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Abstract Subsite affinity maps of long substrate binding clefts
in barley a-amylases, obtained using a series of maltooligosac-
charides of degree of polymerization of 3–12, revealed unfavor-
able binding energies at the internal subsites �3 and �5 and at
subsites �8 and +3/+4 defining these subsites as binding barri-
ers. Barley a-amylase 1 mutants Y105A and T212Y at subsite
�6 and +4 resulted in release or anchoring of bound substrate,
thus modifying the affinities of other high-affinity subsites (�2
and +2) and barriers. The double mutant Y105A-T212Y dis-
played a hybrid subsite affinity profile, converting barriers to
binding areas. These findings highlight the dynamic binding en-
ergy distribution and the versatility of long maltooligosaccharide
derivatives in mapping extended binding clefts in a-amylases.
� 2006 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

In polysaccharide hydrolases a multitude of contacts be-

tween long substrate segments and an array of subsites define

the reaction products. a-Amylases (EC 3.2.1.1) of glycoside

hydrolase family 13 [1] cleave internal bonds in starch and re-

lated poly- and oligosaccharides accommodated in extended

clefts [1–5] and subsite binding energies (subsite maps [2]) are

calculated from bond cleavage frequencies (BCFs) typically

of maltooligosaccharides (MOS) of DP (degree of polymeriza-

tion) 3–7 [6–9]. Action patterns on 4-nitrophenyl a-DD-malt-

opentaoside, -hexaoside, and -heptaoside of the best

characterized plant a-amylases [10], the barley isozymes

AMY1, AMY2 and AMY1 mutants, emphasized the relation-
Abbreviations: AMY1, AMY2, barley a-amylase 1 and 2; BCF, bond
cleavage frequency; CNP-Gn, 2-chloro-4-nitrophenyl b-DD-maltooligo-
saccharides (n = 1–12); DP, degree of polymerization; MOS, malto-
oligosaccharide(s)
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ship between subsite site structures and productive substrate

binding modes [11–14]. Longer MOS, however, are needed

for accurate analysis of affinities in bacterial and plant a-

amylases with P 9 subsites long binding sites [3,7–9,15,16].

Here, subsite mapping of AMY1 (including mutants at outer

subsites) and AMY2 using a unique DP 3–12 2-chloro-4-

nitrophenyl (CNP) MOS series [4,16], highlights the dynamic

substrate affinity landscape and provides a rationale for

reorganisation of binding energies through protein engineer-

ing.
2. Materials and methods

2.1. Substrates and enzymes
CNP-MOS (Fig. 1A) were synthesised from cyclodextrins [17] or

chemo-enzymatically using rabbit skeletal muscle glycogen phosphor-
ylase b [16]. Mutants [11] and wild-type AMY1 were produced in Pi-
chia pastoris (Invitrogen; Carlsbad, CA) [12]. AMY2 was purified
from malt [7].
2.2. Action patterns
Each CNP-MOS (1 mM) in 20 mM sodium acetate, 5 mM CaCl2,

pH 5.5 at 37 �C was supplemented with enzyme (0.2–1000 nM) and
the released CNP-glycosides were monitored (302 nm) at time intervals
by HPLC (Hamilton PRP-1 reversed phase 5 lm, 15 · 0.40 cm; 20 lL
aliquots) using an acetonitrile/water gradient (13/87–30/70, 10 min,
1 mL min�1) at 40 �C (Hewlett–Packard 1090 Series II liquid chro-
matograph, diode array detector, autosampler, and ChemStation)
[15,18]. Product amounts (identified from standards) increased linearly
and maintained the distribution for at least 20 min. Bond cleavage fre-
quencies (BCFs) were calculated for individual substrate bonds relative
to the total bond cleavages at <10% substrate conversion to minimize
influence of secondary hydrolysis.
2.3. Subsite map calculation
The SUMA software (subsite mapping for a-amylases) [4,15,18] cal-

culated the number of subsites, catalytic site position, and the affinities
(exempting subsites �1 and +1 that are occupied in all productive com-
plexes) using BCFs (relative rates of product formation). Apparent free
energy values were optimised by minimisation of differences between
experimental and calculated BCFs [4].
2.4. Molecular graphics
AMY1/acarbose (1RPK) and AMY1D180A/maltoheptaose (1RP8)

[5] were used for structure evaluation (Swiss-PdbViewer [19]); (http://
us.expasy.org/spdbv/) and homology models were generated (http://
swissmodel.expasy.org//SWISS-MODEL.html). Figure rendering used
POV-Ray (http://www.povray.org/).
blished by Elsevier B.V. All rights reserved.
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Fig. 1. A, Structure of CNP-maltooligosaccharides of DP 3–12 (n = 1–10). B, C, and D, comparison of subsite maps of AMY1, AMY2 and AMY1
mutants. Negative and positive energies indicate substrate binding and repulsion, respectively.
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3. Results and discussion

