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Regulatory T Cells Reinforce Intestinal Homeostasis
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Regulatory T cells help maintain intestinal homeostasis by preventing inappropriate innate and adaptive
immune responses. CD4+ T cells that express Foxp3 and Tr1-like cells that produce IL-10 comprise the major
regulatory populations in the intestine. CD4+Foxp3+ T cells play an important functional role in promoting
tolerance of the flora and dietary proteins. Tr1-like cells can be generated in conditions that also promote
effector T cell responses and may serve a similar function. In this review, we discuss the signals specific
to the gastrointestinal tract that support both regulatory cell types and their distinct modes of action in the
mesenteric lymph nodes and intestinal tissues. Dysregulation of intestinal immune homeostasis occurs in
inflammatory bowel disease and can also be observed in graft-versus-host disease, tumor immunotherapy
regimens, and acute HIV infection.
Introduction
The benefit derived from harboring symbiotic organisms is

a force that has shaped evolution (Dale and Moran, 2006) and,

in mammals, nowhere is this more apparent than in the gastroin-

testinal (GI) tract. The intestinal flora, which is largely composed

of resident bacteria that most densely populate the colon, bene-

fits the host by extracting dietary nutrients and preventing colo-

nization by opportunistic pathogens (Duerkop et al., 2009, in this

issue of Immunity). Tolerance of the endogenous flora can be

advantageous, but must be achieved while minimizing the risk

of systemic infection. The GI tract forms the largest mammalian

epithelial surface, so this constitutes a substantial challenge.

Pathogenic and commensal bacteria are diverse and derive

from intermingled phylogenies, making it difficult, if not impos-

sible, for the host to distinguish between them at a molecular

level. Instead, intestinal physiology has evolved to sequester

most of the flora in the lumen, in a layer of mucus and immuno-

globulin A (IgA), and to reinforce the gut with multiple layers of

defense, consisting of barrier, innate, and adaptive components

that limit flora-driven inflammation.

Multiple Mechanisms Enforce Intestinal Homeostasis
The epithelial layer of the GI tract largely consists of intestinal

epithelial cells (IECs) connected by tight junctions, as well as

mucus-secreting goblet cells and antimicrobial-peptide-pro-

ducing Paneth cells (Artis, 2008). Interspersed throughout the

epithelium are gut-associated lymphoid tissues (GALT), in-

cluding Peyer’s patches in the small intestine and isolated

lymphoid follicles in the colon, which contain IgA-secreting

plasma cells. Together, these varied cell populations support

a mucus layer, containing IgA and antimicrobial peptides, which

dramatically reduces the bacterial load at the barrier between the

epithelium and lumen.

Although relatively devoid of live bacteria, the intestinal epithe-

lium may be constantly exposed to immunostimulatory mole-

cules, such as lipopolysaccharide (LPS), that diffuse through

the mucus layer. To prevent continual immune activation, IECs

exclude Toll-like receptor 5 (TLR5), which senses bacterial

flagellin, from the luminal interface (Gewirtz et al., 2001), and
IECs, intestinal macrophages, and dendritic cells (DCs) in the

intestinal draining lymph are hyporesponsive to LPS (Cerovic

et al., 2009; Lotz et al., 2006). Innate immune recognition of inva-

sive pathogens at the intestinal epithelial interface may instead

rely on intracellular sensors, such as endosomal TLRs, cyto-

plasmic nucleic acid sensors, and Nod-like receptors. Upon

detection of pathogens, inflammatory cytokines are secreted

that recruit DCs, monocytes, and neutrophils to the intestine.

In the absence of infection, intestinal DCs remain quiescent

and promote tolerance by migrating to the GALT where they

present luminal-derived antigens to lymphocytes (Coombes

and Powrie, 2008).

T cells provide a third layer of intestinal defense that limits

infections by pathogens that enter through the GI tract. Innate-

like lymphocytes, principally intraepithelial gd T cells, provide

signals that enhance barrier function (Chen et al., 2002). Conven-

tional CD4+ and CD8+ T cells are also found in the intestine;

however, these cells present the inherent risk of reacting toward

dietary or flora antigens. Indeed, antigen-experienced T cells in

the mesenteric lymph node (mLN) of healthy mice are capable

of inducing intestinal inflammation upon adoptive transfer into

immunodeficient recipients (Asseman et al., 2003).

Inappropriate innate and adaptive immune responses in the GI

tract are normally restrained by regulatory lymphocytes (Maloy

et al., 2003; Read et al., 2000). Although regulatory activity has

been ascribed to several types of intestinal lymphocytes,

compelling genetic and functional evidence suggests that

CD4+Foxp3+ regulatory T (Treg) cells and IL-10-producing

T cells carry out nonredundant functions. Notably, mice lacking

Foxp3 develop fatal multiorgan inflammation that can be sup-

pressed by adoptively transferred Foxp3+ Treg cells (Fontenot

et al., 2003). Mice engineered to lack the expression of specific

regulatory cytokines in T cells, such as IL-10 or TGF-b, succumb

to wasting disease and colitis when disease-triggering bacteria

are present in the intestinal flora (Li et al., 2007; Roers et al.,

2004; Rubtsov et al., 2008). In humans, intestinal inflammation

often occurs in immune dysregulation, polyendocrinopathy,

enteropathy, and X-linked (IPEX) syndrome (Powell et al.,

1982), which is caused by germline mutations in FOXP3 (Ziegler,
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2006). This review will focus on the flora- and innate immune-

dependent signals that modulate intestinal Treg cell activity,

and the actions of Treg cells that reinforce barrier and innate

immune functions in the intestine.

Characteristics of Foxp3+ Treg Cells that Develop
in the Thymus
Most CD4+Foxp3+ Treg cells probably originate in the thymus,

where their development requires signals that activate NF-kB

via the PKCq-Carma-1-IKK2 axis and limit activation of the

PI3-kinase-Akt-mTOR pathway (Feuerer et al., 2009). The

T cell receptor (TCR) is a dominant source of these signals.

