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Abstract

Let R be a ring. A left R-module M (respectively right R-module N ) is called FI-injective (respectively
FI-flat) if Ext1(G,M) = 0 (respectively Tor1(N,G) = 0) for any FP-injective left R-module G. Suppose
R is a left coherent ring. It is shown that a left R-module M is FI-injective if and only if M is a direct sum
of an injective left R-module and a reduced FI-injective left R-module; a finitely presented right R-module
M is FI-flat if and only if M is a cokernel of a flat preenvelope of a right R-module. These modules together
with the left derived functors of Hom are used to study the FP-injective dimensions of modules and rings.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We first recall some known notions and facts needed in the sequel.
Let R be a ring. A left R-module M is called FP-injective (or absolutely pure) [15,19]

if Ext1(N,M) = 0 for all finitely presented left R-modules N . The FP-injective dimension
of M , denoted by FP-id(M), is defined to be the smallest nonnegative integer n such that
Extn+1(F,M) = 0 for every finitely presented left R-module F (if no such n exists, set FP-
id(M) = ∞), and l.FP-dim(R) is defined as sup{FP-id(M): M is a left R-module}.
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Let C be a class of R-modules and M an R-module. Following [7], we say that a ho-
momorphism φ :M → C is a C-preenvelope if C ∈ C and the abelian group homomorphism
Hom(φ,C′) : Hom(C,C′) → Hom(M,C′) is surjective for each C′ ∈ C. A C-preenvelope
φ :M → C is said to be a C-envelope if every endomorphism g :C → C such that gφ = φ is
an isomorphism. Dually we have the definitions of a C-precover and a C-cover. C-envelopes
(C-covers) may not exist in general, but if they exist, they are unique up to isomorphism.

In what follows, we write RM and FI for the categories of all left R-modules and all FP-
injective left R-modules, respectively. Recall that a ring R is called left coherent if every finitely
generated left ideal is finitely presented. It has been recently proven that every left R-module has
an FP-injective cover over a left coherent ring R (see [16]), so every left R-module M has a left
FI-resolution, that is, there is a Hom(FI,−) exact complex · · · → F1 → F0 → M → 0 (not
necessarily exact) with each Fi FP-injective. Write

K0 = M, K1 = ker(F0 → M), Ki = ker(Fi−1 → Fi−2) for i � 2.

The nth kernel Kn (n � 0) is called the nth FI-syzygy of M .
On the other hand, every left R-module M has an FP-injective preenvelope over any ring

R (see [11]). So M has a right FI-resolution, that is, there is a Hom(−,FI) exact complex
0 → M → F 0 → F 1 → ·· · with each F i FP-injective. Obviously, the complex is exact. Let

L0 = M, L1 = coker
(
M → F 0), Li = coker

(
F i−2 → F i−1) for i � 2.

The nth cokernel Ln (n � 0) is called the nth FI-cosyzygy of M .
Note that Hom(−,−) is left balanced on RM × RM by FI × FI for a left coher-

ent ring R (see [11, Definition 8.2.13]). Thus the nth left derived functor of Hom(−,−),
which is denoted by Extn(−,−), can be computed using a right FI-resolution of the first
variable or a left FI-resolution of the second variable. Following [11, Definition 8.4.1],
the left FI-dimension of a left R-module M , denoted by left FI-dimM , is defined as
inf{n: there is a left FI-resolution of the form 0 → Fn → ·· · → F0 → M → 0 of M}. If there
is no such n, set left FI-dimM = ∞. The global left FI-dimension of RM, denoted by gl left
FI-dimR M, is defined to be sup{left FI-dimM: M ∈ RM} and is infinite otherwise. The right
versions can be defined similarly.

Recall that a left R-module M is called reduced [11] if M has no nonzero injective submod-
ules.

In Section 2 of this paper, we introduce the concepts of FI-injective and FI-flat modules. It
is shown that a left R-module M is FI-injective if and only if M is a kernel of an FP-injective
precover A → B with A injective. For a left coherent ring R, we prove that a left R-module
M is FI-injective if and only if M is a direct sum of an injective left R-module and a reduced
FI-injective left R-module; a finitely presented right R-module M is FI-flat if and only if M is a
cokernel of a flat preenvelope of a right R-module.

In Section 3, we investigate the FP-injective dimensions of modules and rings in terms of FI-
injective and FI-flat modules and the left derived functors Extn(−,−). Let R be a left coherent
ring. We first give some characterizations of left semihereditary rings. It is proven that R is
left semihereditary (i.e., l.FP-dim(R) � 1) if and only if the canonical map σ : Ext0(M,N) →
Hom(M,N) is a monomorphism for all left R-modules M and N if and only if every FI-injective
left R-module is injective if and only if every FI-flat right R-module is flat. Then it is shown that
l.FP-dim(R) � n (n � 2) if and only if Extn+k(M,N) = 0 for all left R-modules M , N and all
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k � −1. Moreover, we get that l.FP-dim(R) � n (n � 2) if and only if Extn+k(M,N) = 0 for
all pure-injective left R-modules M , N and all k � −1. Finally we prove that a ring R is left
coherent and l.FP-dim(R) � 2 if and only if every left R-module has an FP-injective cover with
the unique mapping property if and only if R is a left coherent ring and Extk(M,N) = 0 for all
left R-modules M , N and all k � 1 if and only if R is a left coherent ring and every finitely
presented FI-flat right R-module has an epic flat (pre)envelope.

Throughout this paper, R is an associative ring with identity and all modules are unitary.
MR (RM) denotes a right (left) R-module. For an R-module M , E(M) stands for the in-
jective envelope of M , the character module HomZ(M,Q/Z) is denoted by M+, and id(M)

( fd(M)) is the injective (flat) dimension of M . Let M and N be R-modules. Hom(M,N) (re-
spectively Extn(M,N)) means HomR(M,N) (respectively ExtnR(M,N)), and similarly M ⊗ N

(respectively Torn(M,N)) denotes M ⊗R N (respectively TorRn (M,N)) for an integer n � 1. For
unexplained concepts and notations, we refer the reader to [11,18,20].