3.1. AMY1 and AMY2 subsite maps

Bond cleavage frequencies (Table 1) reflect the substrate

binding site occupancy in productive complexes. The CNP

chromophore, linked via a non-hydrolysable b-glucosidic

bond, readily identifies glycone/aglycone hydrolysis products

and earlier studies suggest that the effect of this group on the

action patterns is marginal with the main hydrolysis products

being the same for end-labelled and non-labelled oligosaccha-

ride substrates [18].

Prominent release of CNP-G or CNP-G2 from each of the

CNP-MOS complies with oligosaccharide occupancy of sub-

sites +1 and +2 in crystal structures [5,13] and demonstrates

isozyme conservation. In the AMY2 isozyme relatively more

favorable aglycone binding than in AMY1, however, resulted

in total release of higher amounts of CNP-G2 and larger

CNP-Gn except from MOS of DP 11 and 4 (Table 1). Fitting

of the calculated affinities to a 12 subsites model showed repul-

sion at subsites �8 and +4 (Fig. 1B). The unusually high affin-

ity of �12.4 (AMY1) and �8.5 kJ mol�1 (AMY2) at subsite

�6 and a good binding at subsite �7 (Fig. 1B), also evident

from BCFs on DP 8–12 and relative rates of hydrolysis (see

Table 1), settled a debate about the relevance of subsite �7
raised earlier due to ambiguous subsite maps obtained by

using shorter MOS up to DP 7 [7–9].

The isozymes show similar binding site topology except for a

wider cleft entry in AMY2 [5] leading to lower subsite �7/�6

affinity than in AMY1. The substrate interacts extensively with

subsites �7 and �6, but has little interaction at subsite �5,

where a �90� glycosyl rotation near subsite �4 adapts to the

narrowing cleft and makes contact on a bulge (Fig. 2). The

substrate has no contact at subsite �3, where it kinks down-

wards in a constrained conformation into a two glucosyl units

deep depression, at the bottom of which hydrolysis occurs. The

chain exits the cleft near subsite +2. This structure correlates

with a positive (repulsive) binding energy at subsites �3 and

�5 (Fig. 1B). AMY1/maltododecaose modeling and substrate

specificity of subsite �6 and +4 mutants suggested that long

substrates prefer an alternative binding area beyond subsites

�3 and +2 [11]. A small protrusion seen on the surface near

subsite �3 seems in modelled complexes to direct accommoda-

tion of the two substrate chains extending from an a-1,6-

branch point [11].

Glycone-binding dominates – and more so in AMY1. This is

compatible with AMY2 showing larger inner energy barriers,

i.e. at subsites �5 and �3, whereas AMY1 has larger outer

barriers, i.e. at subsites �8 and +3/+4 (Fig. 1B). The action



Table 1
BCFa and relative rate of hydrolysis of CNP-MOS by barley a-amylase

Substrate Enzyme Product (mol%)b Relative rate (%)c

CNP-G1 CNP-G2 CNP-G3 CNP-G4 CNP-G5 CNP-G6 CNP-G7

CNP-G12 AMY1 11 45 13 18 13 6
AMY2 7 29 24 18 15 3 4 46
Y105A 9 40 18 18 13 2 12
T212Y 8 26 23 19 24 82
Y105A-T212Yd 4 40 18 17 14 4 3 19

CNP-G11 AMY1 12 40 20 25 3 8
AMY2 12 36 24 23 5 56
Y105A 9 43 24 22 2 19
T212Y 10 27 28 30 5 47
Y105A-T212Y 5 43 24 23 5 35