The expression of a TCR repertoire in Treg cells that is largely

distinct from conventional T cells has been interpreted to indi-

cate that thymic Treg cells bind self-peptides with moderate

affinity (Feuerer et al., 2009; Josefowicz and Rudensky, 2009).

After TCR stimulation, Treg cell precursors must receive costi-

mulatory signals through CD28 and encounter the common-g

chain cytokines IL-2 or IL-15 in order to activate Stat5 and induce

Foxp3 expression (Burchill et al., 2008; Lio and Hsieh, 2008).

IL-2, as well as TGF-b, are also important in the periphery where

they help maintain Foxp3+ Treg cells.

The affinity of TCR binding to MHC molecules alone does not

determine whether a thymocyte will express Foxp3. Interest-

ingly, a study with transgenic mice expressing TCRs common

to Treg cells demonstrates that a very small thymic niche exists

for each clone with a certain specificity (Bautista et al., 2009).

Limiting the thymic Treg cell niche by the availability of self-anti-

gens would allow many clones with diverse specificities to

develop. Both thymic DCs and epithelial cells are capable of pre-

senting antigens that induce Foxp3 expression (Wirnsberger

et al., 2009). Intriguingly, presentation of the full spectrum of

CD4+ T cell-selecting ligands requires nonhematopoietic thymic

stromal cells to be able to undergo autophagy (Nedjic et al.,

2008). Autophagy-deficient Atg5�/� thymi aberrantly select

CD4+ T cells, indicating that part of the normal T cell repertoire

might recognize antigens that depend upon autophagy for their

processing and presentation. When Atg5�/� thymi are trans-

planted into autophagy-sufficient athymic nude mice, recipient

mice develop colitis despite the presence of normal Treg cell

numbers in the thymus and intestine. This finding suggests the

possibility that the intestine is enriched in autophagy-dependent

antigens, which normally activate protective Treg cells. In recip-

ients of Atg5�/� thymi, such Treg cells would be absent and

autophagy-dependent antigens might instead activate colito-

genic T cells that escape deletion in the thymus.

After exiting the thymus, some Treg cells migrate to the GI

tract where they can recognize intestinal antigens and prevent

inappropriate immune responses. Such a mechanism has been

demonstrated via the T-cell-transfer model of colitis in which

adoptively transferred naive CD4+ T cells cause intestinal inflam-

mation in SCID recipients (Powrie et al., 1993). The intestinal flora

is required to drive inflammation, as indicated by the fact that

colitis is attenuated in germ-free SCID mice receiving naive

T cells (Aranda et al., 1997). Several factors may underlie this

phenomenon, including the absence of flora-derived antigens

and the impaired formation of the GALT in germ-free mice. In

mice housed in specific-pathogen-free (SPF) conditions, co-

transferred Treg cells prevent colitis (Read et al., 2000). By
402 Immunity 31, September 18, 2009 ª2009 Elsevier Inc.
some reports, Treg cells isolated from germ-free mice are also

able to prevent intestinal inflammation (Annacker et al., 2000;

Singh et al., 2001), although another study has produced con-

flicting results (Strauch et al., 2005). These differences may

reflect the adaptation of Treg cells to both self- and exogenous

antigens presented in the intestine. For example, certain intes-

tinal bacteria, such as Helicobacter hepaticus, promote en-

hanced suppressive capacity of Treg cells (Kullberg et al.,

2002). Indeed, in a setting where germ-free Treg cells function,

we have found that Treg cells isolated from SPF-housed mice

are better suppressors than those from germ-free mice (Singh

et al., 2001). Thus, additional flora-dependent shaping of the

Treg cell pool can occur in the peripheral lymphoid organs that

allows for efficient regulation of the GI tract.

The Intestinal Treg Cell Niche: Foxp3+ Treg Cells
Generating additional Treg cells extrathymically is one way that

regulation could be enhanced in the intestine. Naive CD4+

T cells can differentiate into ‘‘induced’’ Foxp3+ Treg (iTreg) cells

when activated by transient TCR stimulation (Sauer et al., 2008)

or TCR stimulation in the presence of TGF-b and IL-2 (Chen et al.,

2003) and the absence of inflammatory cytokines that promote

effector T cell differentiation (Maynard and Weaver, 2009, in

this issue of Immunity). In vivo, transfusion of antigen under non-

immunogenic conditions, homeostatic proliferation, or chronic

inflammation can generate iTreg cells (Curotto de Lafaille and

Lafaille, 2009). Although thymic Treg and iTreg cells may express

different gene transcripts and epigenetic markers (Hill et al.,

2007; Wei et al., 2009), they are currently difficult to distinguish

on a single-cell basis. Therefore, it is only possible to approxi-

mate the contribution of iTreg cells to the total intestinal Treg

cell pool. One approach involves adoptively transferring naive

CD4+CD45RBhiFoxp3� T cells into Rag2�/� recipients and

observing when and where cells begin to express Foxp3. Nor-

mally, naive T cell transfer into Rag2�/� recipients gives rise to

very few Foxp3+ Treg cells and favors the accumulation of coli-

togenic Th1 and Th17 effector cells (Leppkes et al., 2009; Powrie

et al., 1994). However, when naive T cells are transferred into

Rag2�/� recipient mice lacking IL-23 (IL-12p19), which do not

develop intestinal inflammation, preferential induction of Foxp3

expression occurs among T cells that migrate to the colon lamina

propria (LP) and mLN (Izcue et al., 2008). These iTreg cells func-

tion and contribute to the prevention of colitis, as indicated by

the fact that intestinal inflammation occurs when Foxp3-defi-

cient naive T cells, which cannot give rise to iTreg cells, are

used as donors. Interestingly, naive T cells transferred into

Rag2�/� recipients that are treated with IL-6R blocking antibody

also generate a higher frequency of Foxp3+ Treg cells in both the

GI tract and spleen, demonstrating a general role for inflamma-

tory Stat3-activating cytokines in limiting Foxp3 induction (Izcue

et al., 2008). Lymphopenia-induced homeostatic proliferation is

physiologically relevant, because it occurs in the neonatal setting

in the absence of intestinal inflammation (Min et al., 2003) and

could contribute to an early Treg cell population in the devel-

oping immune system.