2. FI-injective modules and FI-flat modules

We begin with the following

Definition 2.1. A left R-module M is called FI-injective if Ext1(G,M) = 0 for any FP-injective
left R-module G.

A right R-module N is said to be FI-flat if Tor1(N,G) = 0 for any FP-injective left R-
module G.

Remark 2.2. (1) We note that any FI-injective left R-module is copure injective in sense of [9]
and any FI-flat right R-module is copure flat in sense of [10]. If R is a left noetherian ring,
then FI-injective left R-modules and FI-flat right R-modules coincide with copure injective left
R-modules and copure flat right R-modules, respectively.

(2) A right R-module M is FI-flat if and only if M+ is FI-injective by the standard isomor-
phism: Ext1(N,M+) ∼= Tor1(M,N)+ for any left R-module N .

Proposition 2.3. The following hold for a left coherent ring R:

(1) A left R-module M is injective if and only if M is FI-injective and FP-id(M) � 1.
(2) A right R-module N is flat if and only if N is FI-flat and fd(N) � 1.

Proof. (1) “Only if” part is trivial.
“If” part. Let M be an FI-injective left R-module and FP-id(M) � 1. Then there is an ex-

act sequence 0 → M → E → L → 0 with E injective. Note that L is FP-injective by [19,
Lemma 3.1] since R is a left coherent ring. So the exact sequence is split, and hence M is injec-
tive.

(2) “Only if” part is trivial.
“If” part. For any FI-flat right R-module N with fd(N) � 1, we have N+ is FI-injective by

Remark 2.2(2). Thus N+ is injective by (1) since FP-id(N+) � 1. So N is flat. �
Proposition 2.4. The following are equivalent for a left R-module M :

(1) M is FI-injective.
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(2) For every exact sequence 0 → M → E → L → 0, where E is FP-injective, E → L is an
FP-injective precover of L.

(3) M is a kernel of an FP-injective precover f :A → B with A injective.
(4) M is injective with respect to every exact sequence 0 → A → B → C → 0, where C is

FP-injective.

Proof. (1) ⇒ (2) and (1) ⇒ (4) are clear by definitions.
(2) ⇒ (3) is obvious since there exists a short exact sequence 0 → M → E(M) →

E(M)/M → 0.
(3) ⇒ (1). Let M be a kernel of an FP-injective precover f :A → B with A injective. Then we

have an exact sequence 0 → M → A → A/M → 0. So, for any FP-injective left R-module N ,
the sequence Hom(N,A) → Hom(N,A/M) → Ext1(N,M) → 0 is exact. It is easy to verify
that Hom(N,A) → Hom(N,A/M) → 0 is exact by (3). Thus Ext1(N,M) = 0, and so (1) fol-
lows.

(4) ⇒ (1). For each FP-injective left R-module N , there exists a short exact sequence
0 → K → P → N → 0 with P projective, which induces an exact sequence Hom(P,M) →
Hom(K,M) → Ext1(N,M) → 0. Note that Hom(P,M) → Hom(K,M) → 0 is exact by (4).
Hence Ext1(N,M) = 0, as desired. �

Proposition 2.5. Let R be a left coherent ring. Then the following are equivalent for a left R-
module M :

(1) M is a reduced FI-injective left R-module.
(2) M is a kernel of an FP-injective cover f :A → B with A injective.

Proof. (1) ⇒ (2). By Proposition 2.4, the natural map π :E(M) → E(M)/M is an FP-injective
precover. Note that E(M)/M has an FP-injective cover, and E(M) has no nonzero direct
summand K contained in M since M is reduced. It follows that π :E(M) → E(M)/M is an
FP-injective cover by [20, Corollary 1.2.8], and hence (2) follows.

(2) ⇒ (1). Let M be a kernel of an FP-injective cover α :A → B with A injective. By Propo-
sition 2.4, M is FI-injective. Now let K be an injective submodule of M . Suppose A = K ⊕ L,
p :A → L is the projection and i :L → A is the inclusion. It is easy to see that α(ip) = α since
α(K) = 0. Therefore ip is an isomorphism since α is a cover. Thus i is epic, and hence A = L,
K = 0. So M is reduced. �

Theorem 2.6. Let R be a left coherent ring. Then a left R-module M is FI-injective if and only
if M is a direct sum of an injective left R-module and a reduced FI-injective left R-module.

Proof. “If” part is clear.
“Only if” part. Let M be an FI-injective left R-module. Consider the exact sequence 0 →

M → E(M) → E(M)/M → 0. Note that E(M) → E(M)/M is an FP-injective precover of
E(M)/M by Proposition 2.4. But E(M)/M has an FP-injective cover L → E(M)/M , so we
have the commutative diagram with exact rows:
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0 K
f

φ

L

γ

E(M)/M 0

0 M

σ

α
E(M)

β

E(M)/M 0

0 K
f

L E(M)/M 0.

Note that βγ is an isomorphism, and so E(M) = ker(β)⊕ im(γ ). Thus L and ker(β) are injective
(for im(γ ) ∼= L). Therefore K is a reduced FI-injective module by Proposition 2.5. Since σφ

is an isomorphism by the Five Lemma, we have M = ker(σ ) ⊕ im(φ), where im(φ) ∼= K . In
addition, we get the commutative diagram:

0 0 0

0 ker(σ ) ker(β) 0 0

0 M

σ

α
E(M)

β

E(M)/M 0

0 K
f

L E(M)/M 0.

0 0 0

Hence ker(σ ) ∼= ker(β) by the 3 × 3 Lemma [18, Exercise 6.16, p.175]. This completes the
proof. �

It is well known that R is a left coherent ring if and only if every right R-module has a flat
preenvelope (see [7]). Here we have

Proposition 2.7. Let R be a left coherent ring.