CNP-G10 AMY1 22 37 34 7 95
AMY2 16 47 27 9 1 100
Y105A 10 50 33 6 1 100
T212Y 12 38 40 10 47
Y105A-T212Y 5 58 29 8 62

CNP-G9 AMY1 34 52 14 100
AMY2 22 63 12 1 2 100
Y105A 16 71 11 1 1 95
T212Y 21 66 13 100
Y105A-T212Y 7 79 12 1 1 100

CNP-G8 AMY1 66 34 66
AMY2 43 46 2 6 3 87
Y105A 38 55 2.5 3 1.5 63
T212Y 49 50 0.4 0.3 0.3 76
Y105A-T212Y 19 73 4 2 2 84

CNP-G7 AMY1 95 2 2 1 18
AMY2 68 8 12 11 1 44
Y105A 41 33 16 5 5 8
T212Y 82 6 3 4 5 21
Y105A-T212Y 24 42 16 9 9 31

CNP-G6 AMY1 17 62 12 9 0.3
AMY2 11 55 16 18 1.2
Y105A 6 64 15 15 7
T212Y 16 47 17 14 6 1
Y105A-T212Y 5 56 18 15 6 27

CNP-G5 AMY1 12 56 20 12 0.3
AMY2 10 36 32 22 1.1
Y105A 8 62 24 6 6
T212Y 16 43 29 12 0.7
Y105A-T212Y 6 48 26 20 18

CNP-G4 AMY1 4 95 1 0.2
AMY2 4 94 1 0.6
Y105A 3 96 1 4
T212Y 6 89 5 0.04
Y105A-T212Y 2 97 1 11

CNP-G3 AMY1 84 16 0.02
AMY2 70 30 0.04
Y105A 80 20 0.3
T212Y 53 47 0.02
Y105A-T212Y 28 72 0.3

aBold marks large difference from AMY1, and when underlined similarity to AMY2. AMY2 values are in italics.
bDetermined using HPLC area-%.
cNormalised for each enzyme.
dMain influence of single or dual mutants as underlined.
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patterns illustrated by the BCFs (Table 1) emphasise that the

high-affinity subsites �2 through +2 control action on the

DP 2-6 substrates, while longer ones are anchored at �6.
AMY2 has more evenly distributed affinity and lower barrier at

subsite +3/+4 leading to formation of higher amounts of CNP-

G3�7 and CNP-G3�4 from DP 12 and DP 8-5, respectively



Fig. 2. Molecular surface representation of subsites �7 through +4
of AMY1. AMY1D180A/maltoheptaose [5] was used to render a
maltoheptaose adopting an S-shape accommodated at subsites �7
through �1, while AMY1/acarbose [5] was superimposed to depict the
bound sugar conformation at subsites +1 and +2. Residues making
direct hydrogen bonds or stacking interactions with substrate are
colored; subsite 3 makes no contact. Subsites +3 and +4 constituting a
barrier (see Fig. 1B) are shown based on molecular modeling [11]. The
site of cleavage is indicated by an arrow. The array of subsites is
schematized below.
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(Table 1). Furthermore, the similar affinities of subsites +2 and

�7 in AMY2 result in release of equal amounts of CNP-G and

CNP-G2 from CNP-G8, while AMY1 mostly produces

CNP-G.

3.2. AMY1 subsite �6 and +4 mutants

The high affinity at subsite �6 stems from aromatic stacking

with Y105, two direct, and three solvent-mediated hydrogen

bonds as seen in AMY1D180A/maltoheptaose [5]. The Y105A

mutation thus elicits conformational freedom enabling optimi-

zation of interaction at subsites �2 and +2 causing increased

CNP-G2 and decreased CNP-G release from DP 7–10 MOS

(Table 1), matching large loss and gain in affinity of subsites

�6 and +2 to �5.6 and �5 kJ/mol, respectively (Fig. 1C). This

elegantly exemplifies how tuning the glycone/aglycone binding

balance modifies product profiles. As expected the conserva-

tive Y105F/W AMY1 caused only minor changes (Fig. 1C).

Remarkably T212Y, a subsite +4 AMY2 mimic, reduced all

barriers (Fig. 1B), consistent with modeled interaction to malt-

ododecaose at subsite +4 and a favorable 4-fold lowered Km

for amylose DP 17 [11]. Furthermore, T212Y BCFs clearly

resembled the AMY2 data (Table 1). T212Y and Y105A-

T212Y both switched subsite �5 to bind substrate (Fig. 1D).

A hybrid effect in Y105A-T212Y increased affinity at subsite

+2 to �7 kJ/mol and was expressed in certain BCFs (Table

1), whereas �6 lost 6 kJ/mol and �2 2.5 kJ/mol resembling

Y105A and T212Y AMY1, respectively. The combined aro-

matic stabilization by Y212 and substrate flexibility due to

Y105A rendered subsite +2 (Fig. 1D) a cardinal site, thus gen-

erally enhancing formation of CNP-G2 over CNP-G, com-

pared to AMY1 (Table 1). Since T212 [5] and modeled Y212

are solvent exposed and have no contact to neighboring resi-

dues, affinity variations at subsites �5/�6 at a distance of
P 33 Å did not arise by local structural perturbation near