To assess iTreg cell generation in an adult mouse, congeni-

cally marked CD4+Foxp3� T cells can be transferred into

lymphocyte-replete recipients. However, in this setting, few

transferred CD4+Foxp3� T cells become Foxp3+ and are



Immunity

Review
estimated to comprise only �4%–7% of the normal Treg cell

pool (Lathrop et al., 2008). Importantly, Foxp3+ iTreg cells

become twice as frequent in the mLN than the spleen or periph-

eral lymph nodes, suggesting that iTreg cell generation occurs

more frequently in the intestine. An alternative approach with

Carma-1-deficient mice, which are devoid of thymic Treg cells

(Barnes et al., 2009; Medoff et al., 2009; Molinero et al., 2009)

but can generate iTreg cells (Barnes et al., 2009), has yielded

similar results. In these mice, Treg cells in the spleen and periph-

eral lymph nodes are only �3%–4% as frequent as Treg cells in

wild-type mice, but this frequency increases to �8% and �40%

in the mLN and colon LP, respectively. Because transferred

T cells have to compete with pre-existing T cells for cytokines

needed to induce Foxp3 (Lathrop et al., 2008) and Carma-1-defi-

cient CD4+ T cells have a higher TCR signaling threshold for

Foxp3 induction (Barnes et al., 2009), these represent conserva-

tive estimates of the normal iTreg cell population. Additionally,

mice housed in SPF conditions are not exposed to persistent

infections or chronic inflammation, which could further promote

iTreg cell generation (Curotto de Lafaille and Lafaille, 2009).

However, it is reasonable to assume that the majority of Treg

cells in the GI tract of healthy mice represent Foxp3+ Treg cells

exported from the thymus. Taken together, these studies indi-

cate that the noninflamed GI tract is a permissive site for the

accumulation of iTreg cells, which together with thymus-derived

Treg cells collaborate to reinforce intestinal homeostasis.

In order to suppress immune responses toward exogenous

dietary and flora antigens, the GI tract could be enriched for

reactive thymic-derived Treg cells or iTreg cells could be gener-

ated from conventional CD4+ T cells. Treg cells in the mLN

express TCR sequences that are distinct from those expressed

by Treg cells in the peripheral lymph nodes and show little over-

lap with the TCRs expressed by naive or memory T cells in the

mLN (Lathrop et al., 2008). This observation suggests that intes-

tinal antigens, either self-antigens expressed by cells in the GI

tract or exogenous antigens derived from the lumen, do shape

the intestinal Treg cell pool. In support of the latter possibility,

several studies have demonstrated that orally fed antigen can

expand antigen-specific regulatory T cell populations (Chen

et al., 1994). Although oral tolerance might also involve the

expansion of reactive thymus-derived Treg cells, we have

demonstrated, along with others, that this phenomenon involves

the induction of Foxp3+ iTreg cells from the conventional T cell

pool and predominantly occurs in the GALT (Coombes et al.,

2007; Sun et al., 2007). Orally induced Treg cells are functional

and act both locally in the gut and systemically. For example,

orally induced ovalbumin-specific Foxp3+ Treg cells can

suppress lung inflammation in a model of asthma driven by

Th2 effector cells (Curotto de Lafaille et al., 2008). Different

Treg cell effector mechanisms are required to prevent inappro-

priate immune responses to dietary- versus flora-derived anti-

gens, with the production of IL-10 being dispensable for oral

tolerance but essential in the latter situation (Fowler and Powrie,

2002). In humans with inflammatory bowel disease (IBD), oral

tolerance is impaired (Kraus et al., 2004), although further

research is needed to determine whether this finding represents

genetic defects that predispose individuals to developing IBD

(Kraus et al., 2006) or is a secondary consequence of intestinal

inflammation.
The Intestinal Treg Cell Niche: IL-10-Producing T Cells
Although the generally immunosuppressive cytokine IL-10 is an

important effector molecule expressed by Foxp3+ Treg cells,

Il10�/�mice do not develop the lymphoproliferative autoimmune

disease observed in Foxp3-deficient mice. Instead, they are

highly susceptible to intestinal inflammation triggered by the

presence of common intestinal bacteria, such as H. hepaticus,

in the context of a ‘‘normal’’ SPF-flora (Kullberg et al., 1998).

Other genera of bacteria, for example segmented filamentous

bacteria, can act as triggering microbes in alternate colitis

models (Stepankova et al., 2007), and the flora can also contain

bacteria that offset the presence of disease-triggering microor-

ganisms by promoting IL-10 expression (Mazmanian et al.,

2008). The composition and density of the intestinal flora varies

greatly throughout the GI tract, so it might be fitting that the

need for IL-10 varies similarly. Thus, whereas Foxp3+ Treg cells

represent a constitutive regulatory presence, IL-10 acts as an

inducible immunoregulatory factor that can be called into action

when and where inflammatory conditions demand. IL-10 acts in

part by activating Stat3. The finding that mice lacking Stat3 in

the myeloid compartment develop colitis similar to Il10�/� mice

suggests that myeloid cells are essential targets of IL-10 sig-

naling in the intestine (Takeda et al., 1999). Exogenous IL-10

can limit the ER stress response in an IEC cell line (Shkoda

et al., 2007), so IL-10 might also contribute to the maintenance

of intestinal barrier function.