(1) If L is a cokernel of a flat preenvelope f :K → F of a right R-module K , then L is FI-flat.
(2) If M is a finitely presented FI-flat right R-module, then M is a cokernel of a flat preenvelope.

Proof. (1) There is an exact sequence 0 → im(f )
i−→ F → L → 0. It is clear that i : im(f ) → F

is a flat preenvelope. For any FP-injective left R-module N , N+ is flat by [12, Theorem 2.2].
Thus we obtain an exact sequence Hom(F,N+) → Hom(im(f ),N+) → 0, which yields the
exactness of (F ⊗ N)+ → (im(f ) ⊗ N)+ → 0. So the sequence 0 → im(f ) ⊗ N → F ⊗ N is
exact. But the flatness of F implies the exactness of 0 → Tor1(L,N) → im(f ) ⊗ N → F ⊗ N ,
and hence Tor1(L,N) = 0.
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(2) Let M be a finitely presented FI-flat right R-module. There is an exact sequence 0 → K →
P → M → 0 with P projective and both P and K finitely generated. We claim that K → P is
a flat preenvelope. In fact, for any flat right R-module F , we have Tor1(M,F+) = 0, and so we
get the following commutative diagram with the first row exact:

0 K ⊗ F+

τ
K,F

α
P ⊗ F+

τ
P,F

Hom(K,F )+
θ

Hom(P,F )+.

Note that τ
K,F

is an epimorphism and τ
P,F

is an isomorphism by [4, Lemma 2]. Thus θ is a
monomorphism, and hence Hom(P,F ) → Hom(K,F ) is epic, as required. �

Recall that R is said to be a QF ring if R is left noetherian and RR is injective.

Proposition 2.8. R is a QF ring if and only if every left R-module is FI-injective.

Proof. It follows from the fact that R is a QF ring if and only if every (FP-)injective left R-
module is projective. �

Recall that R is called a left IF ring [4] if every injective left R-module is flat.

Proposition 2.9. The following are equivalent for a ring R:

(1) R is a left IF ring.
(2) Every pure-injective left R-module is FI-injective.
(3) Every right R-module is FI-flat.
(4) Every finitely presented right R-module is FI-flat.

Proof. (1) ⇒ (2). Let M be any pure-injective left R-module. For any FP-injective left R-
module N , there is a pure exact sequence 0 → N → E → L → 0 with E injective. So N is flat
since E is flat. On the other hand, there is an exact sequence 0 → K → P → N → 0 with P

projective. Note that the sequence is also pure since N is flat. Thus the sequence Hom(P,M) →
Hom(K,M) → 0 is exact, and so Ext1(N,M) = 0. Therefore, M is FI-injective.

(2) ⇒ (3). Let M be a right R-module. Then M+ is pure-injective, and so it is FI-injective
by (2). Thus M is FI-flat by Remark 2.2(2).

(3) ⇒ (4) is trivial.
(4) ⇒ (1). Let E be an injective left R-module. Then Tor1(M,E) = 0 for any finitely pre-

sented right R-module M by (4). So E is flat. �
We shall say that a right R-module M is strongly FI-flat if Tori (M,G) = 0 for all FP-injective

left R-modules G and all i � 1. Similarly, a left R-module N will be called strongly FI-injective
if Exti (G,N) = 0 for all FP-injective left R-modules G and all i � 1.

Theorem 2.10. Let R be a left and right coherent ring. Consider the following conditions:
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(1) FP-id(RR) � 1.
(2) Every submodule of an FI-flat right R-module is FI-flat.
(3) Every FI-flat right R-module is strongly FI-flat.
(4) Every FI-injective left R-module is strongly FI-injective.
(5) Every quotient of an FI-injective left R-module is FI-injective.

Then (1) ⇔ (2) ⇔ (3) ⇐ (4) ⇐ (5). (1) ⇒ (5) holds in case R is a left perfect ring.

Proof. (1) ⇒ (2). Let A be a submodule of an FI-flat right R-module B and M an FP-
injective left R-module. Then one gets an exact sequence Tor2(B/A,M) → Tor1(A,M) →
Tor1(B,M) = 0. On the other hand, there is a pure exact sequence 0 → M → Π(RR)+ since
(RR)+ is a cogenerator in RM. Thus we get a split exact sequence (Π(RR)+)+ → M+ → 0.
Note that fd((RR)+) = FP-id(RR) � 1 by [12, Theorem 2.2], and so fd(Π(RR)+) � 1 since R

is right coherent. It follows that FP-id((Π(RR)+)+) = fd(Π(RR)+) � 1 by [12, Theorem 2.1].
Hence fd(M) = FP-id(M+) � 1. Thus Tor2(B/A,M) = 0, and so Tor1(A,M) = 0. Therefore,
A is FI-flat.

(2) ⇒ (3). Let M be an FI-flat right R-module. Then there is an exact sequence 0 → K →
P → M → 0 with P projective. So K is FI-flat by (2). Thus M is strongly FI-flat by induction.

(3) ⇒ (1). Let M be a right R-module. Then there is an exact sequence 0 → K → P →
M → 0 with P projective. Note that K has a flat preenvelope f :K → F since R is left coherent.
So f is a monomorphism, and we get an exact sequence 0 → K → F → L → 0, where L is
FI-flat by Proposition 2.7. Thus L is strongly FI-flat by (3), and so K is FI-flat. There is an
induced exact sequence 0 = Tor2(P, (RR)+) → Tor2(M, (RR)+) → Tor1(K, (RR)+) = 0. Thus
Tor2(M, (RR)+) = 0 and hence fd((RR)+) � 1. So FP-id(RR) � 1 by [12, Theorem 2.2].

