20]. Moreover, it has been
shown that conditional knockout of the nuclear cofactor CBP in
thymocytes increases SKP2 protein levels and promotes development
of T cell lymphomas [14,21]. Intriguingly, in addition to being an
important transcription coactivator, CBP is a key functional component
of theAPC/CCdh1 E3 ligase [22]. Thus, it can be speculated that loss of CBP
impairs APC/CCdh1 E3 activity and thereby promotes stabilization of
SKP2 [14,21]. Importantly, high levels of the SKP2 protein are inversely
correlated with low levels of the FOXO1 protein in CBP-knockout T cell
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Fig. 2. Ubiquitination of FOXO1 by the SCFSKP2 E3 complex. A, a diagram showing the components of the SKP1–CUL1–F-box protein SKP2 (SCFSKP2) ubiquitin E3 ligase complex.
F, F-box. LRR, leucine rich repeats. B, a putative positioning model for the destruction domain in the known substrates of SCFβ-TRCP and SCFSKP2 complex E3 ligases. One prediction
of this positioning model is that ubiquitin (Ub) accepting lysine residues are usually located 9–14 amino acids upstream of the phospho-degron site(s) in the substrates of the SCF
E3 ligases.
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lymphomas [14]. SKP2-mediated degradation of FOXO1 has also been
shown in other tumor types [23,24]. Thus, many cancer relevant
pathways converge on the regulation of the levels of SKP2 protein,
which may in turn affect FOXO1 protein levels via the ubiquitin–
proteasome pathway.

5. Monoubiquitination and deubiquitination of FOXO proteins

The single molecule RING-finger E3 ligase murine double minute 2
(MDM2) promotes ubiquitination of various FOXO factors including
FOXO1, FOXO3a and FOXO4, suggesting that MDM2 acts as a general
E3 ligase for FOXO protein degradation [13,25,26]. Activation of
ERK by the Ras/Raf pathway leads to FOXO3a phosphorylation and
downregulation [13]. ERK-phosphorylated FOXO3a is further sub-
jected to MDM2-mediated ubiquitination and proteasome degrada-
tion [13]. Intriguingly, knockout or knockdown of MDM2 alone
increases FOXO3a protein levels, and this effect was shown to be
mediated by MDM2-induced polyubiquitination of FOXO proteins
[26] whereas another study showed that MDM2 catalyzes multiple
monoubiquitination of FOXO4 rather than polyubiquitination [25].
Monoubiquitination of FOXO4, which promotes its nuclear localiza-
tion, was also observed in cultured cells in response to oxidative stress
[27]. Moreover, monoubiquitinated FOXO4 can be deubiquitinated
by the deubiquitinating enzyme herpesvirus-associated ubiquitin-
specific protease (HAUSP)/USP7 [27]. Based on these findings, it has
been proposed [25] that ERK-phosphorylated FOXO proteins, espe-
cially FOXO3a, can be monoubiquitinated by a priming E3 ligase such
as MDM2 and that this induces nuclear localization of FOXO proteins
(Fig. 1). This processmay be reversed by the deubiquitination of FOXO
proteins mediated by HAUSP/USP7. Under certain conditions, e.g.,
whenMDM2 levels are high, FOXOproteins becomepolyubiquitinated
(Fig. 1). It has also been proposed that monoubiquitinated FOXO
protein can be further converted into a polyubiquitinated form by
branching E3 ligases such as SKP2 [25].

6. Role of proteasome degradation of FOXO proteins in cell
transformation and tumorigenesis

Activation of FOXO proteins upregulates expression of genes
involved in cell cycle arrest, apoptosis and DNA repairs, implying that
these proteins function as tumor suppressors [5]. Indeed, forced
expression of FOXO1 and FOXO3a in PTEN-mutated prostate and
kidney cancer cells induces apoptosis and cell cycle arrest, respec-
tively [14,28]. The anti-tumor function of FOXO1 is largely diminished
in cells overexpressing SKP2 [14]. In contrast, co-expression of SKP2
with an Akt phosphorylation-resistant mutant of FOXO1 promotes
neither the proteasomedegradation of thismutated formof FOXO1, nor
the mutant-induced death of prostate cancer cells [14]. Thus, degrada-
tion of FOXO1 contributes to Akt-mediated cell growth and survival, as
well as SKP2-induced tumorigenesis [23]. These findings were con-
firmed in an independent study using chicken embryo fibroblasts (CEF)
as a working model [11], where it is well established that PI3K and Akt
induce transformation. Intriguingly, FOXO1 expression is suppressed in
CEF transformed by PI3K and Akt, and this effect is mediated by PI3K/
Akt-induced proteasome degradation of FOXO1 [11]. Importantly,
phosphorylation-dependent proteasome degradation of FOXO1 plays
an important role in oncogenic transformation by PI3K/Akt [11].

Surprisingly, FOXO3a protein is localized in the cytoplasm of some
breast tumors lacking Akt phosphorylation or activation [12]. The
cytoplasmic localization FOXO3a is regulated by IκB kinase (IKK)
phosphorylation of FOXO3a, which also induces proteasome degra-
dation of FOXO3a [12]. Moreover, cytoplasmic localization of FOXO3a
is correlated with IKK expression as well as poor survival in breast
cancer. Importantly, constitutive expression of IKK promotes cell
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proliferation in cultured cancer cells and tumorigenesis in mice, but
these effects of IKK can be reversed by FOXO3a [12]. Thus, IKK
phosphorylation of FOXO3a also serves as a vital mechanism in
promoting cell growth and tumorigenesis.

Another well-established cancer relevant kinase cascade is the
Ras–MEK–ERK pathway, where activation of ERK induces phosphor-
ylation of FOXO3a at multiple residues [13]. ERK phosphorylated
FOXO3a can be recognized by the E3 ligase MDM2, resulting in
ubiquitination and proteasome degradation of FOXO3a [13]. Also,
ERK/MDM2-mediated proteasome degradation of FOXO3a plays an
important role in promoting cell proliferation and tumorigenesis [13].

In summary, FOXO proteins act as tumor suppressors by
transcriptionally regulating expression of a large number of genes
that promote apoptosis, cell cycle arrest, oxidative stress resistance
and DNA repair. Importantly, the anti-tumor functions of these
transcription factors are often abolished by kinase-mediated phos-
phorylation and E3 ligase-mediated ubiquitination and proteasome
degradation. Thus, deregulation of FOXO proteins may play an
essential role in promoting cancer cell growth and survival.
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