Mice that coexpress Foxp3 and IL-10 reporter constructs

allow IL-10 expression in Foxp3+ Treg cells and other T cell

subsets to be monitored at the single-cell level (Kamanaka

et al., 2006; Maynard et al., 2007). Consistent with a requirement

for T cell-derived IL-10 in maintaining intestinal homeostasis

(Roers et al., 2004), a substantial fraction (10%–30%) of tissue-

resident intestinal CD4+ T cells can produce IL-10 (Maynard

et al., 2007). In the colonic LP, nearly all of the IL-10-producing

T cells are Foxp3+ Treg cells. These cells have a nonredundant

function, as shown by the fact that Helicobacter-infected mice

with a specific deletion of IL-10 in Foxp3+ cells develop typhlitis

(inflammation of the caecum) and mild colitis (Rubtsov et al.,

2008). However, the colitis observed in these mice is less severe

than in Il10�/� mice, suggesting that other sources of IL-10 are

also functionally important. Among intraepithelial lymphocytes

in the small intestine, most IL-10-producing CD4+ T cells are

Foxp3� and do not secrete effector T cell cytokines or IL-2 (May-

nard et al., 2007), reminiscent of previously described IL-10-Treg

or T regulatory type 1 (Tr1) cells (Vieira et al., 2004). In the small

intestine LP, both Foxp3+ Treg and Tr1-like cells produce IL-10.

This compartmentalization of intestinal regulatory T cell subsets

suggests that the GI tract contains several distinct immunolog-

ical microenvironments that differentially promote IL-10 produc-

tion (Figure 1).

The signals that turn on IL-10 expression in T cells are distinct

from those that induce Foxp3 expression. IL-10 can be ex-

pressed by both Foxp3+ Treg cells and Tr1-like cells (Asseman

et al., 1999; Vieira et al., 2004). Effector T cells can also coexpress

IL-10 along with IFN-g, IL-4, or IL-17 in infectious contexts

(O’Garra and Vieira, 2007), and this has been shown, in vitro, to

require Erk1 and Erk2 activation (Saraiva et al., 2009). The best-

characterized pathway for inducing IL-10 expression occurs in

response to IL-27, a member of the IL-12 family of cytokines
Immunity 31, September 18, 2009 ª2009 Elsevier Inc. 403
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that has both effector and regulatory properties. Exposure to

IL-27 can induce IL-10 expression in CD4+ T cells by triggering

a sequence of events that include upregulation of the transcrip-

tion factor c-Maf and subsequent induction of IL-21, which acts

as a growth factor for IL-10-producing T cells (Pot et al., 2009;

Spolski et al., 2009). IL-27-deficient mice are not susceptible to

flora-triggered colitis, like IL-10-deficient mice, in part because

IL-27 also promotes effector T cell responses. However, Il27r�/�

Il10�/� double-deficient mice still develop colitis, although with

slower kinetics than Il10�/� mice (Villarino et al., 2008). These

findings suggest that other pathways for both effector T cell

responses and IL-10 induction operate in the intestine. For

example, in the presence of TGF-b, IL-6 can drive IL-10 produc-

tion independently of IL-21 signaling (Spolski et al., 2009). IL-6 is

produced in large amounts during intestinal inflammation, but its

contribution to the induction of IL-10 in the steady state is less

obvious and merits investigation. Furthermore, although IL-27

and TGF-b can induce iTreg cells that express IL-10 in vitro

(Stumhofer et al., 2007), the signals that regulate IL-10 expression

in Foxp3+ Treg cells in vivo remain elusive (Maynard et al., 2007,

2009).

Mouse models have identified several transcription factors as

potential regulators of IL-10 expression, including two that have

been implicated in IL-21 signaling, Blimp-1 and c-Maf. Mice

lacking hematopoietic or T cell expression of Blimp-1, which is

encoded by Prdm1 and highly expressed by both activated

T cells and CD4+CD25+ T cells, develop spontaneous colitis (Kal-

lies et al., 2006; Martins et al., 2006). Colitis may occur because

Foxp3+IL-10-

Naive or effector T cell

Foxp3+IL-10+

Tr1-like IL-10+

SMALL INTESTINE COLON

MESENTERIC 
LYMPH NODE

Figure 1. The Anatomy of Intestinal
Regulatory T Cell Populations
CD4+ T cell populations with regulatory functions
in the intestine include Foxp3+ Treg cells and
Foxp3� Tr1-like cells. In the colon, which harbors
a high bacterial load, most of the Foxp3+ Treg cells
in the lamina propria produce IL-10 and Tr1-like
cells are less frequent. Fewer bacteria colonize
the small intestine, where the bulk of dietary nutri-
ents are absorbed. Here, a high frequency of
Tr1-like cells patrol the intraepithelial layer,
whereas both Tr1-like cells and Foxp3+ Treg cells
populate the lamina propria. In the draining mLN,
fewer IL-10-producing cells are found than in the
intestinal tissue and the major regulatory popula-
tion is the Foxp3+ Treg cell. Some intraepithelial
lymphocytes are present in the colon, but the
frequency of Foxp3+ Treg and Tr1-like cells in
this location has not been reported.

of excessive effector T cell responses,

because Blimp-1 is needed to limit IL-2

expression and polarization toward a

Th1 cell effector phenotype. Blimp-1 may

also be required for regulatory T cell func-

tion. Whereas mRNA encoding Blimp-1 is

not expressed in large amounts among

resting Foxp3+ Treg cells (Hill et al.,

2007), the promoter of Prdm1 does

contain a Foxp3 binding site (Zheng

et al., 2007) making it unclear whether

activated T cells or perhaps activated

Foxp3+ Treg cells are the major source

of Blimp-1 in the CD4+CD25+ T cell pool. Although Treg cells

from Blimp-1-deficient mice can protect in the T-cell-transfer

model of colitis (Kallies et al., 2006), both the CD25+ and

CD25� CD4+ T cell populations show a reduced frequency of

IL-10+ cells compared to wild-type mice (Martins et al., 2006);

however, this reduction could be a secondary effect of ongo-

ing inflammation. Another candidate transcription factor for

promoting IL-10 expression, c-Maf, can be induced by IL-27

and IL-21 (Pot et al., 2009) or signaling through the inducible cos-

timulator (ICOS) molecule (Bauquet et al., 2009). ICOS-deficient

CD4+ T cells show defects in IL-10 expression (Pot et al., 2009),

and many IL-10-producing CD4+ T cells, including Foxp3+ Treg

cells, coexpress ICOS (Huehn et al., 2004; Ito et al., 2008).