(5) ⇒ (4). Let M be an FI-injective left R-module. Then there is an exact sequence 0 →
M → E → L → 0 with E injective. So L is FI-injective by (5). It is easy to check that M is
strongly FI-injective by induction.

(4) ⇒ (3) holds by Remark 2.2(2) and the standard isomorphism: Extn(N,M+) ∼=
Torn(M,N)+ for any right R-module M , any left R-module N and any n � 1 (see [18, p. 360]).

(1) ⇒ (5). Suppose that R is a left perfect ring. Then the projective (flat) dimension of any
FP-injective left R-module is at most 1 by the proof of (1) ⇒ (2). So (5) holds. �
3. FP-injective dimensions and the left derived functors of Hom

As is mentioned in the introduction, if R is a left coherent ring, then Hom(−,−) is left
balanced on RM × RM by FI × FI . Let Extn(−,−) denote the nth left derived functor
of Hom(−,−) with respect to the pair FI × FI . Then, for two left R-modules M and N ,
Extn(M,N) can be computed using a right FI-resolution of M or a left FI-resolution of N .

Let 0 → M
g−→ F 0 f−→ F 1 → ·· · be a right FI-resolution of M . Applying Hom(−,N), we

obtain the deleted complex · · · → Hom(F 1,N)
f ∗−→ Hom(F 0,N) → 0. Then Extn(M,N) is

exactly the nth homology of the complex above. There is a canonical map

σ : Ext0(M,N) = Hom
(
F 0,N

)
/ im

(
f ∗) → Hom(M,N)

defined by σ(α + im(f ∗)) = αg for α ∈ Hom(F 0,N).
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Proposition 3.1. Let R be a left coherent ring. The following are equivalent for a left
R-module M :

(1) M is FP-injective.
(2) The canonical map σ : Ext0(M,N) → Hom(M,N) is an epimorphism for any left R-

module N .
(3) The canonical map σ : Ext0(M,M) → Hom(M,M) is an epimorphism.

Proof. (1) ⇒ (2) is obvious by letting F 0 = M .
(2) ⇒ (3) is trivial.
(3) ⇒ (1). By (3), there exists α ∈ Hom(F 0,M) such that σ(α + im(f ∗)) = αg = 1M . Thus

M is isomorphic to a direct summand of F 0, and hence it is FP-injective. �
Corollary 3.2. The following are equivalent for a left coherent ring R:

(1) RR is FP-injective.
(2) The canonical map σ : Ext0(RR,N) → Hom(RR,N) is an epimorphism for any left R-

module N .
(3) The canonical map σ : Ext0(RR, RR) → Hom(RR, RR) is an epimorphism.
(4) Every ( finitely presented) left R-module has an epic FP-injective cover.
(5) Every ( finitely presented) right R-module has a monic flat preenvelope.
(6) Every ( finitely presented) right R-module is a submodule of a flat right R-module.

Proof. (1) ⇔ (2) ⇔ (3) follow from Proposition 3.1.
(1) ⇒ (4). Let M be a left R-module, then M has an FP-injective cover g. On the other hand,

there is an exact sequence F → M → 0 with F free. Since F is FP-injective by (1), g is an
epimorphism.

(4) ⇒ (1). Let f :N →R R be an epic FP-injective cover. Then RR is isomorphic to a direct
summand of N , and so RR is FP-injective.

(1) ⇒ (5). Note that R is a right IF ring by [4, Theorem 1], and so (5) follows.
(5) ⇒ (1) is clear by [14, Theorem 2.3] since every finitely presented right R-module is

torsionless.
(5) ⇒ (6) is obvious.
(6) ⇒ (5) follows since R is a left coherent ring. �

Proposition 3.3. Let R be a left coherent ring. Then the following are equivalent for a left R-
module M :

(1) right FI-dimM � 1.
(2) The canonical map σ : Ext0(M,N) → Hom(M,N) is a monomorphism for any left R-

module N .

Proof. (1) ⇒ (2). By (1), M has a right FI-resolution 0 → M → F 0 → F 1 → 0. Thus we get
an exact sequence 0 → Hom(F 1,N) → Hom(F 0,N) → Hom(M,N) for any left R-module N .
Hence σ is a monomorphism.
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(2) ⇒ (1). Consider the exact sequence 0 → M → F 0 → L1 → 0, where M → F 0 is an FP-
injective preenvelope. We only need to show that L1 is FP-injective. By [11, Theorem 8.2.3], we
have the commutative diagram with exact rows:

Ext0
(
L1,L1

)

σ1

Ext0
(
F 0,L1

)

σ2

Ext0
(
M,L1

)

σ3

0

0 Hom
(
L1,L1

)
Hom

(
F 0,L1

)
Hom

(
M,L1

)
.

Note that σ2 is an epimorphism by Proposition 3.1 and σ3 is a monomorphism by (2). Hence σ1
is an epimorphism by the Snake Lemma [18, Theorem 6.5]. Thus L1 is FP-injective by Proposi-
tion 3.1, and so (1) follows. �

Let wD(R) denote the weak global dimension of a ring R. We have the following lemma
which will be needed frequently.

Lemma 3.4. Let R be a left coherent ring. Then

(1) right FI-dimM = FP-id(M) for any left R-module M;
(2) wD(R) = l.FP-dim(R) = gl right FI-dimR M.

Proof. (1) It is clear that FP-id(M) � right FI-dimM . Conversely, we may assume that FP-
id(M) = n < ∞. Let 0 → M → F 0 → F 1 → ·· · → Fn−1 be a partial right FI-resolution of M .
Then we get an exact sequence 0 → M → F 0 → F 1 → ·· · → Fn−1 → L → 0. Therefore, L is
FP-injective by [19, Lemma 3.1], and so right FI-dimM � n, as desired.