Y212 but probably were propagated by substrate conforma-

tional changes propagated in the enzyme–substrate complex

along the binding crevice. In cyclodextrin glucosyltransferase

(CGTase) from Bacillus circulans 251, a distantly related fam-

ily 13 member suggested to have nine subsites (�7 to +2), dif-

ferent modes of binding for maltoheptaose and maltononaose

at subsite �3 were reported to alter the binding at subsite +1

[20,21]. In this case, however, these relatively long range effects

were conferred by significant enzyme conformational changes

according to an induced fit model where occupancy of the gly-

cone region at subsite �3 blocks the acceptor site at +1 to repel

the leaving group in a cycle of catalysis. No significant confor-

mational changes have been observed in the different structures

of wild type AMY1 with or without sugar ligands. Since these

complexes, however, do not include a large ligand like malto-

nonaose that spans the site of catalysis, it is not possible to

decide if a similar induced fit rationale applies for barley

a-amylase.

3.3. Hydrolytic rates on the DP 3–12 CNP-MOS series

Much faster hydrolysis of CNP-G7 than CNP-G6, with an

intact Y105, agrees with anchoring of substrate at subsite �6.

Increasing rate of hydrolysis from DP 12 to 9 supports the pres-

ence of nine functional subsites (Table 1). Both AMY2 and its

mimic T212Y hydrolysed CNP-G11-12 rather efficiently, com-

patible with relatively stronger aglycone binding. Remarkably,

for Y105A-T212Y hydrolytic rates varied relatively little with

MOS length and preference lacked for CNP-G7 over CNP-G6

The dramatic increase in relative activity for mutants contain-

ing Y105A (Table 1) most probably reflects that non-produc-

tive binding on Y105 in wild-type is eliminated with the

consequence of an increased rate of hydrolysis.

3.4. Comparison with other a-amylases

Although sequence motifs characterize enzyme specificity,

glycoside hydrolase family 13 has only three invariant catalytic

site residues [22]. Substrate binding also shows diversity, pan-

creatic [23] and B. subtilis a-amylase [24] thus accommodate 5

glucosyl rings in short, L-shaped clefts, whereas human sali-

vary a-amylase [25] and TAKA amylase from Aspergillus ory-

zae [26] bind 7 and 6 rings, respectively in V-shaped clefts with

no barriers. Finally, superimposition of barley, B. amylolique-

faciens, B. licheniformis, and B. halmapalus a-amylases, and

Bacillus sp. 707 maltohexaose-producing amylase showed a

shared S-shaped P 9 subsite cleft [3,5,27,28] with an internal

barrier manifested by lack of enzyme–sugar hydrogen bonds

at subsite �3. Remarkably, at subsite �6 Trp140 in malto-

hexaose-producing amylase, a conserved tryptophan in Bacil-

lus a-amylases, and Tyr105 in AMY1 superimpose perfectly

with rmsd of back bone atoms <0.1 Å (not shown). Among

a few previously subsite mapped mutants W58L at subsite

�2/�3 and Y151M at +2 in human salivary a-amylase

[18,23] reduced these subsite affinities by 2–10 kJ/mol, similarly

to the effect found for Y105A in AMY1.
4. Conclusion

Subsite mapping of barley a-amylases 1 and 2 using reducing

end chromophore-labelled maltooligosaccharides with a de-

gree of polymerization of up to 12 revealed both high-affinity
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and unfavorable binding at specific subsites in agreement with

three-dimensional structures [5,13,14]. Internal barriers ratio-

nalize the discriminative action on short and long substrates.

Aromatic engineering at subsite +4, reorganized the subsite

affinity profiles and turned both inner and outer barriers into

binding areas. Affinity profiles are obviously not solely defined

by local enzyme topology, but result from a dynamic interplay

between substrate and the entire binding cleft. The barley a-

amylase mutants underline the potential for engineering sub-

strate preferences and product profiles in carbohydrate active

enzymes.

Acknowledgements: Sidsel Ehlers and Kristian Sass Bak-Jensen (Carls-
berg Laboratory) are thanked for enzyme preparation. Supported by
the Danish Natural Science Research Council, the Carlsberg Founda-
tion, and Hungarian Scientific Research Fund (OTKA).
References

[1] http://afmb.cnrs-mrs.fr/CAZY/. Carbohydrate Active Enzymes.
[2] Davies, G.J., Wilson, K.S. and Henrissat, B. (1997) Nomenclature

for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321,
557–559.

[3] Brzozowski, A.M., Lawson, D.M., Turkenburg, J.P., Bisgaard-
Frantzen, H., Svendsen, A., Borchert, T.V., Dauter, Z., Wilson,
K.S. and Davies, G.J. (2000) Structural analysis of a chimeric
bacterial a-amylase. High-resolution analysis of native and ligand
complexes. Biochemistry 39, 9099–9107.
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