Intriguingly, preliminary reports suggest that ICOS-deficient

Treg cells fail to control T-cell-transfer-induced colitis (Zheng

et al., 2009). Transcription factors activated by TGF-b signaling

are also likely to be important in generating intestinal IL-10-

producing T cells (Kitani et al., 2003; Maynard et al., 2007).

The Intestinal Treg Cell Niche: TGF-b

TGF-b is a pleiotrophic cytokine, important for the maintenance

and effector function of both Foxp3+ Treg and Tr1-like cells in the

intestine (Chen et al., 1994; Li et al., 2006; Marie et al., 2005,

2006; Maynard et al., 2007; Powrie et al., 1996). Unlike the

susceptibility to colitis observed in Il10�/� mice, Tgfb1�/� mice

succumb to a T cell-dependent lymphoproliferative autoimmune

disease by several weeks of age (Diebold et al., 1995). This differ-

ence has made studying the role of TGF-b in the GI tract
404 Immunity 31, September 18, 2009 ª2009 Elsevier Inc.
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especially challenging, necessitating the use of both adoptive

transfer and conditional gene-targeting approaches. In the

absence of signaling through TGF-bRII, T cells become partially

activated and prone to differentiate into autoreactive effector

T cells (Gorelik and Flavell, 2000; Li et al., 2006; Marie et al.,

2006). With the T-cell-transfer model of colitis, we have shown

that transferred naive T cells expressing a dominant-negative

TGF-bRII molecule cause intestinal inflammation that cannot

be suppressed by Treg cells (Fahlén et al., 2005). Furthermore,

CD4+ T cells from mice that overexpress Smad7, an endogenous

inhibitor of TGF-b signaling through Smad2 and Smad3, are

similarly resistant to suppression (Fantini et al., 2009). Therefore,

TGF-b signaling into T cells is essential to limit colitogenic

effector T cell responses.

Regulatory T cells are one source of intestinal TGF-b. We

found, along with others, that Treg cells from DO11.10.Tgfb1�/�

mice (Fahlén et al., 2005) or Tgfb1�/� neonates (Kullberg et al.,

2005) function in the T-cell-transfer model of colitis. However,

another study using the same model reported that TGF-b1-defi-

cient Treg cells do not limit weight loss or intestinal inflammation

(Li et al., 2007). Differences in the intestinal flora, genetic back-

ground, Treg cell TCR repertoire, or ongoing inflammation in

the donor mice might underlie these conflicting results. Interest-

ingly, TGF-b1-deficient Treg cells cotransferred with TGF-b1-

deficient naive T cells cause worse disease than TGF-b1-defi-

cient Treg cells cotransferred with wild-type naive T cells (Li

et al., 2007). Furthermore, Tr1-like cells can suppress T cell prolif-

eration in vitro by producing TGF-b and IL-10 (Maynard et al.,

2007). These findings are consistent with the existence of Treg

cell-dependent and -independent sources of TGF-b in the

CD4+ T cell pool that contribute to intestinal homeostasis.

Although the intestine harbors a high concentration of TGF-b,

the majority is thought to exist in an inactive form. Integrins

have a key role in activating TGF-b, including avb6 integrin

expressed by IECs and avb8 integrin expressed by DCs (Lacy-

Hulbert et al., 2007; Munger et al., 1999; Travis et al., 2007). Hel-

icobacter-infected mice lacking b8 integrin expression in CD11c+

cells develop spontaneous colitis, demonstrating an essential

role for DCs expressing TGF-b-activating integrins in the intestine

(Travis et al., 2007). In addition to being a source of TGF-b, T cells

might also express molecules important for TGF-b activation,

thereby promoting both Treg cell induction and maintenance

(Andersson et al., 2008). Thrombospondin is one such molecule

(Crawford et al., 1998), and we note that a population of

latency-associated peptide-expressing CD4+CD25�CD45RBlo

T cells are enriched for thrombospondin expression and can

prevent intestinal inflammation in the T-cell-transfer colitis model

(Oida et al., 2003). Another important molecule is the proprotein

convertase Furin, which can activate TGF-b along with a number

of other substrates. Mice engineered to lack Furin expression in

T cells have normal to elevated numbers of Foxp3+ Treg cells,

but show impaired TGF-b-dependent processes in the GI tract

and develop colitis by 6 months of age (Pesu et al., 2008). In

summary, CD4+ T cells, DCs, and IECs all collaborate to activate

TGF-b and maintain T cell tolerance in the intestine.

The Intestinal Treg Cell Niche: Conditioning Factors
TGF-b is one of many factors that control the size and composi-

tion of the intestinal Treg cell niche. The frequency of peripheral
Treg cells is reduced in the absence of TGF-bRII signaling (Li

et al., 2006; Marie et al., 2006) but remains normal in mice with

a T cell-specific deletion of TGF-b1 (Li et al., 2007). Although it

is possible that other TGF-b isoforms compensate for the

absence of TGF-b1, non-T cell sources of TGF-b likely contribute

to the maintenance of the intestinal Treg cell compartment.