(2) follows from [19, Theorem 3.3] and (1). �
Proposition 3.5. The following are equivalent for a left coherent ring R:

(1) FP-id(RR) � 1.
(2) The canonical map σ : Ext0(RR,N) → Hom(RR,N) is a monomorphism for any left R-

module N .
(3) Every finitely presented FI-flat right R-module has a monic flat preenvelope.

Proof. (1) ⇔ (2) holds by Proposition 3.3 and Lemma 3.4.
(1) ⇒ (3). Let M be a finitely presented FI-flat right R-module. Then M is cokernel of a

flat preenvelope K → F 0 of a right R-module K by Proposition 2.7(2). Thus we have a right
F lat-resolution

0 → K → F 0 → F 1 → ·· · ,
where M = coker(K → F 0) and F lat is the class of all flat right R-modules. This resolution is
exact at F 0 by (1) and [11, Theorem 8.4.31], and hence M has a monic flat preenvelope.

(3) ⇒ (1). Let 0 → M
f−→ F 0 → F 1 → ·· · be a right Projfg-resolution of a finitely presented

right R-module M , where Projfg is the class of all finitely generated projective right R-modules.
Then coker(f ) is a finitely presented FI-flat right R-module by Proposition 2.7(1), and hence it
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has a monic flat preenvelope by (3). It follows that the above complex is exact at Fk for k � 0.
So (1) holds by [11, Theorem 8.4.31]. �
Lemma 3.6. Let C be a class of R-modules and M an R-module.

(1) If F → M and G → M are C-precovers with kernels K and L, respectively, then K ⊕ G ∼=
L ⊕ F .

(2) If M → F and M → G are C-preenvelopes with cokernels K and L, respectively, then
K ⊕ G ∼= L ⊕ F .

Proof. (1) follows from [11, Lemma 8.6.3]. The proof of (2) is dual to that of [11, Lemma 8.6.3].�
Theorem 3.7. The following are equivalent for a left coherent ring R:

(1) R is a left semihereditary ring (i.e. l.FP-dim(R) � 1).
(2) σ : Ext0(M,N) → Hom(M,N) is monic for all left R-modules M and N .
(3) Every left R-module has a monic FP-injective cover.
(4) Every FI-injective left R-module is injective.
(5) Every FI-injective left R-module is FP-injective.
(6) Every ( finitely presented) FI-flat right R-module is flat.
(7) Every right R-module has an epic flat ( pre)envelope.
(8) Every finitely presented right R-module has an epic flat ( pre)envelope.
(9) The kernel of any FP-injective ( pre)cover of a left R-module is FP-injective.

(10) The cokernel of any FP-injective preenvelope of a left R-module is FP-injective.
(11) The cokernel of any flat preenvelope of a right R-module is flat.
(12) The kernel of any flat ( pre)cover of a right R-module is flat.

Proof. (1) ⇔ (2) holds by Proposition 3.3 and Lemma 3.4.
(1) ⇒ (4) follows from Proposition 2.3 and Lemma 3.4.
(4) ⇒ (5) is trivial.
(5) ⇒ (6). Let M be an FI-flat right R-module. Then M+ is FI-injective by Remark 2.2(2),

and hence M+ is FP-injective by (5). So M is flat by [12, Theorem 2.1].
(6) ⇒ (8). Let M be a finitely presented right R-module. Then M has a flat preenve-

lope f :M → F with F finitely generated and projective. It is easy to see that the inclusion
i : im(f ) → F is a flat preenvelope. Thus F/ im(f ) is finitely presented and FI-flat by Proposi-
tion 2.7(1), and hence it is flat by (6). It follows that im(f ) is flat, and M → im(f ) is an epic flat
(pre)envelope.

(8) ⇒ (7). Let M be any right R-module. Then M = lim−→ Mi with Mi finitely presented for
each i. By (8), each Mi has an epic flat (pre)envelope Mi → Fi . It is easy to see that {Fi} is a
direct system and M → lim−→ Fi is an epic flat (pre)envelope.

(1) ⇒ (3). Let M be a left R-module. Then M has an FP-injective cover f :N → M . Note
that im(f ) is FP-injective by (1) and [15, Theorem 2]. So the inclusion im(f ) → M is a monic
FP-injective cover.

(3) ⇒ (9). Let f :F → M be an FP-injective precover of a left R-module M and K = ker(f ).
Since there exists a monic FP-injective cover g :G → M by (3), we have K ⊕ G ∼= F by
Lemma 3.6(1). So K is FP-injective.
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(9) ⇒ (1). It is enough to show that any quotient of an FP-injective left R-module is FP-
injective. Let M be a quotient of an FP-injective left R-module. Note that M has an FP-injective
cover f :F → M . So f is an epimorphism. Since ker(f ) is FP-injective by (9), M is FP-
injective by [19, Lemma 3.1] (for R is a left coherent ring).

(1) ⇔ (10) follows from Lemma 3.4.
(7) ⇒ (11). The proof is dual to that of (3) ⇒ (9).
(11) ⇒ (1). By a proof dual to that of (9) ⇒ (1), we can show that any submodule of a flat

right R-module is flat. Thus R is a left semihereditary ring.
(1) ⇔ (12) is obvious. �

Remark 3.8. We note that the equivalences of (1), (3), (7) and (8) were known earlier (see [1,3,
6,8,17]).

As an immediate consequence of the above theorem, we have the following result which was
proven in a different way by Enochs and Jenda (see [9, Corollary 2.4]).

Corollary 3.9. Let R be a left noetherian ring. Then R is a left hereditary ring if and only if
every copure injective left R-module is injective.

Proposition 3.10. Let R be a left coherent ring and an integer n � 2. The following are equivalent
for a left R-module M :

(1) right FI-dimM � n.
(2) Extn+k(M,N) = 0 for all left R-modules N and all k � −1.
(3) Extn−1(M,N) = 0 for all left R-modules N .