Apoptotic cells represent an important potential source of bioac-

tive TGF-b (Chen et al., 2001), capable of enhancing TGF-b

production from immature DCs and macrophages, and, in turn,

generating iTreg cells (Perruche et al., 2008). Because epithelial

cells have a high rate of turnover, apoptosis of IECs may be an

important process in establishing the TGF-b-rich intestinal envi-

ronment that supports a high frequency of Treg cells. In support

of this idea, mice lacking expression of av integrins in hematopoi-

etic cells show defects in the phagocytosis of apoptotic cells and

develop spontaneous colitis (Lacy-Hulbert et al., 2007). Like b8

integrin-deficient mice (Travis et al., 2007), these mice have a

specific reduction of Foxp3+ Treg cells in the colon LP, but not

the spleen or lymph nodes (Lacy-Hulbert et al., 2007). avb8 integ-

rin can activate TGF-b, so it is not yet clear whether the intestinal

inflammation and Treg cell deficiency in av integrin-deficient

mice reflects an absence of bioactive TGF-b or impaired

apoptotic cell uptake. It is also possible that these processes

are intertwined (Perruche et al., 2008). Apart from sustaining

Treg cells, apoptotic cell-derived TGF-b can instead support

effector T cell responses during inflammatory conditions. For

example, during Citrobacter rodentium infection, the apoptosis

of IECs accelerates, resulting in the production of large amounts

of TGF-b in an inflammatory milieu that contributes to the Th17

cell response in this acute model of intestinal inflammation

(Torchinsky et al., 2009).

The intestinal flora also influences the balance of intestinal

Treg and Th17 cells by generating immunomodulatory metabo-

lites. A comparison of serum from germ-free and conventional-

ized mice by mass spectrometry found that the flora influences

the concentration of �10% of common circulating metabolites

(Wikoff et al., 2009). Affected molecules include the aromatic

amino acids—phenylalanine, tryptophan, and tyrosine—and

their derivatives, including the signaling molecule serotonin.

Interestingly, these classes of molecules directly influence

the differentiation of Th17 cells in vitro (Veldhoen et al., 2009).

In the intestinal lumen, resident bacteria secrete adenosine

50-triphosphate (ATP), which similarly favors the expansion of

Th17 cells (Atarashi et al., 2008). Accumulation of Th17 cells

can come at the expense of the maintenance of Foxp3+ Treg

cells. For example, mice colonized with an intestinal flora that

supports high frequencies of Th17 cells in the small intestine

LP have correspondingly lower frequencies of Foxp3+ Treg cells

among CD4+ T cells (Ivanov et al., 2008). In the presence of an

intestinal flora that favors Th17 cell accumulation, the induction

of Tr1-like cells might represent a backup or alternative regula-

tory system (Figure 2).

The flora also contains bacterial molecules that promote regu-

lation. Polysaccharide A (PSA), a carbohydrate expressed by the

human commensal bacterium Bacteroides fragilis, is sufficient to

ameliorate T cell-driven colitis in an IL-10-dependent manner

(Mazmanian et al., 2008). Previous studies demonstrated that

PSA can be presented to CD4+ T cells by MHC class II molecules

and favors Th1 cell effector responses, which are normally
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Figure 2. Distinct Stimuli Promote Intestinal
Th17, Tr1-like, and Foxp3+ Treg Cells
Of the many factors unique to the intestinal envi-
ronment, several stimuli that affect the differentia-
tion of T cell subsets have been identified. Retinoic
acid, a metabolite of dietary vitamin A, can
promote iTreg cell generation and inhibit Th17
and Tr1-like cell responses in part by reducing
IL-21 transcription and IL-6Ra expression in
T cells. PSA, a molecule expressed by the bacte-
rium Bacteroides fragilis, can ameliorate intestinal
inflammation by an IL-10-dependent mechanism,
which might involve the expansion of Tr1-like cells.
Bacterial DNA from the flora can activate TLR9,
thereby limiting Treg cell accumulation and poten-
tially favoring Tr1-like cell responses via the
production of IL-6 and perhaps IL-27, which can
induce the IL-10-promoting cytokine IL-21. All
three T cell subsets utilize TGF-b for their mainte-
nance. Apoptotic IECs are one potential source of
TGF-b, which might be activated by both myeloid
cells expressing av integrins and T cells express-
ing TGF-b-activating molecules.
associated with intestinal inflammation (Mazmanian et al., 2005).

Whether PSA also induces protective Tr1-like or Treg cell

responses remains an important unanswered question. Another

intestinal bacterium, Faecalibacterium prausnitzii, has been

shown to induce IL-10 expression in circulating T cells (Sokol

et al., 2008). Discovering the molecules and mechanisms under-

lying the many ‘‘probiotic’’ properties of the intestinal flora is an

area of great therapeutic interest.

In addition to affecting the ratio of Treg cells to effector T cells,

dietary- and flora-derived molecules influence the frequency of

intestinal Foxp3+ Treg and Tr1-like cells. DNA in the intestinal

lumen, presumably released from dying bacteria, contains

TLR9-activating motifs (Hall et al., 2008). In vitro, stimulation of

DC and T cell cocultures with TLR9 ligands induces inflammatory

cytokines, including IFN-g, IL-4, and IL-6, which inhibit the

generation of iTreg cells. The increased frequency of Foxp3+

Treg cells in the small intestine LP of Tlr9�/� mice suggests

that such a mechanism may operate in vivo. TLR9-mediated

activation of the IL-6 and IL-21 signaling pathways also induces

IL-10 expression among Foxp3� CD4+ T cells in vitro (Maynard

et al., 2009). Whether TLR9 signaling exerts similar effects

in vivo, promoting Tr1-like cell responses, remains to be deter-

mined. Retinoic acid (RA), a vitamin A metabolite, can act as

an opposing influence, favoring the generation of Foxp3+ iTreg

cells (Coombes et al., 2007; Mucida et al., 2007; Sun et al.,

2007) and limiting the induction of IL-10 expression (Maynard

et al., 2009). RA might inhibit IL-10 expression by reducing the

T cell surface expression of IL-6Ra and transcription of IL-21 in

activated T cells (Hill et al., 2008). Mice raised on a vitamin

A-deficient diet show an abundance of IL-10-producing Tr1-

like cells throughout the intestine, yet retain a relatively normal

frequency of IL-10-producing Foxp3+ Treg cells (Maynard

et al., 2009). Therefore, both TLR9 ligands and RA reciprocally

influence the accumulation of Tr1-like and Foxp3+ Treg cells in

the intestine (Figure 2), but other factors appear to regulate

IL-10 expression in Foxp3+ Treg cells.

Identifying cells that deliver IL-10- or Foxp3-inducing signals is

an area of intense investigation. Intestinal DCs expressing aEb7

integrin (CD103) and CD11b+ intestinal macrophages are
406 Immunity 31, September 18, 2009 ª2009 Elsevier Inc.
enriched in their capacity to store and produce RA and are

thus potent generators of iTreg cells (Coombes et al., 2007;

Denning et al., 2007; Sun et al., 2007). CD103+ DCs comprise

about 30%–50% of intestinal DCs and are rather homogenously

distributed throughout the colon LP, small intestine LP, and mLN

of healthy mice (Annacker et al., 2005; Sun et al., 2007). Yet, the

composition of Foxp3+IL-10�, Foxp3+IL-10+, and Tr1-like cells

varies greatly between intestinal compartments (Figure 1; May-

nard et al., 2007). Currently available data cannot explain the

heterogeneous distribution of Treg and Tr1-like cells in the intes-

tine. However, we note that these populations in the small intes-

tine LP are particularly sensitive to changes in the flora induced

by vancomycin treatment, TLR9 deficiency, or RA depletion (Hall

et al., 2008; Ivanov et al., 2008; Maynard et al., 2009). The colon

LP contains a large population of IL-10-producing Foxp3+ Treg

cells and comparatively fewer Tr1-like cells that are less sensitive

to such perturbations. It may be that RA and flora-derived DNA

are dominant forces that shape the differentiation of CD4+

T cells in the small intestine. Because the colon harbors the high-

est concentration of resident bacteria in the GI tract, additional,

partially overlapping pathways may be needed to maintain intes-

tinal homeostasis.

Modes of Regulation in the Lymph Nodes and Tissues
Of the many mouse models of colitis, the T-cell-transfer model is

unique in its ability to probe the regulatory mechanisms utilized

by Treg and Tr1-like cells (Strober et al., 2002). Although the

effector functions of Treg cells have been recently reviewed

(Shevach, 2009), their mode of action in the GI tract is distinct.

Somewhat surprisingly, Treg cells lacking b7 integrin, an impor-

tant molecule for trafficking to the intestinal LP and intraepithelial

tissues, function in the T-cell-transfer colitis model (Denning

et al., 2005). By contrast, CCR4- and CCR7-deficient Treg cells

are impaired in their ability to repopulate the mLN and fail to

prevent colitis (Schneider et al., 2007; Yuan et al., 2007).

Together, these findings suggest that Treg cells can prevent col-

itogenic T cell responses via actions in the mLN. One potential

mechanism involves limiting the duration of contact between

T cells and DCs, perhaps because of the high expression of
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CTLA-4 on Treg cells, thus reducing the likelihood that a naive

T cell would become activated (Tadokoro et al., 2006). Treg cells

may accomplish this by forming aggregates around DCs, pre-

venting access by other T cells (Onishi et al., 2008). In this

context, an intestinal Treg cell population with a TCR repertoire

able to recognize dominant intestinal antigens would be able to

outcompete naive or effector T cells with similar antigen specific-

ities for access to DCs, thereby preventing the priming or prolif-

eration of colitogenic T cells.

Large numbers of adoptively transferred Treg cells can also

cure established colitis induced by the transfer of naive T cells

into Rag2�/� recipients (Mottet et al., 2003). In this setting,

Treg cells migrate into the inflamed LP and secrete IL-10 (Uhlig

et al., 2006). The requirement for IL-10 in the cure setting, but

not classic T-cell-transfer model (Asseman et al., 2003), is of

particular note. In colitic mice, we have observed changes in

the flora, including an increase in segmented filamentous

bacteria in close proximity to the epithelium (Stepankova et al.,

2007). It is also worth noting that the prevention of T-cell-transfer

colitis requires Treg cell-derived IL-10 when recipient mice are

infected with H. hepaticus (Kullberg et al., 2002). Among

common microbes in the murine intestinal flora, H. hepaticus is

somewhat unique in that it can partially penetrate the mucus

layer and approach the epithelium in the caecal crypts (Chan

et al., 2005). Through a flora-centric lens, these requirements

for IL-10 might reflect the need to temper exuberant innate

immune responses toward bacteria that become associated

with the epithelium, either as a result of mucus-secreting goblet

cell depletion during the course of colitis or penetration of the

mucus layer by certain microbes. IL-35 is another Treg cell

effector cytokine important for resolving established inflamma-

tion (Collison et al., 2007), although it acts through indirect

effects on other T cells in vitro (Collison et al., 2009) and

demands further mechanistic study in vivo.

An emerging concept in Treg cell biology is that cytokines and

signals that promote the expression of transcription factors clas-

sically associated with effector T cell subsets can also induce

expression of the same transcription factors in subsets of Treg

cells, allowing their proliferation and acquisition of particular

regulatory functions (Koch et al., 2009; Zheng et al., 2009).

Such a strategy could tailor Treg cells to best respond to

different types of inflammation. This paradigm also appears to

apply to intestinal Treg cells, because deletion of Stat3 in

Foxp3+ Treg cells leads to Th17 cell-dependent intestinal inflam-

mation (Chaudhry et al., 2009). Further studies are required to

identify how Stat3 orchestrates the function of Treg cells in the

intestine.