Proof. (1) ⇒ (2). Let 0 → M → F 0 → F 1 → ·· · → Fn → 0 be a right FI-resolution of M ,
which induces an exact sequence

0 → Hom
(
Fn,N

) → Hom
(
Fn−1,N

) → Hom
(
Fn−2,N

)

for any left R-module N . Hence Extn(M,N) = Extn−1(M,N) = 0. Note that it is clear that
Extn+k(M,N) = 0 for all k � 1. Then (2) holds.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). Let 0 → M → F 0 → F 1 → ·· · be a right FI-resolution of M with Ln =

coker(F n−2 → Fn−1). We only need to show that Ln is FP-injective. In fact, we have the fol-
lowing exact commutative diagram:

0 M F 0 · · · Fn−2
f

Fn−1

π

g

Fn · · ·

Ln

λ

0 0.
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By (3), Extn−1(M,Ln) = 0. Thus the sequence

Hom
(
Fn,Ln

) g∗−→ Hom
(
Fn−1,Ln

) f ∗−→ Hom
(
Fn−2,Ln

)

is exact. Since f ∗(π) = πf = 0, π ∈ ker(f ∗) = im(g∗). Thus there exists h ∈ Hom(F n,Ln)

such that π = g∗(h) = hg = hλπ , and hence hλ = 1 since π is epic. Therefore Ln is FP-
injective. �
Corollary 3.11. The following are equivalent for a left coherent ring R and an integer n � 2:

(1) l.FP-dim(R) � n.
(2) Extn+k(M,N) = 0 for all left R-modules M , N and all k � −1.
(3) Extn−1(M,N) = 0 for all left R-modules M and N .

Proof. It follows from Lemma 3.4 and Proposition 3.10. �
Lemma 3.12. The following are true for any ring R:

(1) A left R-module N is FP-injective if and only if, for every pure-injective left R-module G,
every homomorphism f :N → G factors through an injective left R-module.

(2) If M is a pure-injective left R-module, and f :F → M is an FP-injective cover of M , then
F is injective.

Proof. (1) “Only if” part. There is an exact sequence 0 → N
i−→ E → L → 0 with E injective.

Since the exact sequence is pure, there exists g :E → G such that gi = f , as required.
“If” part. It is enough to show that the exact sequence 0 → N

i−→ E(N) → L → 0 is pure.
Let H be any right R-module. Then H+ is pure-injective. For any f :N → H+, there exist an
injective left R-module Q and g :N → Q and h :Q → H+ such that f = hg by hypothesis.
Thus there exists α :E(N) → Q such that g = αi, and so f = (hα)i. Therefore we get an exact
sequence Hom(E(N),H+) → Hom(N,H+) → 0, which gives the exactness of the sequence
(H ⊗ E(N))+ → (H ⊗ N)+ → 0. It follows that 0 → H ⊗ N → H ⊗ E(N) is exact. So N is
FP-injective.

(2) By (1), there exist an injective left R-module E and g :F → E and h :E → M such that
f = hg. So there exists ϕ :E → F such that f ϕ = h since f is a cover. Therefore f ϕg = f and
hence ϕg is an isomorphism. It follows that F is isomorphic to a direct summand of E, and so
F is injective. �
Lemma 3.13. Let R be a left coherent ring. If M is an FI-injective left R-module, then there
exists an FP-injective cover N → M with N injective.

Proof. M has an FP-injective cover f :N → M since R is left coherent. Consider the short
exact sequence 0 → N

i−→ E → L → 0 with E injective. Note that L is FP-injective by [19,
Lemma 3.1] since R is left coherent. So there exists g :E → M such that gi = f since M is FI-
injective. Thus there exists h :E → N such that f h = g since f is a cover. Therefore f hi = f ,
and hence hi is an isomorphism. It follows that N is injective, as desired. �
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Corollary 3.14. Let R be a left coherent ring. If M is a pure-injective left R-module, then M has
a minimal left FI-resolution · · · → Fn−2 → Fn−3 → ·· · → F1 → F0 → M → 0 with each Fi

injective.

Proof. By Lemma 3.12, M has an FP-injective cover f :F0 → M with F0 injective. Note that
ker(f ) is FI-injective by Proposition 2.4. Hence ker(f ) has an FP-injective cover g :F1 →
ker(f ) with F1 injective by Lemma 3.13. Note that ker(g) is FI-injective by Proposition 2.4.
So we can continue the above process to get the desired minimal left FI-resolution of M . �
Theorem 3.15. Let R be a left coherent ring. Consider the following conditions for a left R-
module N and an integer n � 2:

(1) left FI-dimN � n − 2.
(2) Extn+k(M,N) = 0 for all left R-modules M and all k � −1.
(3) Extn−1(M,N) = 0 for all left R-modules M .

Then (1) ⇒ (2) ⇒ (3). The converses hold if N is pure-injective.

Proof. (1) ⇒ (2). By (1), N has a left FI-resolution

0 → Fn−2 → ·· · → F1 → F0 → N → 0.

Then we have the following complex

0 → Hom(M,Fn−2) → Hom(M,Fn−3) → ·· · → Hom(M,F0) → 0

for any left R-module M . Hence Extn+k(M,N) = 0 for all k � −1.
(2) ⇒ (3) is trivial.
(3) ⇒ (1). Since N is pure-injective, N has a minimal left FI-resolution:

· · · → Fn
f−→ Fn−1

g−→ Fn−2
h−→ Fn−3

j−→ · · · → F1 → F0 → N → 0

with each Fi injective by Corollary 3.14. Put K = ker(g), H = Fn−1/K . Let λ :K → Fn−1 be
the inclusion and π :Fn−1 → H the canonical projection. Then there exists p :Fn → K such that
f = λp and there exists a monomorphism α :H → Fn−2 such that g = απ . Put L = Fn−2/ im(α)

and let β :Fn−2 → L be the canonical projection. Then there exists a homomorphism i :L →
Fn−3 such that h = iβ . So we have the following commutative diagram:

Fn

p

f
Fn−1

π

g
Fn−2

β

h
Fn−3

K

λ

H

α

L

i

0 0 0 0.
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By (3), Extn−1(K,N) = 0. Thus the sequence

Hom(K,Fn)
f∗

Hom(K,Fn−1)
g∗

Hom(K,Fn−2)

is exact. Since g∗(λ) = gλ = 0, λ ∈ ker(g∗) = im(f∗). So λ = f∗(l) = f l for some l ∈
Hom(K,Fn). But f = λp, and hence λ = λpl. Thus pl = 1 since λ is monic, and so K is
injective. It follows that H and L are injective. We claim that the complex

0 → L
i−→ Fn−3 → ·· · → F1 → F0 → N → 0

is a left FI-resolution of N . In fact, it is enough to show that the complex

0 Hom(G,L)
i∗

Hom(G,Fn−3)
j∗

Hom(G,Fn−4)

is exact for any FP-injective left R-module G. Note that we have the following exact commuta-
tive diagram:

Hom(G,Fn−1)

π∗

g∗
Hom(G,Fn−2)

β∗

h∗
Hom(G,Fn−3)

Hom(G,H)

α∗

Hom(G,L)

i∗

0 0 0.

So ker(i∗β∗) = ker(h∗) = im(g∗) = im(α∗π∗) = im(α∗) = ker(β∗). Let θ ∈ ker(i∗). Since β∗ is
epic, θ = β∗(γ ) for some γ ∈ Hom(G,Fn−2). Thus i∗β∗(γ ) = 0, and hence θ = β∗(γ ) = 0. It
follows that i∗ is monic. On the other hand, ker(j∗) = im(h∗) = im(i∗). So we obtain the desired
exact sequence. This completes the proof. �
Corollary 3.16. Consider the following conditions for a left coherent ring R and an integer
n � 2:

(1) gl left FI-dimR M� n − 2.
(2) l.FP-dim(R) � n.
(3) left FI-dimN � n − 2 for all pure-injective left R-modules N .
(4) Extn+k(M,N) = 0 for all left R-modules M , all pure-injective left R-modules N and all

k � −1.
(5) Extn−1(M,N) = 0 for all left R-modules M and all pure-injective left R-modules N .

Then (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇔ (5).

Proof. It follows from Corollary 3.11 and Theorem 3.15. �
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Lemma 3.17. Let R be a left coherent ring. If M is a pure-injective left R-module, then
id(M) � n (n � 0) if and only if for the minimal left FI-resolution · · · → Fn → Fn−1 → ·· · →
F1 → F0 → N → 0 of any pure-injective left R-module N , Hom(M,Fn) → Hom(M,Kn) is an
epimorphism.

Proof. The proof is modeled on that of [11, Lemma 8.4.34].
We will proceed by induction on n. Let n = 0. If M is injective, it is clear that Hom(M,F0) →

Hom(M,K0) is an epimorphism. Conversely, put N = M . Then Hom(M,F0) → Hom(M,M)

is an epimorphism, and so M is injective.
Let n � 1. There is an exact sequence 0 → M → E → L → 0 with E injective. Then we have

the following exact commutative diagrams:

Hom(E,Fn) Hom(E,Kn) 0

Hom(M,Fn) Hom(M,Kn)

0

and

0 0 0

0 Hom(L,Kn) Hom(L,Fn−1) Hom(L,Kn−1)

0 Hom(E,Kn) Hom(E,Fn−1) Hom(E,Kn−1) 0

0 Hom(M,Kn) Hom(M,Fn−1) Hom(M,Kn−1).

0

Note that L is pure-injective by [13, Lemma 3.2.10]. Thus id(M) � n if and only if id(L) �
n − 1 if and only if Hom(L,Fn−1) → Hom(L,Kn−1) is an epimorphism by induction if and
only if Hom(E,Kn) → Hom(M,Kn) is an epimorphism by the second diagram if and only if
Hom(M,Fn) → Hom(M,Kn) is an epimorphism by the first diagram. �
Theorem 3.18. Let R be a left coherent ring. Then the following are equivalent for an integer
n � 2:

(1) l.FP-dim(R) � n.
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(2) left FI-dimN � n − 2 for all pure-injective left R-modules N .
(3) Extn+k(M,N) = 0 for all left R-modules M , all pure-injective left R-modules N and all

k � −1.
(4) Extn−1(M,N) = 0 for all left R-modules M and all pure-injective left R-modules N .
(5) Extn+k(M,N) = 0 for all pure-injective left R-modules M and N , and all k � −1.
(6) Extn−1(M,N) = 0 for all pure-injective left R-modules M and N .
(7) For the minimal left FI-resolution · · · → Fn → Fn−1 → Fn−2 → ·· · → F0 → N → 0 of

any pure-injective left R-module N , Hom(M,Fn) → Hom(M,Kn) is an epimorphism for
any pure-injective left R-module M .

Proof. (1) ⇒ (2) ⇒ (3) hold by Corollary 3.16.
(3) ⇒ (4) ⇒ (6), and (3) ⇒ (5) ⇒ (6) are trivial.
(6) ⇒ (7). Let M and N be pure-injective left R-modules and · · · → Fn

f−→ Fn−1
g−→ Fn−2 →

·· · → F0 → N → 0 be the minimal left FI-resolution of N . Then the sequence

Hom(M,Fn)
f∗

Hom(M,Fn−1)
g∗

Hom(M,Fn−2)

is exact since Extn−1(M,N) = 0. Note that the sequence

0 Hom(M,Kn) Hom(M,Fn−1)
g∗

Hom(M,Fn−2)

is exact. It is easy to see that the sequence Hom(M,Fn) → Hom(M,Kn) → 0 is exact.
(7) ⇒ (1) follows from [20, Theorem 3.3.2], Lemmas 3.17 and 3.4. �
Recall that a homomorphism φ :M → C with C ∈ C is said to a C-envelope with the unique

mapping property [5] if for any homomorphism f :M → C′ with C′ ∈ C, there is a unique
homomorphism g :C → C′ such that gφ = f . Dually we have the definition of a C-cover with
the unique mapping property.