Gaining Therapeutic Insights from Murine Colitis
Models
Despite its utility in dissecting intestinal effector and regulatory

pathways, one limitation of the T-cell-transfer model is the intro-

duction of homeostatic proliferation as an additional variable

predisposing mice to autoimmunity (reviewed in Coombes

et al., 2005). Despite this complication, a strong correlation

exists between genes involved in T cell-transfer colitis and those

linked to human IBD-susceptibility alleles by genome-wide asso-

ciation studies, such as ICOSLG, IL10, IL12B, IL23R, STAT3, and

multiple autophagy-related genes (Barrett et al., 2008; Franke
et al., 2008). Therefore, the T-cell-transfer model seems to

have general utility for discovering factors involved in IBD path-

ogenesis, including environmental factors or genes that associ-

ation studies might not identify because of low frequency risk

alleles in human populations. One potential insight offered by

the T-cell-transfer model is that the GI tract might support sus-

tained proliferation and competition between effector and regu-

latory T cells. Costimulatory molecules have a central role in

controlling Treg cell proliferation and accumulation that has

been reviewed extensively elsewhere (Bour-Jordan and Blue-

stone, 2009). Intriguingly, we have found that Treg cells require

expression of the costimulatory molecule OX40 in order to effi-

ciently repopulate the peripheral lymphoid organs and colon of

Rag2�/� recipients. However, in mixed OX40-deficient and

wild-type bone marrow chimeras, accumulation of OX40-defi-

cient Treg cells was normal in the secondary lymphoid organs,

but selectively reduced in the colon LP (T. Griseri and F.P.,

unpublished observations). Thus, genes required for homeo-

static proliferation may also be particularly important for the

maintenance of Treg cells in the intestine. We note that the role

of costimulation in the generation of Tr1-like cells remains largely

unexplored.

Enhancing Tr1-like or Treg cell function represents a potential

therapeutic strategy for treating human IBD, which most often

presents in patients as patchy, recurring inflammation involving

the ileum and colon (Crohn’s disease) or continuous inflamma-

tion along the length of the colon (ulcerative colitis). In both

diseases, increased numbers and frequencies of Foxp3+ Treg

cells are observed in the intestine (Uhlig et al., 2006). Treg cells

in human IBD retain some functionality as they secrete IL-10 in

the colon LP, although it is possible that inflammatory conditions

dampen IL-10-independent functions of Treg cells. Importantly,

effector T cells in human IBD express large amounts of the inhib-

itor of TGF-b signaling, SMAD7, rendering them resistant to Treg

cell-mediated suppression (Fantini et al., 2009; Monteleone

et al., 2001). In order for Treg cells to restore intestinal homeo-

stasis, innate immune activation might first need to be controlled

in order to remove stimuli that render effector T cells unrespon-

sive to TGF-b signaling. Although it is suspected that bacteria in

the flora trigger innate immune activation, the human flora can

contain viruses, fungi, protozoan parasites, and worms that

could also be involved in IBD pathogenesis (Artis, 2008).

The most effective IBD therapies currently used in the clinic

might have underappreciated roles in enhancing regulatory

activity. Steroid regimens serve as an initial therapeutic option

for IBD and have systemic anti-inflammatory properties. In vitro,

combinations of the steroid dexamethasone and vitamin D3

potently induce Tr1-like cells (Vieira et al., 2004), and it is

possible that similar effects occur in the GI tract after treatments

with steroid regimens. TNF-a neutralization represents an alter-

native therapeutic strategy that, in addition to reducing innate

immune activation, may enhance the function of Treg cells

(Valencia et al., 2006). Blockade of IL-12p40, a component of

IL-12 and IL-23, reduces innate immune activation and effector

T cell responses, but might also result in the induction of iTreg

cells in the GI tract (Izcue et al., 2008). Designing therapeutic

strategies that target innate immune activity or intestinal barrier

function, but also leave behind an enhanced population of Tr1-

like or Treg cells, might improve the prospects for long-term
Immunity 31, September 18, 2009 ª2009 Elsevier Inc. 407
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remission of IBD symptoms and restore the symbiotic relation-

ship of the host with the intestinal flora. Indeed, one unique ther-

apeutic approach confers regulatory function on the flora itself

by expressing an IL-10 transgene in the intestinal bacterium

Lactococcus lactis (Braat et al., 2006).

Finally, insights into intestinal immune regulation gained from

murine colitis models have potential applications beyond under-

standing the etiology of IBD. In tumor immunotherapy, one

promising approach involves CTLA-4 blockade, which acts

in part by reducing Treg cell function in order to enhance anti-

tumor immune responses (Peggs et al., 2006). As predicted

from mouse models (Read et al., 2000), colitis is a problematic,

sometimes lethal side effect of this strategy. In bone marrow

transplantation, a procedure utilized to treat a number of hema-

tological conditions, MHC incompatibility can result in graft-

versus-host disease (GVHD). Colitis is a common manifestation

of GVHD and is associated with impaired accumulation of

Foxp3+ Treg cells in the intestine (Rieger et al., 2006). During

acute HIV infection, rapid depletion of intestinal CD4+ T cells

that express the HIV coreceptor CCR5 occurs in the GI tract

(Brenchley and Douek, 2008). In the SIV macaque model of

HIV infection, this phenomenon includes the loss of intestinal

Foxp3+ Treg cells and the absence of regulatory function among

total intestinal CD4+ T cells by 14 days after infection (Chase

et al., 2007). Consequently, the remaining intestinal CD4+

T cells proliferate and acquire effector function without restraint,

resulting in intestinal inflammation that likely contributes to

further viral dissemination. Incorporating targeted therapies

that reduce immune activation and reinforce immune regulation

in the intestine, such as blockade of the IL-23 signaling pathway,

into the treatment of these devastating conditions is worth

considering.

Future Perspectives
Here, we have discussed the immunological niches, cell types,

and molecules unique to the intestine that promote immune

regulation. In humans, intestinal inflammation can be initiated

at a specific location in the GI tract, but then spread in the

absence of effective intervention. Although this spreading

suggests a degree of communition between different niches in

the gut, less is known about how events in one part of the GI tract

affect another. For example, interesting studies have implicated

the liver in inducing tolerogenic T cells (Crispe, 2009) that could

potentially play an underappreciated role in maintaining intes-

tinal homeostasis. Apart from anatomical differences, the avail-

ability of dietary- and flora-derived molecules also varies

throughout the GI tract. In the light of emerging evidence that

regulatory T cells are both affected by and influence organ-

specific metabolism (Cobbold et al., 2009; Lumeng et al.,

2009), understanding the cellular targets and pathways activated

by these molecules in the GI tract promises to be a fertile area for

further research.
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