It has been proven that R is a left coherent ring and l.FP-dim(R) � 2 if and only if every right
R-module has a flat envelope with the unique mapping property (see [2]). Now we have

Theorem 3.19. The following are equivalent for a ring R:

(1) R is left coherent and l.FP-dim(R) � 2.
(2) Every left R-module has an FP-injective cover with the unique mapping property.
(3) R is left coherent and Ext1(M,N) = 0 for all left R-modules M and N .
(4) R is left coherent and Extk(M,N) = 0 for all left R-modules M , N and all k � 1.
(5) R is left coherent and every finitely presented FI-flat right R-module has an epic flat

( pre)envelope.

Proof. (1) ⇔ (3) ⇔ (4) follow from Corollary 3.11.
(1) ⇒ (5). Let M be a finitely presented FI-flat right R-module. By the proof of (1) ⇒ (3) in

Proposition 3.5, we can construct a right F lat-resolution of a right R-module K :

0 K
f

F 0
g

F 1 · · ·
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such that coker(f ) = M . Note that the complex is exact at F i for i � 1 by (1) and [11, Theo-
rem 8.4.31]. So we get an exact sequence

0 im(g) F 1 F 2 L3 0.

Thus im(g) is flat since fd(L3) � 2. It follows that M → im(g) is an epic flat (pre)envelope.
(5) ⇒ (1). For any finitely presented right R-module M , there is a right Projfg-resolution

0 → M → P 0 → P 1 → 0 with P 0 and P 1 finitely generated and projective by (5) and Propo-
sition 2.7(1). Thus gl right Projfg-dimMRfp

� 1, and so l.FP-dim(R) � 3 by [11, Corol-
lary 8.4.28]. Hence l.FP-dim(R) = FP-id(RR) by [19, Proposition 3.5]. On the other hand, let
0 → M → F 0 → F 1 → ·· · be any right Projfg-resolution of a finitely presented right R-mod-
ule M . Since L1 has an epic flat preenvelope L1 → G by (5) and L1 → F 1 is a flat preenvelope
with L2 = coker(L1 → F 1), we have G ⊕ L2 ∼= F 1 by Lemma 3.6(2). Hence L2 is finitely
generated and projective. It follows that the above complex is exact at F i for i � 1, and so
FP-id(RR) � 2 by [11, Theorem 8.4.31]. Therefore, l.FP-dim(R) � 2.

(1) ⇒ (2). Let M be any left R-module. Then M has an FP-injective cover f :F → M . It
is enough to show that, for any FP-injective left R-module G and any homomorphism g :G →
F such that fg = 0, we have g = 0. In fact, there exists β :F/ im(g) → M such that βπ = f

since im(g) ⊆ ker(f ), where π :F → F/ im(g) is the natural map. Since l.FP-dim(R) � 2,
F/ im(g) is FP-injective. Thus there exists α :F/ im(g) → F such that β = f α, and so we get
the commutative diagram with an exact row:

0 ker(g)
i

G
g

0

F

f

π
F/ im(g)

β

α

0.

M

Thus f απ = f , and hence απ is an isomorphism. Therefore, π is monic, and so g = 0.
(2) ⇒ (1). We first prove that R is a left coherent ring. Let {Ci,ϕ

i
j } be a direct system with

each Ci FP-injective. By hypothesis, lim−→ Ci has an FP-injective cover α :E → lim−→ Ci with the
unique mapping property. Let αi :Ci → lim−→ Ci satisfy αi = αjϕ

i
j whenever i � j . Then there

exists fi :Ci → E such that αi = αfi for any i. It follows that αfi = αfjϕ
i
j , and so fi = fjϕ

i
j

whenever i � j . Therefore, by the definition of direct limits, there exists β : lim−→ Ci → E such
that the following diagram is commutative:

lim−→ Ci

β

E
α

lim−→ Ci.

Ci

αi

ϕi
j

fi

αi

Cj

αj
fjαj
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Thus fi = βαi , and so (αβ)αi = α(βαi) = αfi = αi for any i. Therefore αβ = 1lim−→Ci
by the

definition of direct limits, and hence lim−→ Ci is a direct summand of E. So lim−→ Ci is FP-injective.
Thus R is a left coherent ring by [19, Theorem 3.2].

Next we prove that l.FP-dim(R) � 2. Let M be any left R-module. Then M has an FP-
injective cover f :F → M with the unique mapping property. So 0 → F → M → 0 is a left FI-
resolution. Thus gl left FI-dimR M = 0, and hence l.FP-dim(R) � 2 by Corollary 3.16. �

We conclude the paper with the following

Remark 3.20. It would be interesting to compare the results of Corollary 3.2, Proposition 3.5,
Theorems 3.7 and 3.19. Let R be a left coherent ring. Then RR is FP-injective (respectively
FP-id(RR) � 1) if and only if every finitely presented (respectively finitely presented FI-flat)
right R-module has a flat preenvelope which is a monomorphism by Corollary 3.2 and Propo-
sition 3.5; R is left semihereditary (respectively l.FP-dim(R) � 2) if and only if every finitely
presented (respectively finitely presented FI-flat) right R-module has a flat preenvelope which
is an epimorphism by Theorems 3.7 and 3.19. On the other hand, in view of Theorem 3.7(6),
R is von Neumann regular (respectively left semihereditary) if and only if every finitely pre-
sented (respectively finitely presented FI-flat) right R-module has a flat preenvelope which is
an isomorphism. This observation may be viewed as an illustration of the usefulness of FI-flat
modules.
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